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Abstract. This paper surveys the theory of bidimensional graph prob-
lems. We summarize the known combinatorial and algorithmic results of
this theory, the foundational Graph Minor results on which this theory
is based, and the remaining open problems.

1 Introduction

The newly developing theory of bidimensional graph problems, developed in
a series of papers [DHT,DHN 04, DFHT, DH04a, DFHT04b, DH04b, DFHT04a,
DHT04,DHO05b,DHO05a], provides general techniques for designing efficient fixed-
parameter algorithms and approximation algorithms for NP-hard graph prob-
lems in broad classes of graphs. This theory applies to graph problems that are
bidimensional in the sense that (1) the solution value for the k x k grid graph
(and similar graphs) grows with &, typically as £2(k?), and (2) the solution value
goes down when contracting edges and optionally when deleting edges. Examples
of such problems include feedback vertex set, vertex cover, minimum maximal
matching, face cover, a series of vertex-removal parameters, dominating set, edge
dominating set, R-dominating set, connected dominating set, connected edge
dominating set, connected R-dominating set, and unweighted TSP tour (a walk
in the graph visiting all vertices).

Bidimensional problems have many structural properties; for example, any
graph in an appropriate minor-closed class has treewidth bounded above in terms
of the problem’s solution value, typically by the square root of that value. These
properties lead to efficient—often subexponential—fixed-parameter algorithms,
as well as polynomial-time approximation schemes, for many minor-closed graph
classes. One type of minor-closed graph class of particular relevance has bounded
local treewidth, in the sense that the treewidth of a graph is bounded above in
terms of the diameter; indeed, such a bound is always at most linear.

The bidimensionality theory unifies and improves several previous results.
The theory is based on algorithmic and combinatorial extensions to parts of
the Robertson-Seymour Graph Minor Theory, in particular initiating a parallel
theory of graph contractions. The foundation of this work is the topological
theory of drawings of graphs on surfaces.

This survey is organized as follows. Section 2 defines the various graph classes
of increasing generality to which bidimensionality theory applies. Section 3 de-
scribes several structural properties of graphs in these classes, in particular from



Graph Minor Theory, that form the basis of bidimensionality. Section 4 defines
bidimensional parameters and problems and gives some examples. Section 5 de-
scribes one of the main structural properties of bidimensionality, namely, that
the treewidth is bounded in terms of the parameter value. Sections 6-10 describe
several consequences of bidimensionality theory: separator theorems, bounds on
local treewidth, fixed-parameter algorithms, and polynomial-time approximation
schemes. Section 11 discusses the main remaining open problems in this area.

2 Graph Classes

In this section, we introduce several families of graphs, each playing an important
role in both the Graph Minor Theory and the bidimensionality theory. Refer to
Figure 1. All of these graph classes are generalizations of planar graphs, which
are well-studied in algorithmic graph theory. Unlike planar graphs and map
graphs, every other class of graphs we consider can include any particular graph
G} of course, this inclusion requires a bound or excluded minor large enough
depending on G. This property distinguishes this line of research from other
work considering exclusion of particular minors, e.g., K33, K5, or Kg.
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Fig. 1. Interesting classes of graphs. Arrows point from more specific classes to more
inclusive classes.

map graphs

2.1 Definitions of Graph Classes

The first three classes of graphs relate to embeddings on surfaces. A graph is
planar if it can be drawn in the plane (or the sphere) without crossings. A graph
has genus at most g if it can be drawn in an orientable surface of genus g without



crossings.! A class of graphs has bounded genus if every graph in the class has
genus at most g for a fixed g.

Given an embedded planar graph and a two-coloring of its faces as either
nations or lakes, the associated map graph has a vertex for each nation and an
edge between two vertices corresponding to nations (faces) that share a vertex.
The dual graph is defined similarly, but with adjacency requiring a shared edge
instead of just a shared vertex. Map graphs were introduced by Chen, Grigni,
and Papadimitriou [CGP02] as a generalization of planar graphs that can have
arbitrarily large cliques. Thorup [Tho98] gave a polynomial-time algorithm for
constructing the underlying embedded planar graph and face two-coloring for a
given map graph, or determining that the given graph is not a map graph.

We view the class of map graphs as a special case of taking fixed powers
of a family of graphs. The kth power G* of a graph G is the graph on the
same vertex set V(G) with edges connecting two vertices in G* precisely if the
distance between these vertices in GG is at most k. For a bipartite graph G with
bipartition V(G) = U U W, the half-square G*[U] is the graph on one side U
of the partition, with two vertices adjacent in G?[U] precisely if the distance
between these vertices in G is 2. A graph is a map graph if and only if it is
the half-square of some planar bipartite graph [CGP02]. In fact, this translation
between map graphs and half-squares is constructive and takes polynomial time.

