A Distributed Boundary Detection Algorithm for Multi-Robot
Systems

James McLurkin and Erik D. Demaine

Abstract— We describe a distributed boundary detection
algorithm suitable for use on multi-robot systems with
dynamic network topologies. We assume that each robot
has access to its local network geometry, which is the com-
bination of a robot’s network connectivity and the positions
of its neighbors measured relative to itself. Our algorithm
uses this information to classify robots as boundary or
interior in one communications round, which is fast enough
for rapidly changing networks. We use the local boundary
classifications to create a robust boundary subgraph, and to
determine if the boundary is an interior void or the exterior
boundary. A proof of the key property of the boundary
detection algorithm is provided, and all the algorithms are
extensively tested on a swarm of 25-35 robots in rapidly
changing network topologies.

I. INTRODUCTION

We consider the problem of defining and estimating
the boundary of a two-dimensional configuration of
robots in a multi-robot system. We desire a boundary
that closely matches the shape of the configuration
of robots, and that captures concavities, convexities,
and interior voids. We require that the boundary form
a connected subgraph of the robot network, so that
messages can be routed around it and its properties can
be estimated. Finally, we require that the algorithm be
fully distributed and require only local network geometry,
which is the combination of a robot’s network con-
nectivity and the positions of its neighbors measured
relative to itself. The local network geometry sensing
model is a practical compromise between a distance-
only model, in which each robot knows only distances
(or connectivity) to nearby robots, and a global coor-
dinate system. Knowledge of local network geometry
is a reasonable assumption for a practical multi-robot
system. Figure 1 shows simulation results from our
algorithm.

A. Motivation

A distributed algorithm to estimate the boundary of
a multi-robot configuration has many practical applica-
tions. We can use a boundary as a formal and practical
definition of what is inside and outside the network.
Knowing the boundary would allow us to estimate
the perimeter of the configuration. For a surveillance
application, robots on the boundary can specialize into

James McLurkin is an assistant professor of Computer Science, Rice
University, Houston, TX, 77005, USA jmclurkin@rice.edu

Erik D. Demaine is an associate professor of Electrical Engineering
and Computer Science, MIT CSAIL, Cambridge, MA 02139, USA
edemaine@MIT.EDU

n=108
1=1000mm

Fig. 1. Simulation results from our boundary algorithm. It detects
concave and convex boundaries, interior voids, and produces con-
nected boundary subgraphs. Robots in the interior are drawn in red.
Robots and edges on the exterior boundary are blue, those on interior
voids are green.

target monitors, and notify the network when a target
has entered or left the tracking area.

In addition to detecting the exterior boundary, a
boundary detection algorithm can find voids in the in-
terior of the configuration. These might simply be voids
in the distribution of robots, or might be the footprint of
an impassable obstacle in the environment, larger than
any one robot could detect individually. These features
could be detected, their perimeter estimated, and in the
case of voids in the robots’ distribution, rectified by
moving robots into the empty area.

Boundaries can be used to find local articulation
points: individual robots whose removal disconnects
a local portion of the multi-robot network. These are
vulnerable areas in the network, where removing one
robot would increase the routing distance between
previously nearby robots, or disconnect the network
entirely.

B. Related Work

There is much preexisting work on determining
boundaries of sets of points. The classic centralized al-
gorithm, the convex hull [12], does not capture concav-
ities in the boundary, requires knowledge of the global
coordinates of each point, and assumes that there is
an edge between any two points. We assume that our
multi-robot network only supports edges of maximum
length 7, the maximum communications range between

neighboring robots. Most of these limitations are over-
come with the more general definition of boundary
defined by the a-shape of Edelsbrunner [1], which we
will discuss in detail below.

