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Computational Balloon Twisting:
The Theory of Balloon Polyhedra

Erik D. Demaine∗ Martin L. Demaine∗ Vi Hart†

Abstract

This paper builds a general mathematical and algorith-
mic theory for balloon-twisting structures by modeling
their underlying edge skeleta, evolving classic balloon
animals into the new world of balloon polyhedra.

What if Euler were a clown?

1 Overview

Balloon twisting (or balloon modeling) is a form of
sculpture rooted in the magic community starting in the
1930s [1]. Modern balloon twisters gather at the annual
Twist & Shout convention1 and are the subject of an ex-
cellent documentary [5]. In this paper, we investigate
the geometric and algorithmic nature inherent in this art
form, founding the new field of computational balloon
twisting. We use this perspective to design a new class
of balloon-twisted sculpture called balloon polyhedra.

We begin with the basics of practical balloon twisting
(Section 2) and their mathematical idealizations called
“bloons” (Section 3). Then we consider the mathemat-
ics of three such models in turn: simple twisting (Sec-
tion 4), pop twisting (Section 5), and equalizing bloon
lengths (Section 6). Finally, we find optimal construc-
tions for Platonic and Archimedean solids (Section 7).

In addition to artistic applications, computational bal-
loon twisting has potential applications to building ar-
chitectural structures. Our results suggest that a long,
low-pressure tube (called an air beam in architecture)
enables the temporary construction of inflatable shelters,
domes, and many other polyhedral structures, which can
be later reconfigured into different shapes and re-used at
different sites.

2 Balloon Basics

The majority of balloon twisting starts from a long, nar-
row balloon, the most common being the “260” which
measures 2 inches in diameter and 60 inches in length
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Figure 1: Classic dog (one balloon).

Figure 2: Octahedron (one balloon).

when fully inflated. Normally the balloonist only par-
tially inflates such a balloon, however, leaving one end
deflated as in Figure 3(a). This deflated end leaves
room for the air to spread out when twisting the balloon
along a circular cross-section, forming a vertex as in Fig-
ure 3(b). The vertex holds its shape if wrapped around
another vertex, as in Figure 3(c). The figure shows the
vertex coming from another balloon, but it could just as
well come from another part of the same balloon, as in
the middle of Figure 3(d). Indeed, one theme in bal-
loon twisting is designing complex figures (often ani-
mals) from a single balloon, and in this paper we often
aim for this goal or for minimizing the number of bal-
loons. Vertex joints can also be bent, similar to joints in
a linkage, and will hold their shape if the linkage forces
them to remain bent by a nontrivial angle, as on the right
of Figure 3(d).

3 Twistable Tangles: Bloon Models

Inflated balloon segments and their twisted end vertices
naturally form a graph. Our central problem is to de-
termine which graphs are twistable under a variety of
abstract models of physical balloons, which we refer to
as “bloons” for contrast.
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(a) A balloon.

(b) Twisted.
(c) Two balloons,
twisted.

(d) Balloon
twisted into
a triangle.

Figure 3: Twisting balloons.

In general, a bloon is a segment which can be twisted
at arbitrary points to form vertices at which the bloon
can be bent like a hinge. The endpoints of a bloon are
also vertices. Two vertices can be tied to form perma-
nent point connections. A twisted bloon is stable if ev-
ery vertex is either tied to another vertex or held at a
nonzero bending angle.

We distinguish two main models of bloon twisting:

1. (Simple) twisting: Every subsegment of a bloon be-
tween two vertices form an edge in the associated
graph, representing an inflated portion of a balloon.

2. Pop twisting: Some subsegments of a bloon be-
tween two vertices can be marked as deflated, caus-
ing them not to appear in the associated graph.
Such deflated segments can be achieved with phys-
ical balloons by squeezing the air down the bal-
loon or by popping a segment between two exist-
ing vertices (a practice common in balloon twist-
ing, though requiring some care and skill).

Two other parameters shape the model:

3. Number of bloons: In general we allow structures
consisting of any number k of bloons. Of particu-
lar interest are the case k = 1 and minimizing the
number of bloons. A graph has bloon number k if it
can be simply twisted from k bloons and no fewer.

4. Bloon lengths: For multibloon structures, we prefer
the bloons to have the same or similar lengths. In
particular, this constraint helps us avoid the need
for extremely long balloons (which are difficult to
obtain). An `-bloon is a bloon of length `. We often
consider graphs whose edges have unit length, and
hence particular cases like doubloons (` = 2) and
demidoubloons (` = 1) are of interest.

4 Euler Outgrowth: Bloon Number

Simple twisting of a single bloon naturally forms an Eu-
lerian tour of the constructed graph. Thus single-bloon
graphs must have vertices of even degree, except possi-
bly for two odd degrees, and must be connected. Indeed,
such graphs are always twistable:

Theorem 1 A graph has bloon number 1 if and only if
the graph is Eulerian.