The next three classes of graphs relate to excluding minors. Given an edge
e = {v,w} in a graph G, the contraction of e in G is the result of identifying
vertices v and w in G and removing all loops and duplicate edges. A graph H
obtained by a sequence of such edge contractions starting from G is said to be
a contraction of G. A graph H is a minor of G if H is a subgraph of some
contraction of G. A graph class C is minor-closed if any minor of any graph in
C is also a member of C. A minor-closed graph class C is H-minor-free it H ¢ C.
More generally, we use the term “H-minor-free” to refer to any minor-closed
graph class that excludes some fixed graph H.

A single-crossing graph is a minor of a graph that can be drawn in the plane
with at most one pair of edges crossing. Note that a single-crossing graph may not
itself be drawable with at most one crossing pair of edges; see [DHN'04]. Such
graphs were first defined by Robertson and Seymour [RS93]. A minor-closed
graph class is single-crossing-minor-free if it excludes a fixed single-crossing
graph.

An apex graph is a graph in which the removal of some vertex leaves a planar
graph. A graph class is apex-minor-free if it excludes some fixed apex graph. Such
graph classes were first considered by Eppstein [Epp95, Epp00], in connection to
the notion of bounded local treewidth as described in Section 7.

The next section describes strong structural properties of the last three
classes of graphs (minor-excluding classes) in terms of the first two classes of
graphs (embeddable on surfaces) and other ingredients.

! This definition also includes graphs that can be drawn in non-orientable surfaces
of low genus, because if a graph has non-orientable genus g, then it has orientable
genus at most 2g.



3 Structural Properties

Graphs from single-crossing-minor-free and H-minor-free graph classes have
powerful structural properties from the Graph Minor Theory. First we need
to define treewidth, pathwidth, and clique sums.

3.1 Background

The notion of treewidth was introduced by Robertson and Seymour [RS86a]. To
define this notion, first we consider a representation of a graph as a tree, called
a tree decomposition. Precisely, a tree decomposition of a graph G = (V, E) is
a pair (T, x) in which T'= (I, F) is a tree and x = {x; | ¢ € I} is a family of
subsets of V(@) such that

L Uig[ Xi = V;

2. for each edge e = {u,v} € E, there exists an i € I such that both u and v
belong to y;; and

3. for all v € V, the set of nodes {i € I | v € x;} forms a connected subtree
of T.

To distinguish between vertices of the original graph G and vertices of 7' in
the tree decomposition, we call vertices of T nodes and their corresponding x;’s
bags. The width of the tree decomposition is the maximum size of a bag in y
minus 1. The treewidth of a graph G, denoted tw(G), is the minimum width
over all possible tree decompositions of G. A tree decomposition is called a path
decomposition if T = (I, F) is a path. The pathwidth of a graph G, denoted
pw(G), is the minimum width over all possible path decompositions of G.

The notion of clique sums goes back to characterizations of K3 s-minor-free
and Ks-minor-free graphs by Wagner [Wag37] and serves as an important tool
in the Graph Minor Theory. Suppose GG; and G2 are graphs with disjoint vertex
sets and let & > 0 be an integer. For i = 1,2, let W; C V(G;) form a clique of
size k and let G be obtained from G; by deleting some (possibly no) edges from
the induced subgraph G;[W;] with both endpoints in W;. Consider a bijection
h : W7 — Ws. We define a k-sum G of G; and Gs, denoted by G = G & Go
or simply by G = G; @ Ga, to be the graph obtained from the union of G and
GY by identifying w with h(w) for all w € Wj. The images of the vertices of
Wy and Ws in G @ G form the join set. Note that each vertex v of G has a
corresponding vertex in G or Gy or both. It is also worth mentioning that @ is
not a well-defined operator: it can have a set of possible results.

3.2 Structure of Single-Crossing-Minor-Free Graphs
The structure of single-crossing-minor-free graphs can be described as follows:

Theorem 1 ([RS93]). For any fized single-crossing graph H, every H-minor-
free graph can be obtained by a sequence of k-sums, 0 < k < 3, of planar graphs
and graphs of bounded treewidth, where the bound on treewidth depends on H.



This theorem generalizes characterizations of K3 s-minor-free and Ks-minor-
free graphs [Wag37]. A graph is K3 3-minor-free if and only if it can be obtained
by k-sums, 0 < k < 2, of planar graphs and K5. A graph is Ks-minor-free if
and only if it can be obtained by k-sums, 0 < k < 3, of planar graphs and Vg
(the length-8 cycle Cy together with eight edges joining diametrically opposite
vertices).