There are many distributed algorithms for boundary
detection. Fekete et al. present two types: one approach
takes advantage of the fact that in a dense, uniform
distribution of nodes with unit-disk connectivity, nodes
on the boundaries will have a smaller degree than
those in the interior [4]. This “edge effect” can be
used to classify boundary nodes if each node can
estimate parameters of the global distribution, but re-
quires very high average node degree, around 100. In
other work [3], [6] they develop a deterministic bound-
ary detection algorithm, again for unit-disk networks
with only connectivity information. They construct a
clever network subgraph called a “flower” that uses
connectivity information a fixed number of network
hops from the node under consideration. The disad-
vantages of this approach are the complexity of these
neighborhood-based structures and limitations on the
minimum size concavity or region they can detect.
Wang and Mitchell [14] present a different distributed
algorithm that requires only connectivity information,
but uses a many rounds of multi-hop communication to
produce a result. Ghrist et al. [5] present two algorithms
for determining if a node is contained within a given
cycle in the network. One algorithm uses network
connectivity and angular sorting of neighboring nodes,
while another only uses connectivity. Wang, Gao, and
Guibas [2] present algorithms to discover and correct
routing problems caused by holes in sensor networks.
Their definition of interior holes applies directly to our
work, but their algorithms are designed for routing,
and do not detect all the nodes on the boundaries.

All the previous distributed algorithms are designed
for sensor networks and use the connectivity between
nodes to infer constraints on the edge lengths of the
physical configuration. In order to determine bound-
ary status, they employ complex messaging protocols,
which require many rounds of computation, and many
messages that travel distances of O(diam(G)) through
the network. In a multi-robot system with a dynamic
network, the configuration could change before these
algorithms terminate.

However, it is reasonable to assume that robots in
a multi-robot system have access to more information
about the positions of their neighbors than sensor net-
works. This geometric information is required for most
configuration control algorithms, which are fundamen-
tal for many applications. However, some applications
or environments preclude access to a global coordinate
system, so we assume instead that the robots have a
sensor to measure their local network geometry: the
combination of network connectivity and local pose
information about neighboring robots. We assume that
each robot measures the positions of neighbors in its

own coordinate frame. We use this local geometry to
compute boundaries in a straightforward way that is
robust and performs well in dynamically changing
network topologies.

We draw our inspiration from the a-shape algorithm
of Edelsbrunner [1]. Given a set of points on the plane
and a characteristic dimension ¢, it is possible to define
and construct a well-defined boundary. A point is a-
extreme if there exists a disc of radius 1 that touches
this point and contains no other points. The boundary
subgraph can be constructed by taking the union of
edges between all pairs of points that a disc of radius =
can touch and contain no other points. This subgraph is
the a-shape. It has a well-defined interior and exterior,
and can be interpreted as the boundary of the region
containing these points.

The a-shape algorithm requires the user to select
a characteristic dimension, «. In a multi-robot con-
figuration, the communication radius of the robots,
r, provides a natural characteristic dimension. Setting
L1 = Z is the obvious selection, but this can produce
configurations in which every robot is classified as a
boundary. In particular, the triangular lattice shown in
Figure 2 illustrates such a configuration. In order for
the interior of such a lattice to be classified as interior,
we would need to reduce the distances between neigh-
boring robots, or select é = #3 This a will correctly
classify the interior of the lattice, but requires that each
robot consider neighbors that are further away than
r, which is beyond the range of the local network
geometry. There is no entirely satisfactory value of a.

C. Contributions

This paper presents a new boundary detection al-
gorithm called the cyclic-shape algorithm. The cyclic-
shape algorithm is fully distributed, requiring only
the local network geometry available to each robot.
In addition, we present two algorithms to characterize
global properties of the boundaries. The first gives each
boundary a unique name by passing messages between
adjacent boundary robots, creating a boundary sub-
graph . The second allows the robots on each boundary
to classify the subgraph as an interior void or the
exterior boundary. We provide a proof of correctness of
the basic boundary algorithm, and extensive empirical
verification of all three algorithms in dynamic network
topologies.

II. PROBLEM DEFINITION AND ALGORITHMS

We focus on applications that require highly mobile
agents using local inter-robot communication. We de-
fine the state of an individual robot, a, as the tuple of
its unique ID, its global pose, and its private and public
variables. We define a configuration, C, as the collection
of states of all n robots in the network. Each robot can
communicate with neighbors within a fixed radius r;
we let » = 1 for analysis. This produces a geometric

Fig. 2. In a configuration of robots arranged in a triangular
lattice, selecting + = 5 will properly detect exterior boundaries, but

will classify all the interior robots as boundaries as well. Selecting

1
== % will correctly classify interior robots and boundary robots.