More interesting from a technical standpoint is the
case of k bloons (of arbitrary lengths). Here we can
exactly characterize bloon number:

Theorem 2 A graph with o > 0 odd vertices has bloon
number o/2.

Proof. Every odd-degree vertex must have an odd num-
ber of bloon ends, and each bloon has only two ends,
so o/2 bloons are necessary. To see that o/2 bloons
suffice, consider adding o/2 edges connecting the odd-
degree vertices in pairs. (Recall that every graph has
an even number of odd-degree vertices.) The resulting
graph has all even degrees and hence an Euler tour. Re-
moving the o/2 added edges from the tour results in o/2
paths, which are the desired bloons. �

5 Chinese Connection: Pop Twisting

Pop twisting is of course the more general model: it al-
lows building any graph (without straight degree-2 ver-
tices) from a single bloon. In this context, the natural
objective is to minimize the total deflated length of the
bloon, or equivalently, the total length of the bloon.

This problem is similar to the Chinese Postman Prob-
lem: given a graph, find a tour of minimum length that
visits all edges. This problem has a classic polynomial-
time solution based on adding to the graph a minimum-
cost perfect matching of the complete graph Ko on the
o odd-degree vertices, resulting in the cheapest Eulerian
supergraph. The costs in the complete graph can be de-
fined by shortest paths in the graph (for hiding deflated
segments against inflated segments), or to include short-
cuts available to the bloon in 3D.

The difference is that a pop twisting of a polyhedron
requires a path, while the Chinese postman finds the
optimal tour (cycle). To find the optimal path, we in-
stead add the minimum-cost (o/2 − 1)-edge matching
in Ko, leaving exactly two odd vertices. More gener-
ally, if we are given k bloons instead of one, we can
add a minimum-cost (o/2 − k)-edge matching, leav-
ing exactly 2k odd vertices; by Theorem 2, the resulting
graph can be traversed by k paths. Such a matching can
be computed as a minimum-cost maximum flow in the
complete bipartite graph Ko,o, with edge costs defined
as in Ko, together with a source of capacity o/2 − k
attached to one side of the bipartition via edges of ca-
pacity 1, and a sink attached to the other side of the bi-
partition via edges of capacity 1.

Theorem 3 There is a polynomial-time algorithm that,
given a graph and a desired k ≥ 1, finds the k bloons of
minimum total length that pop-twist the graph.
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6 Length Limitations: Holyer’s Problem

Given a graph simply twistable from k bloons, how sim-
ilar in length can the k bloons be? In particular, when
can the lengths all be identical? We can specialize fur-
ther to obtain a clean combinatorial problem by suppos-
ing graph edges all have unit length, as in regular poly-
hedra, and the bloons have integer length `. What graphs
can be simply twisted from `-bloons?

This problem is closely related to Holyer’s problem:
decide whether the edges of a graph can be decomposed
into copies of a fixed graph H . In 1981, Holyer [8] con-
jectured that this problem is NP-complete if H has at
least three edges. This conjecture turns out to be cor-
rect when H is connected. In fact, the problem is NP-
complete if H has a connected component consisting of
at least three edges [3], and otherwise it can be solved
in polynomial time [2]. Of particular relevance is an old
result that every graph with an even number of edges
can be decomposed into length-2 paths [11]:

Theorem 4 Every graph with unit edge lengths can be
twisted from doubloons and possibly one demidoubloon
(when the graph has an odd number of edges).

For ` > 2, however, there is a discrepancy between
Holyer’s problem and simply twisting from `-bloons.
On the one hand, each `-bloon can be twisted into any
Eulerian graph on ` edges. On the other hand, Holyer’s
problem assumes all bloons form the same such graph,
e.g., a path of ` edges or a cycle of ` edges. Therefore the
known NP-hardness for Holyer’s problem beyond two
edges does not immediately imply NP-hardness for sim-
ple twisting beyond doubloons. Fortunately, one NP-
hardness proof for Holyer’s problem also establishes
NP-hardness of simple twisting:

Theorem 5 It is NP-complete to decide whether a pla-
nar bipartite graph with unit edge lengths can be simply
twisted from `-bloons.

Proof. Dyer and Frieze [4, Theorem 3.4] prove NP-
hardness of Holyer’s problem when the graph to decom-
pose is planar and bipartite and the pattern graph H is
a path of length ` > 2. Their reduction has the addi-
tional feature that all cycles have length larger than `,
and hence no `-bloon could form a structure other than
a path of length `. �

We can specialize even further and still obtain NP-
hardness. Theorem 2 characterizes the fewest bloons
required for simple twisting. When can these fewest
bloons have the same length?

Theorem 6 It is strongly NP-complete to decide
whether a planar 3-connected graph with o odd vertices
can be simply twisted from o/2 equal-length bloons.
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Figure 4: NP-hardness of using the fewest possible
equal balloons.