This structural property of single-crossing-minor-free graphs has since been
strengthened to ensure that the summands are minors of the original graph and
to provide algorithms for finding the decomposition:

Theorem 2 ([DHNTO04]). For any fized single-crossing graph H, there is an
O(n*)-time algorithm to compute, given an H-minor-free graph G, a decompo-
sition of G as a sequence of k-sums, 0 < k < 3, of planar graphs and graphs of
bounded treewidth (where the bound on treewidth depends on H ), each of which
is a minor of G.

3.3 Structure of H-Minor-Free Graphs

The structure of H-minor-free graphs is described by a deep theorem of Robert-
son and Seymour [RS03]. Intuitively, their theorem says that, for every graph
H, every H-minor-free graph can be expressed as a “tree structure” of pieces,
where each piece is a graph that can be drawn in a surface in which H cannot be
drawn, except for a bounded number of “apex” vertices and a bounded number
of “local areas of non-planarity” called vortices. Here the bounds depend only
on H.

Roughly speaking, we say that a graph G is h-almost embeddable in a surface
S if there exists a set X of size at most h of vertices, called apex vertices or
apices, such that G — X can be obtained from a graph Gy embedded in S by
attaching at most h graphs of pathwidth at most h to Gg within h faces in an
orderly way. More precisely, a graph G is h-almost embeddable in S if there exists
a vertex set X of size at most h (the apices) such that G — X can be written as
GoUG1U"'UGh, where

1. Gy has an embedding in S;

2. the graphs G;, called vortices, are pairwise disjoint;

3. there are faces Fi,..., F of Gy in S, and there are pairwise disjoint disks
Dy,...,Dy in S, such that for i = 1,...,h, D; C F; and U; := V(Gp) N
V(G,) = V(Go) n Di; and

4. the graph G; has a path decomposition (B, )uecy, of width less than h, such
that u € B, for all u € U;. The sets B, are ordered by the ordering of their
indices u as points along the boundary cycle of face F; in Gy.

An h-almost embeddable graph is apez-free if the set X of apices is empty.
Now, the deep result of Robertson and Seymour is as follows:

Theorem 3 ([RS03]). For every graph H, there exists an integer h > 0 de-

pending only on |V (H)| such that every H-minor-free graph can be obtained by at

most h-sums of graphs that are h-almost-embeddable in some surfaces in which
H cannot be embedded.



In particular, if H is fixed, any surface in which H cannot be embedded has
bounded genus. Thus, the summands in the theorem are h-almost-embeddable
in bounded-genus surfaces.

3.4 Structure of Apex-Minor-Free Graphs

Apex-minor-free graph classes are an important subfamily of H-minor-free graph
classes. The general structural theorem for H-minor-free graphs applies in this
context as well. However, reductions developed in [DHO04b] suggest that the
decomposition can be restricted to a particular form in the apex-minor-free case:

Congecture 1 ([DHO04b]). For every graph H, there is an integer h > 0 depending
only on |V(H)| such that every H-minor-free graph can be obtained by at most
h-sums of graphs that are h-almost-embeddable in some surfaces in which H
cannot be embedded and whose apices are connected via edges only to vertices
within vortices.

3.5 Grid Minors

The r x r grid is the canonical planar graph of treewidth ©(r). In particular,
an important result of Robertson, Seymour, and Thomas [RST94] is that ev-
ery planar graph of treewidth w has an 2(w) x £2(w) grid graph as a minor.
Thus every planar graph of large treewidth has a grid minor certifying that its
treewidth is almost as large (up to constant factors). Recently, this result has
been generalized to any H-minor-free graph class:

Theorem 4 ([DHO5b]). For any fized graph H, every H-minor-free graph of
treewidth w has an 2(w) x 2(w) grid as a minor.

Thus the r x r grid is the canonical H-minor-free graph of treewidth O(r)
for any fixed graph H. This result is also best possible up to constant factors.
Section 11 discusses the remaining issue of bounding the constant factor and its
dependence on H.

A similar but weaker bound plays an important role in the Graph Minor
Theory [RS86b]: for any fixed graph H and integer r > 0, there is an integer w >
0 such that every H-minor-free graph with treewidth at least w has an r x r grid
graph as a minor. This result has been re-proved by Robertson, Seymour, and
Thomas [RST94], Reed [Ree97], and Diestel, Jensen, Gorbunov, and Thomassen
[DJGT99]. Among these proofs, the best known bound on w in terms of r is
that every H-minor-free graph of treewidth larger than 20°1V (7 )’ has an r x r
grid as a minor [RST94]. Theorem 4 therefore offers an exponential (and best
possible) improvement over previous results.