However, the diameter of this circle is larger than the range of the

local network geometry (%r > r), so a robot’s neighbors would

not include all of the robots required to make a correct boundary
decision.

unit-disk graph, G, in which each robot is a vertex and
the communications links between robots are edges. We
define the shape of G as the union of all the triangles
in the graph.

Note that the vertices of the shape of G are not
necessarily the vertices of the graph G. This can be
seen in the upper-right side of Figure 1, where there
are three robots that are covered by triangles from
neighboring robots. We cope with this by defining a
maximal polygon subgraph to be any interior-maximal
polygon (with holes allowed) contained in the shape
of G whose vertices are vertices of G. Such a shape has
several nice properties: its vertices belong to G, it is
guaranteed to be contiguous, and it captures all of the
holes of G. However, it is not unique: there are many
potential maximal subgraphs. We argue uniqueness
later in this section.

We assume that each robot has a sensor that can esti-
mate the pose, p = (z,y,0), of its neighbors relative to
its own coordinate frame. We call the collection of these
local position measurements and network connectivity
the robot’s local network geometry. We do not assume
robots have access to their positions in an external
coordinate system. We assume that sensor errors make
the local network geometries of neighboring robots
different. In order to avoid algorithmic inconsistencies
caused by these differences, or the need to reach a con-
sensus between neighboring robots on their shared ge-
ometry, each robot performs computations using only
its local network geometry. We introduce the notion
of inferred edges to facilitate this. A robot constructs an
inferred edge between any two of its neighbors when
its position measurements indicate that they are close
enough to communicate. While this eases our algorithm
design, it comes at the cost of potentially diverging
from the actual network connectivity when the robot
makes localization errors, or an obstacle actually pre-
vents communication between two neighboring robots.

We assume that all the robots broadcast their public

5

0‘:& m 4
: g D (O 4
e Nw \‘j»i N e

1)° : : 1)>(2

]

Convex Concave Covered Concave

(pointed)

Internal

= measured neighbor edge = inferred neighbor edge == missing sector

Fig. 3. Illustration of the cyclic-shape algorithm’s progress when
considering the four main boundary types. Edges to neighboring
robots (the local network geometry) are drawn in black, inferred
edges that are part of the cycle around the robot are indicated with
red arrows, and inferred edges that are not part of the cycle are drawn
in red dashed lines. Missing sectors are labeled 6 and labeled with a
blue arc. The algorithm sorts the neighbors of a robot by their local
bearing. It then starts at the first neighbor, and checks for an inferred
edge to the next neighbor. If a cycle of inferred edges through all the
neighbors of a robot exists, then it is not a boundary.

variables to their neighbors periodically with a shared
fixed period, 7, but with different individual offsets.
This defines a local round of computation; a period
of time in which each robot receives messages from
each of its neighbors, processes these messages, and
then broadcasts its own message. This creates a global
synchronizer, which allows us to model group-level
algorithm execution as proceeding in a series of discrete
global rounds.

A. The Cyclic-Shape Algorithm

The cyclic-shape algorithm works by noting that
robots that are within a cycle that passes through all
of their neighbors are in the interior of the shape of G.
The cycle must pass through all neighbors, even though
there might be inferred edges connecting non-adjacent
neighbors. Figure 3 shows the algorithm execution
on the four main classes of local network geometry,
omitting singletons and local articulation points.

We label a robot’s neighbors consecutively, starting
from the x-axis of its local coordinate system and
proceeding counterclockwise. We call a sector between
adjacent neighbors missing if there is no inferred edge
between the two neighbors, or if the angle it subtends
is m or greater. If a sector is not missing, we define a
sector triangle as the triangle formed between the robot
and the two adjacent neighbors.

The cyclic-shape algorithm looks for missing sectors
around a robot, starting at any neighbor and pro-
ceeding counterclockwise through all the neighbors. A
robot with no missing sectors is interior. A singleton
robot is degenerate, and can trivially be classified as
a boundary. A robot with one missing sector with
an angle § > = is labeled as a convex boundary. A
robot with one missing sector, but with angle 6 < m,
is labeled concave. A robot missing more than one
sector is labeled a local articulation point. We define
the order of the local articulation point as the number
of missing sectors. Intuitively, local articulation points
are vulnerable sections of the network, where removal

of a single robot disconnects a local portion of the
network, but not necessarily the entire network. We
defer discussion of local articulation points for future
work.

