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Abstract. For several graph-theoretic parameters such as vertex cover and dominating set, it
is known that if their sizes are bounded by k then the treewidth of the graph is bounded by some
function of k. This fact is used as the main tool for the design of several fixed-parameter algorithms
on minor-closed graph classes such as planar graphs, single-crossing-minor-free graphs, and graphs
of bounded genus. In this paper we examine the question whether similar bounds can be obtained
for larger minor-closed graph classes, and for general families of graph parameters including all those
for which such behavior has been reported so far. Given a graph parameter P , we say that a graph
family F has the parameter-treewidth property for P if there is an increasing function t such that
every graph G ∈ F has treewidth at most t(P (G)). We prove as our main result that, for a large
family of graph parameters called contraction-bidimensional, a minor-closed graph family F has the
parameter-treewidth property if F has bounded local treewidth. We also show “if and only if” for
some graph parameters, and thus this result is in some sense tight. In addition we show that, for
a slightly smaller family of graph parameters called minor-bidimensional, all minor-closed graph
families F excluding some fixed graphs have the parameter-treewidth property. The contraction-
bidimensional parameters include many domination and covering graph parameters such as vertex
cover, feedback vertex set, dominating set, edge-dominating set, q-dominating set (for fixed q). We
use our theorems to develop new fixed-parameter algorithms in these contexts.
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1. Introduction. The last ten years has witnessed the rapid development of a
new branch of computational complexity, called parameterized complexity; see the
book of Downey & Fellows [19]. Roughly speaking, a parameterized problem with
parameter a nonnegative integer k is fixed-parameter tractable (FPT) if it admits an
algorithm with running time h(k) |I |O(1). (Here h is a function depending only on k
and |I | is the size of the instance.)

A celebrated example of a fixed-parameter tractable problem is Vertex Cover,
asking whether an input graph has at most k vertices that are incident to all its
edges. When parameterized by k, the k-Vertex Cover problem admits a solution
as fast as O(kn + 1.285k) [9]. Moreover, if we restrict k-Vertex Cover to planar
graphs then it is possible to design FPT-algorithms where the contribution of k in
the non-polynomial part of their complexity is subexponential. The first algorithm of
this type was given by Alber et al. (see [4]). Recently, Fomin and Thilikos reported

a O(k4 + 24.5
√

k + kn) algorithm for planar k-Vertex Cover [25].

However, not all parameterized problems are fixed-parameter tractable. A typical
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example of such a problem is Dominating Set, asking whether an input graph has
at most k vertices that are adjacent to the rest of the vertices. When parameterized
by k, the k-Dominating Set problem is known to be W [2]-complete and thus it is
not expected to be fixed-parameter tractable [19]. Interestingly, the fixed-parameter
complexity of the same problem can be distinct for special graph classes. During
the last five years, there has been substantial work on fixed-parameter algorithms
for solving the k-dominating set on planar graphs and different generalizations of
planar graphs. For this class the problem can be solved in O(8kn) time [2]. An

algorithm with a sublinear exponent for the problem with running time O(46
√

34kn)
was given by Alber et al. [1]. Recently, Kanj & Perković [30] improved the running

time to O(227
√

kn) and Fomin & Thilikos to O(215.13
√

kk+n3+k4) [23, 25]. The fixed-
parameter algorithms for extensions of planar graphs like bounded-genus graphs and
graphs excluding single-crossing graphs as minors are introduced in [13, 15, 20].

In the majority of these results, the design of FPT algorithms for solving problems
such as k-Vertex Cover or k-Dominating Set in a sparse graph class F is based
on the following lemma: every graph G in F where the value of the graph parameter
is at most k has treewidth bounded by t(k), where t is a strictly increasing function
depending only on F . With some work (sometimes very technical), a tree decom-
position of width t(k) is constructed and standard dynamic-programming techniques
on graphs of bounded treewidth are implemented. Of course this method can not be
applied for any graph class F . For instance, the n-vertex complete graph Kn has a
dominating set of size one and treewidth equal to n− 1. So the emerging question is:

For which (larger) graph classes and for which graph parameters can
the “bounding treewidth method” be applied?