Theorem 4 cannot be generalized to arbitrary graphs: Robertson, Seymour,
and Thomas [RST94] proved that some graphs have treewidth 2(r?lgr) but
have grid minors only of size O(r) x O(r). The best known relation for general
graphs is that having treewidth more than 202’ implies the existence of an r x r
grid minor [RST94]. The best possible bound is believed to be closer to O(r?Ig )

than 2€("), perhaps even equal to O(r?lgr) [RST94].



4 Bidimensional Parameters/Problems

Bidimensionality has been introduced and developed in a series of papers [DHT,
DHN'04, DFHT, DH04a, DFHT04b, DH04b, DFHT04a, DHT04, DHO5b, DHO5a).
Although implicitly hinted at in [DHT,DHN"04, DFHT, DH04a], the first use of
the term “bidimensional” was in [DFHTO04b].

First we define “parameters” as an alternative view on optimization prob-
lems. A parameter P is a function mapping graphs to nonnegative integers. The
decision problem associated with P asks, for a given graph G and nonnegative
integer k, whether P(G) < k. Many optimization problems can be phrased as
such a decision problem about a graph parameter P.

Now we can define bidimensionality. A parameter is g(r)-bidimensional (or
just bidimensional) if it is at least g(r) in an r x r “grid-like graph” and if the pa-
rameter does not increase when taking either minors (g(r)-minor-bidimensional)
or contractions (g(r)-contraction-bidimensional). The exact definition of “grid-
like graph” depends on the class of graphs allowed and whether we are con-
sidering minor- or contraction-bidimensionality. For minor-bidimensionality and
for any H-minor-free graph class, the notion of a “grid-like graph” is defined to
be the r x r grid, i.e., the planar graph with 72 vertices arranged on a square
grid and with edges connecting horizontally and vertically adjacent vertices. For
contraction-bidimensionality, the notion of a “grid-like graph” is as follows:

1. For planar graphs and single-crossing-minor-free graphs, a “grid-like graph”
is an r x r grid partially triangulated by additional edges that preserve
planarity.

2. For bounded-genus graphs, a “grid-like graph” is such a partially triangu-
lated r x r grid with up to genus(G) additional edges (“handles”).

3. For apex-minor-free graphs, a “grid-like graph” is an r x r grid augmented
with additional edges such that each vertex is incident to O(1) edges to
nonboundary vertices of the grid. (Here O(1) depends on the excluded apex
graph.)

Contraction-bidimensionality is so far undefined for H-minor-free graphs (or
general graphs).?

Examples of bidimensional parameters include the number of vertices, the
diameter, and the size of various structures such as feedback vertex set, ver-
tex cover, minimum maximal matching, face cover, a series of vertex-removal
parameters, dominating set, edge dominating set, R-dominating set, connected
dominating set, connected edge dominating set, connected R-dominating set, and
unweighted TSP tour (a walk in the graph visiting all vertices). (See [DFHT04b,
DFHTO04a] for arguments of either contraction- or minor-bidimensionality for
the above parameters.) We also say that the corresponding optimization prob-
lems based on these parameters, e.g., finding the minimum-size dominating

2 For the parameters to which we have applied bidimensionality, contraction-
bidimensionality does not seem to extend beyond apex-minor-free graphs, but per-
haps a suitably extended definition could be found in the context of different appli-
cations or a “theory of graph contractions”.



set, are bidimensional. With the exception of diameter, all of these bidimen-
sional problems are ©(r?)-bidimensional, which is the most common case (and
in some papers used as the definition of bidimensionality). Diameter is the
main exception, being only ©(r)-contraction-bidimensional for planar graphs,
single-crossing-minor-free graphs, and bounded-genus graphs, and only ©(lgr)-
contraction-bidimensional for apex-minor-free graphs.

5 Parameter-Treewidth Bounds

The genesis of bidimensionality was in fact the notion of a parameter-treewidth
bound. A parameter-treewidth bound is an upper bound f(k) on the treewidth
of a graph with parameter value k. In many cases, f(k) can even be shown to be
sublinear in &, often O(vk). Parameter-treewidth bounds have been established
for many parameters and graph classes; see, e.g., [ABFT02, KP02,FT03, AFN04,
CKLO01, KLL02, GKL01, DFHT, DHN 04, DHT, DFHT04a, DH04b, DFHT04b].
Essentially all of these bounds can be obtained from the theory of bidimensional
parameters. Thus bidimensionality is the most powerful method so far for estab-
lishing parameter-treewidth bounds, encompassing all such previous results for
H-minor-free graphs.