Note that it is possible for a concave robot to have
a missing sector, but still be within the shape of G.
We refer to this as the covered concave case. By labeling
covered concave configurations as boundaries, the c-
shape algorithm produces a connected subgraph, but
at the cost of labeling more robots than needed as
boundaries.

The core of the cyclic-shape algorithm is the FIND-
EMPTYSECTORS function which returns a list of empty
sectors around a given robot:

Algorithm 1 FINDEMPTYSECTORS(neighbors)

1: N < SORTBYBEARING(neighbors)

2: emptySectors[] «— ()

3: for all n; in N do

4 n; < NEXTCOUNTERCLOCKWISENBR(N, n;)

5: 0 «— COUNTERCLOCKWISEANGLE(n;, ;)

6: if 6 > 7 then

7: ADD(emptySectors, {n;,n;,0})

8: else if (INFERREDEDGE(n;,n;) = FALSE) then
9: ADD(emptySectors, {n;,n;,0})

10: end if

11: end for

12: return emptySectors

The FINDEMPTYSECTORS algorithm first sorts the
neighbors by their bearing in the coordinate frame of
the robot running the algorithm. Starting from an arbi-
trary neighbor, the algorithm looks for an inferred edge
to the next cyclicly adjacent neighbor. If there is not an
inferred edge, the sector in between the two neighbors
is stored in the list of empty sectors. The function
terminates when it has checked for inferred edges
between all the neighbors. The algorithm completes in
one round, and the running time per robot per round is
O(Alog A), where A is the number of neighbors of the
robot. The communications messages transmitted per
each round of computation is O(1) bits/robot/round,
as the robots only need to announce themselves to their
neighbors. For local boundary classification, there is
no need to propagate messages further than one hop
away from any robot, making this algorithm useful
for networks with rapidly changing topologies. Our
stronger assumptions about sensing, i.e. that each robot
can measure the local network geometry, allows the
C-Shape algorithm to determine local boundary status
in O(1) rounds of computation using one-hop commu-
nications. This is in contrast to previous work which
makes weaker assumptions on sensing, but requires
O(diam(G)) rounds of computation to determine local
boundary classification.

Assuming error-free local network geometry mea-

(a) Local classification errors

(b) Cycle of errors

Fig. 4. a. Because the c-shape algorithm only uses local network
geometry, it is possible for robots that are on the interior of the
network to be classified as boundaries. b. It is even possible to
construct a cycle of erroneously classified boundary robots, making
this kind of error more difficult to detect.

surements, we prove that if the c-shape algorithm labels
a robot as interior, then that robot is contained within
the shape of G:

Lemma 2.1: If a cycle in the local network geometry
can be created through inferred edges between neigh-
bors sorted in cyclic order, then the robot is in the
interior of the global polygon.

Proof: If there is a cycle through the ordered
neighbors in cyclic order, then there is an edge between
each adjacent neighbor. Since each neighbor is part of
two triangles, there can be no space between adjacent
triangles, and the union of these triangles will leave
no empty space around the robot. This robot will be
within the interior of this local polygon. Since the
global polygon is the union of all these triangles from
all the robots, the robot will also be in the interior of
the global polygon. u

The converse is not always true: the c-shape algo-
rithm can label robots as boundaries when they are
within the shape of G. Figure 4 shows two configu-
rations with such errors. We can detect these errors
by noting that the true boundary (exterior or interior)
must form a cycle, and that the neighbors adjacent to
each robot’s missing sectors must also be boundary
robots. Therefore, any robot that classifies itself as a
boundary, but has an empty sector adjacent to an
interior neighbor, must be on the interior. We call such
a robot a boundary error, and can use this definition
to remove single-robot errors. Errors that form chains
can be corrected recursively by finding all single-robot
errors, suppressing their boundary status and labeling
them interior robots, then repeating this process until
there are no more single-robot errors. A robot that has
its erroneous boundary state suppressed is called a
suppressed error.