Proof. Figure 4 shows a reduction from 3-partition:
given integers a1, a2, . . . , an, partition into triples of
equal sum. The light portion of the graph just makes the
graph 3-connected. The dark portion consists of n/3
odd-degree vertices on the left, L1, L2, . . . , Ln/3, and
n/3 odd-degree vertices on the right, R1, R2, . . . , Rn/3.
All other vertices will have even degree. We can imag-
ine building n/3 paths between corresponding Li and
Ri, for 1 ≤ i ≤ n/3, and then pinching these paths
together at n + 1 meeting points. Then a left-to-right
path has a choice at each meeting point of which path
to follow. Exactly one path can follow an edge of
length ai; the others follows paths of total length B.
Here B > a1 + a2 + · · · + an. Thus each path must
visit an equal number of B’s, i.e., n− n/3 + 2 of them.
The path including L1 has a special edge of length ε
less. Here ε < min{a1, a2, . . . , an} and the total length
of the light portion of the graph is ε. Thus only this path
can visit light edges, and must visit all. Therefore the
graph can be twisted by n/3 equal-length bloons if and
only if the 3-partition instance has a solution. �

By suitable scaling, we can make all edge lengths in-
tegers, and then subdivide edges into unit lengths. It
seems somewhat difficult, however, to make the graph
3-connected by adding a suitable light Eulerian graph.

Some positive results are known for special cases of
Holyer’s problem. For example, every 4-regular con-
nected graph whose number of edges is divisible by 3
can be decomposed into paths of length 3, and hence
simply twisted from tribloons [7]. The same decompo-
sition and twisting results hold for triangulated (maxi-
mal) planar graphs with at least four vertices [6]. It is
conjectured that every simple planar 2-edge-connected
graph whose number of edges is divisible by 3 can be
decomposed into paths and cycles of length 3, and hence
simply twisted from tribloons [9]. See also [10]. But
relatively few results are known for sizes larger than 3.

7 Polyhedral Projects: Balloon Polyhedra

In contrast to the hardness result of Theorem 6, we
show that every Platonic and Archimedean solid can be
twisted using the bloon number of bloons, o/2, all of
equal length. Furthermore, these solids can be twisted
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(a) Tetrahedron construction. (b) Octahedron construction.

Figure 5: Constructing two Platonic solids.

so that the component bloon units are all isomorphic and
arranged in a symmetric manner. This property makes
these polyhedra particularly easy to construct, and lends
itself well to color patterns. See Figure 6.

Figure 5 shows how to construct two Platonic solids:
the tetrahedron and octahedron. We consider the icosa-
hedron below because it can also be viewed as a snub
tetrahedron. The cube and dodecahedron are both pos-
sible with tribloons, and together with the tetrahedron
are special in that the bloon units can have only dihe-
dral symmetry. In contrast, the icosahedron construction
has pyrite symmetry, while the Archimedean construc-
tions below (and the octahedron) have the same symme-
try group as the original polyhedron.

The Archimedean solids can be categorized into three
different groups for our purposes: Eulerian, truncated,
and snub. The Eulerian case is of course trivial. For
truncated polyhedra, the optimal bloons are tribloons,
because each original edge truncates to create two ver-
tices and three edges, yielding a 2 : 3 vertex-edge ratio.
The tribloons can be embedded as Zs (or Ss, as the result
is chiral), where each center edge aligns with an edge
of the original (untruncated) polyhedron, with the arms
bending to form the truncated faces. The snub polyhedra
(including the icosahedron) can be made from a com-
mon unit, namely, a quintibloon twisting into the shape
of two triangles sharing an edge.

Of course, not all polyhedra can be made from the
bloon number of bloons, o/2, of equal length. The pen-
tagonal pyramid is a simple example. It has ten edges
and six vertices, all of odd degree, yielding a bloon num-
ber of 3. Unfortunately, 10 is not divisible by 3, so one
bloon must have length 4. In the realm of polyhedra with
icosahedral symmetry, the simplest counterexample is
the rhombic triacontahedron, with 60 edges and 32 ver-
tices, which again do not divide evenly. It remains open
whether any polyhedron fails to have a twisting from a
bloon number of equal-length bloons but not by virtue of
indivisibility. It also remains open whether some sym-
metric polyhedron can be twisted only from nonidenti-
cal units or only from units arranged asymmetrically.

Acknowledgments. We thank the anonymous refer-
ees for helpful comments.

(a) Tetrahedron
(two balloons).

(b) Cube
(four balloons).

(c) Octahedron
(one balloon).

(d) Icosahedron
(six balloons).

(e) Dodecahedron
(six balloons).

Figure 6: Balloon polyhedra.
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[9] M. Jünger, G. Reinelt, and W. R. Pulleyblank. On
partitioning the edges of graphs into connected sub-
graphs. Journal of Graph Theory, 9(4):539–549, De-
cember 1985.

[10] Alexandr Kostochka and Vladimir Tashkinov. Decom-
posing graphs into long paths. Order, 20(3):239–253,
September 2003.

[11] A. Kotzig. From the theory of finite regular graphs of
degree three and four (in Slovak). Časopis Pěstov. Mat.,
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