The central result in bidimensionality that generalizes these bounds is that
every bidimensional parameter has a parameter-treewidth bound, in its corre-
sponding family of graphs as defined in Section 4. More precisely, we have the
following result:

Theorem 5 ([DHO05b,DFHTO04a]). If the parameter P is g(r)-bidimensional,
then for every graph G in the family associated with the parameter P, tw(G) =
O(g~Y(P(@))). In particular, if g(r) = O(r?), then the bound becomes tw(G) =
O(v P(G)).

This theorem is based on the grid-minor bound from Theorem 4 and the proof
of a weaker parameter-treewidth bound, tw(G) = (g~ (P(G)))° " (P(O))  es-
tablished in [DFHTO04a]. The stronger bound of tw(G) = O(g~'(P(G))) was
obtained first for planar graphs [DFHT], then single-crossing-minor-free graphs
[DHT, DHN*04], then bounded-genus graphs [DFHT04b, DHT04], and finally
apex-minor-free graphs for contraction-bidimensional parameters and H-minor-
free graphs for minor-bidimensional parameters [DHO05b] (Theorem 5 above).

We can extend the definition of g(r)-minor-bidimensionality to general graphs
by again defining a “grid-like graph” to be the r x r grid. Still we can obtain a
parameter-treewidth bound [RST94,DHO04c], but the bound is weaker: tw(G) =
20(g™ 1 (k))°

6 Separator Theorems

If we apply the parameter-treewidth bound of Theorem 5 to the parameter of the

number of vertices in the graph, which is minor-bidimensional with g(r) = r2,



then we immediately obtain the following (known) bound on the treewidth of
an H-minor-free graph:

Theorem 6 ([AST90, Proposition 4.5], [Gro03, Corollary 24], [DHO5b]).
For any fized graph H, every H-minor-free graph G has treewidth O(\/|V (G)]).

A consequence of this result is that every vertex-weighted H-minor-free graph
G has a vertex separator of size O(4/|V(G)|) whose removal splits the graph
into two parts each with weight at most 2/3 of the original weight [AST90,
Theorem 1.2]. This generalization of the classic planar separator theorem has
many algorithmic applications; see e.g. [AST90, AFNO03]. Also, this result shows
that the structural properties of H-minor-free graphs given by Theorem 3 are
powerful enough to conclude that these graphs have small separators, which we
expect from such a strong theorem.

Section 11 discusses the issue of how tight a lead constant can be obtained
in such a result.

7 Local Treewidth

Eppstein [Epp00] introduced the diameter-treewidth property for a class of graphs,
which requires that the treewidth of a graph in the class is upper bounded by
a function of its diameter. He proved that a minor-closed graph family has the
diameter-treewidth property precisely if the graph family excludes some apex
graph. In particular, he proved that any graph in such a family with diameter
D has treewidth at most 227, (A simpler proof of this result was obtained
in [DH04a].)

If we apply the parameter-treewidth bound of Theorem 5 to the diame-
ter parameter, which is contraction-bidimensional with ¢g(r) = O(lgr) [DH04a],
then we immediately obtain the following stronger diameter-treewidth bound for
apex-minor-free graphs:

Theorem 7 ([DHO05b]). For any fized apex graph H, every H-minor-free graph
of diameter D has treewidth 2°P).

This theorem is not the best possible. In some sense it is necessarily lim-
ited because it still does not exploit the full structure of H-minor-free graphs
from Theorem 3. The difficulty is that, in a grid-like graph, the O(1) edges from
a vertex to nonboundary vertices can accumulate to make the diameter small.
However, it is possible to show that, effectively, not too many vertices can have
such edges. This fact comes from the property that there are a bounded number
of apices in the clique-sum decomposition of Theorem 3, and in an apex-minor-
free graph, each apex cannot have more than a bounded number of edges to
“distant” vertices. Based on this fact, a complicated proof establishes the fol-
lowing even stronger diameter-treewidth bound in apex-minor-free graphs:

Theorem 8 ([DHO04b)). For any fized apex graph H, every H-minor-free graph
of diameter D has treewidth O(D).



This diameter-treewidth bound is the best possible up to constant factors.
Thus this theorem establishes that, in minor-closed graph families, having any
diameter-treewidth bound is equivalent to having a linear diameter-treewidth
bound. As mentioned before, no minor-closed graph families beyond apex-minor-
free graphs can have any diameter-treewidth bound. Theorem 8 is therefore the
ultimate characterization of diameter-treewidth bounds in minor-closed graph
families (up to constant factors).

The proof of Theorem 8 is the basis for Conjecture 1. In fact, Theorem 8
would not be hard to prove assuming Conjecture 1.