We conjecture that the remaining set of boundary
robots, those that are not suppressed errors, form the
true boundary: the interior-minimal polygon (with holes
allowed) contained in the shape of G whose vertices
are boundary robots. Note that we know from our def-
inition above that such a boundary actually exists. We

also conjecture that it is unique. We have implemented
an algorithm to remove propagated boundary errors in
simulation. It uses O(1) bits/robot/round of commu-
nication for robots to announce their error status. The
algorithm has a running time of O(A) per robot per
round, and requires up to O(n) rounds of computation
in the worst-case: a configuration composed entirely
of errors. Our implementation is fully distributed, but
requires some sort of global synchronization to period-
ically reset the suppressed error status on the robots.
We did not implement this algorithm on the robots,
because the observed rate of single-robot errors in
simulation is low, as they require a careful and unlikely
configuration of robots. Also, the robot’s mobility and
changing network topology cause much larger rates of
error, which we explore carefully in the experimental
results section.

It should also be possible to achieve some error
reduction through configuration control. One approach
could be to maintain a minimum density of robots, or
require some additional conditions on local network
geometry, such as a Yao graph, or a Gabriel graph, or
a NET graph [7], [11], [13]. Maintaining a minimum
density should be readily achievable in practice, but it
might be difficult to maintain more complex geometric
constraints at run time. We leave these ideas to future
work.

III. BOUNDARY SUBGRAPH CONSTRUCTION

Once robots have determined their local boundary
classification using one-hop communication, we can
run additional algorithms to construct a global bound-
ary subgraph and estimate its properties. The algo-
rithms presented in this section and the next measure
global properties of the boundary, and as such they
require O(diam(G)) rounds of computation. Intuitively,
this would make them more sensitive to dynamic net-
work topologies, an assertion we will explore in the
experimental results section.

The first algorithm constructs a boundary subgraph
amongst boundary robots. Each boundary subgraph
has a single distinguished robot, the root. This root
uses its unique ID to name the boundary. The subgraph
construction algorithm is straightforward. After each
robot has determined its local boundary classification,
all boundary robots use a broadcast-tree leader-election
algorithm [10], but with the scope of the messages
limited to only boundary robots. ! The robot in the
boundary subgraph with the lowest ID becomes the
root, and this ID is transmitted to all the other robots
in the boundary.

The subgraph broadcast tree is constructed in
O(diam(G)) rounds. Computation per round consists
of evaluating broadcast messages from neighbors,

1Boundary “routing helpers” also participate in the relaying of
boundary messages. We introduce this class of robot in the exper-
imental results section.

which requires O(A) time per robot per round. Each
boundary root sends one boundary subgraph message
per round. Normal boundary robots only relay one
message, but local articulation points can handle as
many as five, as that is the maximum number of miss-
ing sectors a robot can have. Therefore, communication
complexity is O(1) bits/robot/round. If an algorithm
requires that each robot know of the existence of all the
boundaries in the network, e.g. to count the number of
voids, then the communication complexity would grow
as O(B), where B is the total number of boundaries in
the network.

IV. GLOBAL BOUNDARY CLASSIFICATION

We wish to be able to classify boundaries as exterior
or interior to allow robots to perform different tasks
depending on their global boundary type. For example,
robots on an interior boundary (a void) might try to
eliminate the void by moving inwards. If their motion
is blocked by an impassible obstacle, the robots can
quantify the object’s perimeter. Robots on the exterior
boundary can estimate the perimeter, or run config-
uration control algorithms to help keep the group
connected.

Determining the global boundary classification is
accomplished by computing the exterior angle of the
shape the boundary defines. The exterior angle of the
outside of a polygon will sum to 27, while the angle
of an interior void will sum to —27. Each robot uses
its local geometry to compute its turning angle, and
uses a convergecast to aggregate this quantity towards
the subgraph root [8]. The subgraph root computes
the sum of the turning angles, determines the global
boundary classification, then rebroadcasts the results
back down the subgraph. All three of these opera-
tions are pipelined, with the broadcast tree messages,
convergecast partial sums, and re-broadcast totals all
propagating through the network simultaneously.