In this paper we give a complete characterization of minor-closed graph families for
which the aforementioned “bounding treewidth method” can be applied for a wide
family of graph parameters. For a given graph parameter P , we say that a graph
family F has the parameter-treewidth property for P if there is a strictly increasing
function t : N → N such for every graph G ∈ F where P (G) ≤ k implies that G
has treewidth at most t(k). For example, it is known [1, 23, 30] that any planar
graph with a dominating set of size at most k has treewidth O(

√
k). Therefore, the

class of planar graphs has the parameter-treewidth property for the dominating-set
parameter.

Our main result is that for a large family of graph parameters called contraction-
bidimensional, a minor-closed graph family F has the parameter-treewidth property
if F has bounded local treewidth. Moreover, we show that the inverse is also correct
if some simple condition is satisfied by P . In addition we show that, for a slightly
smaller family of graph parameters called minor-bidimensional, every minor-closed
graph family F excluding some fixed graph has the parameter-treewidth property.
The bidimensional-parameter family includes many domination and covering graph
parameters such as vertex cover, feedback vertex set, dominating set, edge-dominating
set, and q-dominating set (for fixed q) (see also [15, 12] for more examples). Another
example of a contraction-bidimensional parameter is the length of a minimum TSP
(Traveling Salesman) tour, i.e., the smallest number of edges in a walk visiting all
vertices of the graph.

The proof of the main result uses the characterization of Eppstein for minor-closed
families of bounded local treewidth [21] and Diestel et al.’s modification of the Robert-
son & Seymour excluded-grid-minor theorem [18]. In addition, the proof is construc-
tive and can be used for constructing fixed-parameter algorithms to decide bidimen-
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sional graph parameters on minor-closed families of bounded local treewidth. These
algorithms parallel the general fixed-parameter algorithm of Frick and Grohe [27] for
properties definable in first-order logic in graph families of bounded local treewidth;
our results apply e.g. to minor-bidimensional parameters definable in monadic second-
order logic in nontrivial minor-closed graph families. See Section 5 for details.

This paper is organized as follows. Section 2 contains the formal definitions of
the concepts used in the paper. Section 3 presents two combinatorial results which
support the main result of the paper, proved in Section 4. Finally, in Section 5 we
present the algorithmic consequences of our results and we conclude with some open
problems.

2. Definitions and preliminary results. Let G be a graph with vertex set
V (G) and edge set E(G). We let n denote the number of vertices of a graph when it
is clear from context. For every nonempty W ⊆ V (G), the subgraph of G induced by
W is denoted by G[W ]. We define the q-neighborhood of a vertex v ∈ V (G), denoted
by N q

G[v], to be the set of vertices of G at distance at most q from v. Notice that
v ∈ N q

G[v]. We put NG[v] = N1
G[v]. We also often say that a vertex v dominates

subset S ⊆ V (G) if NG[v] ⊇ S.
Given an edge e = {x, y} of a graph G, the graph G/e is obtained from G by

contracting the edge e; that is, to get G/e we identify the vertices x and y and remove
all loops and duplicate edges. A graph H obtained by a sequence of edge contractions
is said to be a contraction of G. We use the notation H �c G for H a contraction
of G. Notice that the relation H �c G partitions the edge set of G into edges that
are also the edges of H and the contracted edges. We say that a vertex v of G is
contracted to a vertex u of H if there is a path from u to v in G such that all edges
in this path are contracted. A graph H is a minor of a graph G if H is the subgraph
of a contraction of G. We use the notation H � G [resp. H �c G] for H a minor [a
contraction] of G. A family (or class) of graphs F is minor-closed if G ∈ F implies
that every minor of G is in F . A minor-closed graph family F is H-minor-free if
H /∈ F .

The m×m grid is the graph on {1, 2, . . . , m2} vertices {(i, j) : 1 ≤ i, j ≤ m} with
the edge set

{(i, j)(i′, j′) : |i − i′| + |j − j′| = 1}.