The diameter-treewidth property has been used extensively in a slightly mod-
ified form called the bounded-local-treewidth property, which requires that the
treewidth of any connected subgraph of a graph in the class is upper bounded
by a function of its diameter. For minor-closed graph families, which is the focus
of most work in this context, these properties are identical. Graphs of bounded
local treewidth have many similar properties to both planar graphs and graphs of
bounded treewidth, two classes of graphs on which many problems are substan-
tially easier. In particular, Baker’s approach for polynomial-time approximation
schemes (PTASs) on planar graphs [Bak94] applies to this setting. As a result,
PTASs are known for hereditary maximization problems such as maximum inde-
pendent set, maximum triangle matching, maximum H-matching, and maximum
tile salvage; for minimization problems such as minimum vertex cover, minimum
dominating set, minimum edge-dominating set; and for subgraph isomorphism
for a fixed pattern [DHN'04, Epp00, HN02]. Graphs of bounded local treewidth
also admit several efficient fixed-parameter algorithms. In particular, Frick and
Grohe [FGO1] give a general framework for deciding any property expressible
in first-order logic in graphs of bounded local treewidth. Theorem 8 substan-
tially improves the running time of these algorithms, in particular improving

O(1/¢e)
the running time of the PTASs from 22" nPM to 20/6)nOM) where n is
the number of vertices in the graph.

8 Subexponential Fixed-Parameter Algorithms

A fized-parameter algorithm is an algorithm for computing a parameter P(G) of
a graph G whose running time is h(P(G))n°M) for some function k. The expo-
nent O(1) must be independent of G; thus the exponentiality of the algorithm is
bounded by the parameter P(G), and the dependence on n is only polynomial.
A typical function h for many fixed-parameter algorithms is h(k) = 20%). In the
last five years, several researchers have obtained exponential speedups in fixed-
parameter algorithms in the sense that the i function reduces exponentially, e.g.,
to 20V%) | For example, the first fixed-parameter algorithm for finding a domi-
nating set of size k in planar graphs [AFF*01] has running time O(8%n); subse-
quently, a sequence of subexponential algorithms and improvements have been
obtained, starting with running time O(46mn) [ABFT02], then 0(227‘/En)

[KP02], and finally O(2!%13VEE 4 53 4 k4) [FT03]. Other subexponential algo-



rithms for other domination and covering problems on planar graphs have also
been obtained [ABF+02, AFN04, CKL01, KLL02, GKLO1].

All subexponential fixed-parameter algorithms developed so far are based
on showing a sublinear parameter-treewidth bound and then using an algorithm
whose running time is singly exponential in treewidth and polynomial in problem
size. As mentioned in Section 5, essentially all sublinear treewidth-parameter
bounds proved so far can be obtained through bidimensionality. Theorem 5 and
the techniques of [DFHTO04a] yield the following general result for designing
subexponential fixed-parameter algorithms:

Theorem 9 ([DHO05b, DFHTO04a]). Consider a g(r)-bidimensional parame-
ter P that can be computed on a graph G in h(w) nPW) time given a tree
decomposition of G of width at most w. Then there is an algorithm comput-
ing P on any graph G in P’s corresponding graph class, with running time
[M(O(g=1(k))) + 206 N nOW)  In particular, if g(r) = O(r?) and h(w) =
20(“’2), then this running time is subexponential in k.

In particular, this result gives subexponential fixed-parameter algorithms
for many bidimensional parameters, including feedback vertex set, vertex cover,
minimum maximal matching, a series of vertex-removal parameters, dominating
set, edge dominating set, R-dominating set, clique-transversal set, connected
dominating set, connected edge dominating set, connected R-dominating set,
and unweighted TSP tour.

For minor-bidimensional parameters, these algorithms apply to all H-minor-
free graphs. The next section describes to what extent these algorithms can be
extended to general graphs.

For contraction-bidimensional parameters, these algorithms apply to apex-
minor-free graphs. On the other hand, subexponential fixed-parameter algo-
rithms can be obtained for dominating set, which is contraction-bidimensional,
on H-minor-free graphs [DFHT04b], map graphs [DFHT], and fixed powers of
planar graphs (or even fixed powers of H-minor-free graphs) [DFHT,DFHT04b).
These algorithms are necessarily more complicated than those produced from
Theorem 9, because apex-minor-free graphs are precisely the minor-closed graph
classes for which domatinating set has a parameter-treewidth bound [DFHT04a].
An intriguing open question is whether these techniques can be extended to other
contraction-bidimensional problems than dominating set, for fixed powers of H-
minor-free graphs and/or other classes of graphs.

9 Fixed-Parameter Algorithms for General Graphs

As mentioned in Section 5, minor-bidimensionality can be defined for general
graphs as well. In this section we show how the bidimensionality theory in this
case leads to a general class of fixed-parameter algorithms.