The algorithm requires a broadcast tree on the
boundary subgraph to operate. We add three public
variables, parentID, turningAngleSum, and globalClassi-
fication, to each robot. We examine a particular robot
a. Robot a has k > 0 children in the broadcast tree.
We select one of these children at random, say child
b. Robot a computes its partial sum in each round by
adding its turning angle, 6, — 7, to the partial sum of
the selected child:

a.turningAngleSum = (0, — 7) + b.turningAngleSum.
After diam(G) rounds, the root robot will have the
total sum of the turning angles, and can classify the
global structure of the boundary subgraph as exterior if
root.turningAngleSum > 0, or as interior otherwise. The
root then broadcasts the global boundary classification
to all the robots in the subgraph, using the broadcast
tree as a routing structure.

Broadcast tree construction, convergecast, and re-
broadcast are pipelined and run concurrently. The sub-

(a) A SwarmBot

(b) The Swarm.

Fig. 5. a. Each SwarmBot has an infra-red communication and lo-
calization system which enables neighboring robots to communicate
and determine their pose relative to each other. The three lights on
top are the main user interface, and let a human determine the state
of the robot from a distance. The radio is used for data collection
and software downloads. b. There are 112 total robots in the Swarm,
but a typical experiment uses only 30-50 at a time.

graph broadcast tree is built in depth(T") rounds, correct
turning angle sums reach the root robot after another
depth(T') rounds, and the rebroadcast requires another
depth(T') to reach the rest of the boundary subgraph.
Therefore, the algorithm has a total running time of
3depth(T') rounds, or O(diam(G)) rounds. Computing
the sums and relaying them requires O(A) computation
per robot per round, and the communication complex-
ity is O(1) bits/robot/round.

V. EXPERIMENTAL RESULTS

The SwarmBot robot platform was used to vali-
date algorithm performance. The robots are fully au-
tonomous, using only local computation and sensor
readings to run the algorithms. Each robot has a 32-
bit ARM processor running at 40mhz, a unique ID,
and bump sensors. Large top mounted LEDs are used
to inform the user of the robot’s boundary status; red
= interior, blue = exterior boundary, green = interior
boundary, white = local articulation point.

Each robot has an infra-red communication and lo-
calization system that allows nearby robots to commu-
nicate with each other and determine the pose p =
{z,y, 0} of their neighbors [10] . The system was run at
it’s lowest power setting, which has a range of about
1.0 meters. This produces multi-hop networks within
the confines of our experimental workspace, which is
an 243 m x 243 m (8’ x 8’) square.

Ground truth positions were measured with a vision-
based localization system that tracks the position,
{z,y}, of each robot. Each robot uses an infrared emit-
ter blinking with a unique ID. This lets the camera
tracking system uniquely identify each robot. Mean po-
sitioning error was 15.4 mm, which is small compared
to the linear dimension of the workspace, and we use
these position measurements as ground truth in our
experiments. The system has an update rate of 1 hz,
so we limit the maximum speed of the robots in all
experiments to 80 mm/s.

Each algorithm was run on 25-35 robots moving
randomly around the environment. The motion be-
havior moves the robots in a straight lines until they
contact an obstacle, then use the bump sensors to
estimate the angle of incidence and “reflect” the robot
back into the environment. The behavior is good at
keeping robots dispersed throughout the environment,
and the constant mobility changes the robot’s neighbors
frequently, making it an effective test of an algorithm’s
performance in changing configurations.

Each experiment tests the algorithm over a wide
range of robot speeds, from static configurations to
networks that are too dynamic for the algorithms
to function properly. The speed and communication
rate are combined to calculate the robot speed ratio
(RSR) [9], which is the ratio of the robot’s speed to the
message propagation speed. We tested each algorithm
in a static configuration and with RSRs from 0.005 to
0.640. This range of speeds is most visible when plotted
on logarithmic axis, so we round the RSR of a static
configuration up to 0.001 to plot on a logarithmic scale
with the rest of the results. Each algorithm was tested at
each speed long enough for multi-hop communications
to complete and for performance to stabilize.