For i ∈ {1, 2, . . . , m} the vertex set (i, j), j ∈ {1, 2, . . . , m}, is referred as the ith row
and the vertex set (j, i), j ∈ {1, 2, . . . , m}, is referred to as the ith column of the m×m
grid. The vertices (i, j) of the m × m grid with i ∈ {1, m} or j ∈ {1, m} are called
boundary vertices and the rest of the vertices are called non-boundary vertices.

The notion of treewidth was introduced by Robertson and Seymour [31]. A tree
decomposition of a graph G is a pair ({Xi | i ∈ I}, T = (I, F )), with {Xi | i ∈ I} a
family of subsets of V (G) and T a tree, such that

1.
⋃

i∈I Xi = V (G);
2. for all {v, w} ∈ E(G), there is an i ∈ I with v, w ∈ Xi; and
3. for all i0, i1, i2 ∈ I , if i1 is on the path from i0 to i2 in T , then Xi0∩Xi2 ⊆ Xi1 .

The width of the tree decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi|−1. The
treewidth tw(G) of a graph G is the minimum width of a tree decomposition of G.

We need the following facts about treewidth. The first fact is trivial.
• For any complete graph Kn on n vertices, tw(Kn) = n − 1.

The second fact is well known but its proof is not trivial. (See e.g., [17].)
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Fig. 2.1. An augmented 12 × 12 grid with span 8.

• The treewidth of the m × m grid is m.

The next fact we need is the improved version of the Robertson & Seymour
theorem on excluded grid minors [32] due to Diestel et al. [18]. (See also the textbook
[17].)

Theorem 2.1 ([18]). Let r, m be integers, and let G be a graph of treewidth at

least m4r2(m+2). Then G contains either Kr or the m × m grid as a minor.
Formally, a graph parameter P is a function mapping graphs to nonnegative

integers. The parameterized problem associated with P asks, for a fixed k, whether
P (G) ≤ k for a given graph G. Given a graph parameter P , we say that a graph
family F has the parameter-treewidth property for P if there is a strictly increasing
function t such that every graph G ∈ F has treewidth at most t(P (G)).

Definition 2.2. Let g : N → N be a strictly increasing function. We say that a
graph parameter P is g-minor-bidimensional1 if

• Contracting an edge, deleting an edge, or deleting a vertex in a graph G cannot
increase P (G).

• For the r × r grid R, P (R) ≥ g(r).
Similarly, a graph parameter P is g-contraction-bidimensional if
• Contracting an edge in a graph G cannot increase P (G).
• For any r × r augmented grid R of constant span, P (R) ≥ g(r).

In the above definition, an r × r augmented grid of span s is an r × r grid with
some extra edges such that each vertex is attached to at most s non-boundary vertices
of the grid (see an example in Figure 2.1). Intuitively, bidimensional parameters are
required to be “large” in two-dimensional grids.

We note that a g-minor-bidimensional parameter is also a g-contraction-bidimensional
parameter. One can easily observe that many graph parameters such as minimum
sizes of dominating set, q-dominating set (distance q-dominating set for a fixed q),
vertex cover, feedback vertex set, and edge-dominating set (see exact definitions of
the corresponding graph parameters in [15]) are Θ(r2)-minor- or Θ(r2)-contraction-
bidimensional parameters.

Here, we present a theorem for minor-bidimensional parameters on general minor-
closed classes of graphs excluding some fixed graphs, which plays an important role
in the main result of this paper.

1Closely related notions of bidimensional parameters are introduced by the authors in [13].
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Theorem 2.3. If a g-minor-bidimensional parameter P on an H-minor-free
graph G has value at most k, then tw(G) ≤ 24|V (H)|2(g−1(k)+2) log(g−1(k)) = 2O(g−1(k) log(g−1(k))).

Proof. Notice that K|V (H)| contains as a minor any graph on |V (H)| vertices.
Therefore we may assume that G is K|V (H)|-minor-free. If the claimed upper bound
for the treewidth of G is not correct, then Theorem 2.1 implies that G contains a
m × m grid R as a minor for m > g−1(k). Because P is g-minor-bidimensional,
P (R) ≥ g(m). The bidimensionality of P along with the fact that R is a minor of G
yield P (G) ≥ g(m). Therefore, k ≥ g(m), a contradiction.