A major result from the Graph Minor Theory (in particular [RS95, RS])
is that every minor-closed graph property is characterized by a finite set of
forbidden minors. More precisely, for any property P on graphs such that a



graph having property P implies that all its minors have property P, there is a
finite set {Hy, Ha, ..., Hy} of graphs such that a graph G has property P if and
only if G does not have H; as a minor for all 4 = 1,2,..., h. The algorithmic
consequence of this result is that there exists an O(n?)-time algorithm to decide
any fixed minor-closed graph property, by finitely many calls to an O(n?)-time
minor test [RS95]. This consequence has been used to show the existence of
polynomial-time algorithms for several graph problems, some of which were not
previously known to be decidable [FL88].

However, all of these algorithmic results (except the minor test) are non-
constructive: we are guaranteed that efficient algorithms exist, but are not told
what they are. The difficulty is that we know that a finite set of forbidden minors
exists, but lack “a means of identifying the elements of the set, the cardinality of
the set, or even the order of the largest graph in the set” [FL88]. Indeed, there is
a mathematical sense in which any proof of the finite-forbidden-minors theorem
must be nonconstructive [FRS87].

We can apply these graph-minor results to prove the existence of algorithms
to compute parameters, provided the parameters never increase when taking a
minor. For any fixed parameter and any fixed k > 0, there is an O(n?)-time algo-
rithm that decides whether a graph has parameter value < k. Unfortunately, the
existence of these algorithms does not necessarily imply the existence of a single
fixed-parameter algorithm that works for all £ > 0, because the algorithms for
individual k (in particular the set of forbidden minors) might be uncomputable.
We do not even know an upper bound on the running time of these algorithms
as a function of n and k, because we do not know the dependence of the size of
the forbidden minors on k.

In [DHO4c], fixed-parameter algorithms are constructed for nearly all param-
eters that never increase when taking a minor, with explicit time bounds in
terms of n and k. Essentially, by assuming a few very common properties of the
parameter, we obtain the generalized form of minor-bidimensionality.

Theorem 10 ([DHO04c]). Consider a parameter P that is positive on some gx g
grid, never increases when taking minors, is at least the sum over the connected
components of a disconnected graph, and can be computed in h(w) nPW time

given a width-w tree decomposition of the graph. Then there is an algorithm
VE)S
that decides whether P is at most k on a graph with n vertices in 9200V

h(zowf)] nO time.

As mentioned in [DHO04c], a conjecture of Robertson, Seymour, and Thomas
[RST94] would improve the running time to 2(O(klgk)) n®™®) | which is 20(*1&)
nPW for the typical case of h(w) = 20(w) This conjectured time bound almost
matches the fastest known fixed-parameter algorithms for several parameters,
e.g., feedback vertex set, vertex cover, and a general family of vertex-removal
problems [FL88].



10 Polynomial-Time Approximation Schemes

Recently, the bidimensionality theory has been extended to obtain polynomial-
time approximation schemes (PTASs) for essentially all bidimensional parame-
ters, including those mentioned above [DH05a]. These PTASs are based on tech-
niques that generalize and in some sense unify the two main previous approaches
for designing PTASs in planar graphs, namely, the Lipton-Tarjan separator ap-
proach [LT80] and the Baker layerwise decomposition approach [Bak94]. The
PTASs apply to H-minor-free graphs for minor-bidimensional parameters and
to apex-minor-free graphs for contraction-bidimensional parameters. To achieve
this level of generality, [DH05a] uses the sublinear parameter-treewidth bound
of Theorem 5 as well as a recent O(1)-approximation algorithm for treewidth in
H-minor-free graphs [FHLO04].

Before we can state the general theorem for constructing PTASs, we need to
define a few straightforward required conditions, which are commonly satisfied
by most bidimensional problems. The theorem considers families of problems in
which we are given a graph and our goal is to find a minimum-size set of vertices
and/or edges satisfying a certain property. Such a problem naturally defines a
parameter and therefore the notion of bidimensionality. A minor-bidimensional
problem has the separation property if it satisfies the following three conditions:

1. If a graph G has k connected components G1,Ge,...,Gg, then an optimal
solution for G is the union of optimal solutions for each connected compo-
nent G;.

2. There is a polynomial-time algorithm that, given any graph G, given any ver-
tex cut C' whose removal disconnects GG into connected components G, Gs,
..., G, and given an optimal solution S; to each connected component G;
of G — C, computes a solution S for G such that the number of vertices
and/or edges in S within the induced subgraph G[C U U;c;V (G;)] consist-
ing of C' and some connected components of G — C'is ), [Si| £ O(|C])
for any I C {1,2,...,k}. In particular, the total cost of S is at most
OPT(G — C) + O(|C)).