Theorem 2.3 can be applied for minor-bidimensional parameters such as vertex
cover or feedback vertex set.

The notion of local treewidth was introduced by Eppstein [21] (see also [29]). The
local treewidth of a graph G is

ltw(G, r) = max{tw(G[N r
G[v]]) : v ∈ V (G)}.

For a function f : N → N we define the minor-closed class of graphs of bounded local
treewidth

L(f) = {G : ∀H � G ∀r ≥ 0, ltw(H, r) ≤ f(r)}.

Also we say that a minor-closed class of graphs C has bounded local treewidth if
C ⊆ L(f) for some function f .

Well-known examples of minor-closed classes of graphs of bounded local treewidth
are graphs of bounded treewidth, planar graphs, graphs of bounded genus, and single-
crossing-minor-free graphs.

Many difficult graph problems can be solved efficiently when the input is restricted
to graphs of bounded treewidth (see e.g., Bodlaender’s survey [7]). Eppstein [21] made
a step forward by proving that some problems like subgraph isomorphism and induced
subgraph isomorphism can be solved in linear time on minor-closed graphs of bounded
local treewidth. Also the classic Baker’s technique [6] for obtaining approximation
schemes on planar graphs for different NP-hard problems can be generalized to minor-
closed families of bounded local treewidth. (See [21] for a generalization of these
techniques.)

An apex graph is a graph G such that, for some vertex v (the apex ), G − v is
planar. The following result is due to Eppstein [21].

Theorem 2.4 ([21]). Let F be a minor-closed family of graphs. Then F is of
bounded local treewidth if and only if F does not contain all apex graphs.

3. Combinatorial lemmas. In this section we prove two combinatorial lemmas
regarding grids and graphs of bounded local treewidth.

Lemma 3.1. Suppose we have an m×m grid H and a subset S of vertices in the
central (m− 2`)× (m − 2`) subgrid H ′, where s = |S| and ` = b 4

√
sc. Then H has as

a minor the ` × ` grid R such that each vertex in R is a contraction of at least one
vertex in S and other vertices in H.

Proof. Let sx denote the number of distinct x coordinates of the vertices in S,
and let sy denote the number of distinct y coordinates of the vertices in S. Thus,
s ≤ sx · sy. Assume by symmetry that sy ≥ sx, and therefore sy ≥ √

s.
We define the subset S′ of S by removing all but one point that share a common

y coordinate, for each y coordinate. Thus, all y coordinates of the vertices in S ′

are distinct, and |S′| = sy. We discard all but `2 vertices in S′ to form a slightly
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Fig. 3.1. Left: The grid H, the points in S′′, and their grouping. Here ` = 6. Right: Con-

struction of the minor ` × ` grid R passing through the points in S′′.

smaller set S′′, because |S′| = sy ≥ √
s ≥ (b 4

√
sc)2 = `2. We divide these `2 vertices

into ` groups each of exactly ` consecutive vertices according to the order of their y
coordinates. Now we have the situation shown on the left of Figure 3.1.

We construct the minor grid R as shown on the right of Figure 3.1. Because
each y coordinate is unique, we can draw long horizontal segments through every
point. The ` columns on the left-hand and right-hand sides of H allow us to connect
these horizontal segments together into ` vertex-disjoint paths, each passing through
exactly ` vertices of S ′′. These paths can be connected by vertical segments within
each group. By contracting each horizontal segment into a single vertex, and some
further contraction, we can obtain the desired ` × ` grid R as a minor. Each vertex
of this grid R is a contraction of at least one vertex in S ′′ (and hence in S) and other
vertices in H .

Lemma 3.2. Let G ∈ L(f) be a graph containing the m×m grid H as a subgraph,
m > 2`, where ` = f(2) + 1. Then the central (m− 2`)× (m− 2`) subgrid H ′ has the
property that every vertex v ∈ V (G) is adjacent to less than `4 vertices in H ′.