3. Given any graph G, given any vertex cut C, and given an optimal solution
OPT to G, for any union G’ of some subset of connected components of
G —C,|OPTNG'| = | OPT(G")| £ O(|C]).

For contraction-bidimensional problems, the exact requirements on the prob-
lem are slightly different but similarly straightforward. The main distinction is
that the connected components are always considered together with the cut C.
As a result, the merging algorithm in Condition 2 must take as input a solution
to a generalized form of the problem that does not count the cost of including all
vertices and edges from the cut C. We omit the exact definition of the separation
property in this case in the interest of space.

Theorem 11 ([DHO05a]). Consider a bidimensional problem satisfying the sep-
aration property. Suppose that the problem can be solved on a graph G with n
vertices in f(n,tw(G)) time. Suppose also that the problem can be approrimated



within a factor of « in g(n) time. For contraction-bidimensional problems, sup-
pose further that both of these algorithms also apply to the generalized form of
the problem. Then there is a (1+¢)-approximation algorithm whose running time
is O(nf(n,0(a?/e)) +n3g(n)) for the corresponding graph class of the bidimen-
sitonal problem.

This result shows a strong connection between subexponential fixed-para-
meter tractability and approximation algorithms for combinatorial optimization
problems on H-minor-free graphs. In particular, this result yields a PTAS for the
following minor-bidimensional problems in H-minor-free graphs: feedback vertex
set, face cover (defined just for planar graphs), vertex cover, minimum maximal
matching, and a series of vertex-removal problems. Furthermore, the result yields
a PTAS for the following contraction-bidimensional problems in apex-minor-
free graphs: dominating set, edge dominating set, R-dominating set, connected
dominating set, connected edge dominating set, connected R-dominating set,
and clique-transversal set.

11 Open Problems

Several combinatorial and algorithmic open problems remain in the theory of
bidimensionality and related concepts.

One interesting direction is to generalize bidimensionality to handle general
graphs, not just H-minor-free graph classes. As mentioned in Section 5, the nat-
ural generalization of minor-bidimensionality still yields a parameter-treewidth
bound, but it is very large. This direction essentially asks for the size of the
largest grid minor guaranteed to exist in any graph of treewidth w. Robert-
son, Seymour, and Thomas [RST94] proved that every graph of treewidth larger
than 202" has an r x r grid as a minor, but that some graphs of treewidth
2(r?1gr) have no grid larger than O(r) x O(r), conjecturing that the right re-
quirement on treewidth for an r x r grid is closer to the ©(r?lgr) lower bound. If
this conjecture is correct, we would obtain nearly as good parameter-treewidth
bounds for minor-bidimensional parameters as in the H-minor-free case. A simi-
lar generalization of parameter-treewidth bounds beyond apex-minor-free graphs
is not possible for all contraction-bidimensional parameters, e.g., dominating set
[DFHTO04a], but it would still be quite interesting to explore an analogous “the-
ory of graph contractions” paralleling the Graph Minor Theory. Such a theory
would be an interesting and powerful tool for handling problems that are closed
under contractions but not minors, and therefore deserves more focus.

Another interesting direction is to obtain the best constant factors in terms
of the fixed excluded minor H. These constants are particularly important in
the context of the exponent in the running time of a fixed-parameter algorithm.
At the heart of all such constant factors is the lead constant in Theorem 4.
This factor must be 2(+/|V(H)|lg|V(H)]|), because otherwise such a bound
would contradict the lower bound for general graphs. An upper bound near this
lower bound (in particular, polynomial in |V (H)|) is not out of the question:



the bound on the size of separators in [AST90] has a lead factor of |V (H)|?/2.
In fact, Alon, Seymour, and Thomas [AST90] suspect that the correct factor
for separators is @(|V (H)|), which holds e.g. in bounded-genus graphs. We also
suspect that the same bound holds for the factor in Theorem 4, which would
imply the corresponding bound for separators.

A third interesting direction is to generalize the polynomial-time approxi-
mation schemes that come out of bidimensionality to more general algorithmic
problems that do not correspond directly to bidimensional parameters. One gen-
eral family of such problems arises when adding weights to vertices and/or edges,
and the goal is e.g. to find the minimum-weight dominating set. It is difficult
to define bidimensionality of the corresponding weighted parameter because its
value is no longer well-defined on an r x r grid: the parameter value now depends
on the weights of vertices in such a grid. Another family of such problems arises
when placing constraints (e.g., on coverage or domination) only on subsets of
vertices and/or edges. Examples of such problems include Steiner tree [AGK 98|
and subset feedback vertex set [ENZ00]. Again it is difficult to define bidimen-
sionality in such cases because the value of the parameter on a grid depends on
which vertices and/or edges of the grid are in the subset.
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