Proof. Suppose for contradiction that there is a vertex v ∈ V (G) such that
S = NG[v] ∩ V (H) has size s = |S| ≥ `4. By Lemma 3.1, H ′ has as a minor a ` × `
grid R such that each vertex in R is a contraction of at least one vertex in S and
other vertices in H ′. If we perform these contractions and deletions in G, then v is
adjacent to all vertices in R. Define R + v to be the grid R plus the vertex v (if v is
not already in R) and the star of connections between v and all vertices in R. Then
R+v is a minor of G, but has diameter 2 and treewidth ` ≥ f(2)+1, a contradiction.

4. Main theorem. Now we are ready to present the main result of this paper.
Theorem 4.1. Let P be a contraction-bidimensional parameter. A minor-closed

graph class F has the parameter-treewidth property for P if F is of bounded local
treewidth. In particular, for any g-contraction-bidimensional parameter P , function
f : N → N and any graph G ∈ L(f) on which P has value at most k, we have

tw(G) ≤ 2O(g−1(k) log g−1(k)). (The constant in the O notation depends on f(1) and
f(2).)

Proof. Let r = f(1) + 1 and ` = f(2) + 1. Let G ∈ L(f) be a graph on
which the graph parameter P has value k. Let m be the largest integer such that
tw(G) ≥ m4r2(m+2). Without loss of generality, we assume G is connected, and
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m > 2` (otherwise, tw(G) is a constant because both r and ` are constants.) Then
G has no complete graph Kr as a minor. By Theorem 2.1, G contains an m × m
grid H as a minor. Thus there exists a sequence of edge contractions and edge/vertex
deletions reducing G to H . We apply to G the edge contractions from this sequence,
we ignore the edge deletions, and instead of deletion of a vertex v, we only contract
v into one of its neighbors. Call the new graph G′, which has the m×m grid H as a
subgraph and in addition V (G′) = V (H). Because graph parameter P is contraction-
bidimensional, its value on G′ will not increase. By Lemma 3.2, we know that the
central (m − 2`) × (m − 2`) subgrid H ′ of H has the property that every vertex
v ∈ V (G′) is adjacent to less than `4 vertices in H ′.

Now, suppose in graph G′, we further contract all 2` boundary rows and 2`
boundary columns into two boundary rows and two boundary columns (one on each
side) and call the new graph G′′. Note that here G′′ and H ′ have the same set of
vertices. The degree of each vertex of G′′ to the vertices that are not on the boundary
is at most (` + 1)2`4, which is a constant because ` is a constant. Here the factor
(`+1)2 is for the boundary vertices each of which is obtained by contraction of at most
(` + 1)2 vertices. Again because graph parameter P is contraction-bidimensional, its
value on G′′ does not increase and thus it is at most p. On the other hand, because
the graph parameter is g-contraction-bidimensional, its value on graph G′′ is at least
g(m−2`). Thus g−1(k) ≥ m−2`, so m = O(g−1(k)). By Theorem 2.3, the treewidth

of the original graph G is at most 2O(g−1(k) log g−1(k)) as desired.

The apex graphs Ai, i = 1, 2, 3, . . . , are obtained from the i × i grid by adding a
vertex v adjacent to all vertices of the grid. It is interesting to see that, for a wide
range of graph parameters, the inverse of Theorem 4.1 also holds.

Lemma 4.2. Let P be any contraction-bidimensional parameter where P (Ai) =
O(1) for any i ≥ 1. A minor-closed graph class F has the parameter-treewidth property
for P only if F is of bounded local treewidth.

Proof. The proof follows from Theorem 2.4. The apex graph Ai, has diameter
≤ 2 and treewidth ≥ i. So a minor-closed family of graphs with the parameter-
treewidth property for P cannot contain all apex graphs and hence it is of bounded
local treewidth.

Typical examples of graph parameters satisfying Theorem 4.1 and Lemma 4.2
are dominating set and its generalization q-dominating set, for a fixed constant q (in
which each vertex can dominate its q-neighborhood). These graph parameters are
Θ(r2)-contraction-bidimensional and their value is 1 for any apex graph Ai, i ≥ 1.

We can strengthen the “if and only if” result provided by Theorem 4.1 and
Lemma 4.2 with the following lemma. We just need to use the fact that if the value
of P is less than the value of P ′ then the parameter-treewidth property for P implies
the parameter-treewidth property for P ′ as well.

Lemma 4.3. Let P be a graph parameter whose value is lower bounded by some
contraction-bidimensional parameter and let P (Ai) = O(1) for any i ≥ 1. Then a
minor-closed graph class F has the parameter-treewidth property for P if and only if
F is of bounded local treewidth.

Proof. The “only if” direction is the same as in Lemma 4.2. Suppose now that
P ′ is a contraction-bidimensional parameter where, for any graph G, P ′(G) ≤ P (G).
Applying Theorem 4.1 to P ′ we obtain that, if F is of bounded local treewidth,
then F has the parameter-treewidth property for P ′, which means that there exists
a strictly increasing function t such that, for any graph G ∈ F , tw(G) ≤ t(P ′(G)).
As P ′(G) ≤ P (G), we have that tw(G) ≤ t(P (G)) and thus F has the parameter-
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treewidth property for P .
Lemma 4.3 can be used not only for contraction-bidimensional graph parameters.

As an example we mention the clique-transversal number of a graph, i.e., the minimum
number of vertices meeting all the maximal cliques of a graph. (The clique-transversal
number is not contraction-bidimensional because an edge contraction may create a
new maximal clique and the value of the clique-transversal number may increase.) It
is easy to see that this graph parameter always exceeds the domination number (the
size of a minimum dominating set) and that any graph in Ai has a clique-transversal
set of size 1.

Another application is the Π-domination number, i.e., the minimum cardinality
of a vertex set that is a dominating set of G and satisfies some property Π in G. If this
property is satisfied for any one-element subset of V (G) then we call it regular. Ex-
amples of known variants of the parameterized dominating-set problem corresponding
to the Π-domination number for some regular property Π are the following parame-
terized problems: the independent dominating set problem, the total dominating set
problem, the perfect dominating set problem, and the perfect independent dominating
set problem (see the exact definitions in [1]).

We summarize the previous observations with the following:
Corollary 4.4. Let P be any of the following graph parameters: the minimum

cardinality of a dominating set, the minimum cardinality of a q-dominating set (for
any fixed q), the minimum cardinality of a clique-transversal set, or the minimum
cardinality of a dominating set with some regular property Π. A minor-closed family
of graphs F has the parameter-treewidth property for P if and only if F is of bounded

local treewidth. The function t(k) in the parameter-treewidth property is 2O(
√

k log k).

5. Algorithmic consequences and concluding remarks. Courcelle [10] proved
a meta-theorem on graphs of bounded treewidth; he showed that, if φ is a property
of graphs that is definable in monadic second-order logic, then φ can be decided in
linear time on graphs of bounded treewidth. Frick and Grohe [27] partially extended
this result to graphs of bounded local treewidth; they showed that, for any property
φ that is definable in first-order logic and for any class of graphs of bounded local
treewidth, there is an O(n1+ε)-time algorithm deciding whether a given graph has
property φ, for any ε > 0. The constant in the O notation depends on 1/ε, φ, and the
local treewidth bound. However, the running time of Frick and Grohe’s algorithm re-
mains unanalyzed in terms of φ: their algorithm transforms φ into so-called “Gaifman
normal form” [28] and the complexity of this transformation is unknown.

Using Theorems 2.3 and 4.1, we obtain a result along similar lines of Frick and
Grohe. Specifically, consider any property that is solvable in polynomial time on
graphs of bounded treewidth, e.g., properties definable in monadic second-order logic.
If the property is minor-bidimensional, we obtain a fixed-parameter algorithm on
general minor-closed graph families excluding some fixed graphs; and if the property
is contraction-bidimensional, we obtain a fixed-parameter algorithm on minor-closed
graph families of bounded local treewidth. The differences between our result and
Frick and Grohe’s result are that our properties must be bidimensional but need not
be definable in first-order logic, and our graph families must be minor-closed but
need not have bounded local treewidth (for minor-bidimensional properties). Also, in
contrast to the work of Frick and Grohe, the running time of our algorithm has an
explicit bound.

Theorem 5.1. Let P be a graph parameter such that, given a tree decomposition
of width at most w for a graph G, the graph parameter can be computed in h(w)nO(1)
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time. Now, if P is a g-minor-bidimensional parameter and G belongs to a minor-
closed graph family excluding some fixed graphs, or P is a g-contraction-bidimensional
parameter and G belongs to a minor-closed family of graphs of bounded local treewidth,

then we can compute P on G in h(2O(g−1(k) log g−1(k)))nO(1) + 22O(g−1(k) log g−1(k))

n3+ε

time, for any ε > 0.

Proof. The algorithm is as follows. First we check whether tw(G) is in 2O(g−1(k) log g−1(k)).
By Theorems 2.3 and 4.1, if it is not, graph parameter P has value more than k on
graph G. This step can be performed by Amir’s algorithm [5], which for a given graph
G and integer ω, either reports that the treewidth of G is at least ω, or produces a
tree decomposition of width at most (3 + 2

3 )ω in time O(23.698ωn3ω3 log4 n). Thus
by using Amir’s algorithm we can either compute a tree decomposition of G of size

2O(g−1(k) log g−1(k)) in time 22O(g−1(k) log g−1(k))

n3+ε, or conclude that the treewidth of
G is not in 2O(g−1(k) log g−1(k)).

Now if we find a tree decomposition of the aforementioned width, we can compute
P on G in time h(2O(g−1(k) log g−1(k)))nO(1) time. The running time of this algorithm
is the one mentioned in the statement of the theorem.

For example, let G be a graph from a minor-closed family F of bounded local
treewidth. Because the dominating set of a graph with a given tree decomposition
of width at most ω can be computed in time O(22ωn) [1], Theorem 5.1 gives an
algorithm which either computes a dominating set of size at most k, or concludes

that there is no such a dominating set in 22O(
√

k log k)

nO(1) time. The same result holds
also for computing the minimum size of a q-dominating set. Indeed, Theorem 5.1 can
be applied because the q-dominating set of a graph with a given tree decomposition
of width at most ω can be computed in time O(qO(ω)n) [12]. Also, algorithms on
graphs of bounded treewidth for clique-transversal set, and Π-domination set appeared
in [8] and [1] respectively. Using these algorithms, and the fact that all these graph
parameters are lower bounded by the domination number, the methodology of the
proof of Theorem 5.1 can give algorithmic results for clique-transversal set and Π-
domination set with the same running times as in the case of dominating set (i.e.,

22O(
√

k log k)

nO(1)).

Clearly, the algorithmic results of this paper are mainly of theoretical importance.
Towards more practical algorithms, we mention some open problems. It is known that,
for any planar graph G with dominating set of size at most k, we have tw(G) = O(

√
k).

The same holds for many other graph parameters [1]. The same bound has also
been proved for more general graph classes like graphs of bounded genus [13, 26, 16]
and minor-closed graph families of bounded local treewidth [14]. It is natural to
ask whether such a smaller bound holds in the case of any bidimensional parameter.
This would provide subexponential fixed-parameter algorithms on minor-closed graph
families of bounded local treewidth for any such graph parameter.

It is known that the dominating set problem admits a linear size kernel on planar
graphs [3]. Recently, this result was extended to graphs of bounded genus [26]. It
is tempting to ask whether such a kernel exists for any minor-closed graph class
of bounded local treewidth, i.e., any minor-closed graph class with the parameter-
treewidth property for dominating set. The same question can be asked for other
bidimensional parameters. In particular, we wonder whether there is any link between
linear kernels and bidimensionality.
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[30] I. Kanj and L. Perković, Improved parameterized algorithms for planar dominating set,
Proceedings of the 27th International Symposium Mathematical Foundations of Computer
Science (MFCS 2002), Springer LNCS vol. 2420, 2002, pp. 399–410.

[31] N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width,
Journal of Algorithms 7 (1986), pp. 309–322.

[32] N. Robertson and P. D. Seymour, Graph minors. V. Excluding a planar graph, Journal of
Combinatorial Theory Series B, 41 (1986), pp. 92–114.

11