A. Local Boundary Classification

Figure 6 shows pictures of robots in two static
configurations, and simulation images that show the
network and boundaries under ideal conditions. We
define the physical accuracy of the local boundary clas-
sification algorithm as the ratio of correctly identified
robots to the total number of robots. The cyclic-shape
local boundary classification algorithm performs well
in static configurations, with an accuracy of 0.86. The
data from dynamic networks is shown by the black line
in Figure 9, which plots the accuracy vs the RSR. The
accuracy decreases as the RSR increases, approaching
0.5 at high RSRs. A high RSR means the robots are mov-
ing much faster than they can communicate with their
neighbors, and their measurements of their neighbor’s
positions become increasingly uncorrelated with the
actual positions. At the limit, we would expect a ratio of
boundary robots to interior robots approximately equal
to the ratio of the perimeter to the area of the environ-
ment. Our experimental environment is a square with
sides of length 2.43 m. This produces a perimeter to
area ratio of 0.5, supporting our measurements.

B. Boundary Subgraph Construction

To compute the accuracy of subgraph construction,
we compare the boundary subgraphs the robots pro-
duce to the results of a centralized version of the
subgraph algorithm that uses the robot’s ground-truth
positions. We define the accuracy of the boundary
subgraph algorithm as the ratio of robots who have
correctly identified their subgraph to the total number
of robots. Because the test environment is small, there

(a) Photo of
boundaries

robots detecting (b) Simulation

(c) Photo of robots detecting local
articulation points

(d) Simulation

Fig. 6. The cyclic-shape local boundary classification algorithm
running on two static configurations. Interior robots, boundary
robots, and local articulation points display red, blue and white
lights, respectively a, b. A configuration with convex and concave
boundaries. There is an incorrectly classified robot on the left-hand
side. ¢, d. A configuration with three local articulation points. There
are two erroneously classified robots in the picture, on in the upper
middle, and one on the lower right. The classification mistakes are
caused by errors in sensing the positions of neighboring robots.

is only room for one boundary. At high RSRs, any robot
that classifies itself as a boundary (which can be up to
half of them) is likely to receive a boundary subgraph
message with the correct root (because there is only
one). We attempt to remove this source of error by
tracing the path from each robot back to the root using
a combination of logged network data and ground-
truth positions, but when the network is changing very
rapidly, the probability that a robot has correct data for
the wrong reasons increases, and this is reflected in the
accuracy data.

In a practical application, the boundary subgraph is a
fragile structure, as removal of any robot or disruption
of a single communication link will disconnect the
subgraph. To mitigate this, we introduce routing helpers:
robots who are not classified as boundary robots, but
are near a boundary and participate in the routing of
boundary subgraph messages. We classify a robot as
a routing helper if it is within a fixed range d of a
boundary robot. We empirically determined that d =
produces good results. Figure 7 shows an experiment
where a boundary with an error has been patched by
a routing helper.

r7,s10,hd

3

45 s0 hi

122,50,h5 r116,50,h3

QOU,SU,M

%3,90,h3

%4,50}13

B 51 D'hb

160,50,h1
gho

r37,s10,h2

57 S10NTI8 S10NT @ o

Fig. 7. Boundary routing helpers add redundancy to the boundary
subgraph, which can increase the stability considerably. This illustra-
tion is from a log file from an experimental run. Boundary subgraph
routing helpers are drawn in purple, regular boundary robots in blue,
and interior robots in red. Note that the helpers have patched a break
in the boundary near the top of the configuration.

Results from the boundary subgraph experiments are
plotted in the blue line in Figure 9. The algorithm
accuracy decreases as the robot speed ratio increases.
There is a slight upward trend at the highest RSRs
tested, which should not be possible, as the network
is becoming less correlated with the robot’s physical
positions. In spite of our strict definition of accuracy,
the metric can still produce false positive results. At the
highest RSR tested, 0.640, each robot can travel 0.640
m between neighbor updates. In these experiments, the
communications radius was 1.0 m, and the workspace
is 2.43 m on a side, so two robots can’t get very far
from each other, reducing the effectiveness of this accu-
racy metric. A larger environment would reduce these
measurement errors. The dip at the RSR of 0.01 was
repeatable and is difficult to explain, but could possibly
be caused by electrical noise from the robot’s drive
motors interfering with the communications system.

C. Global Boundary Classification

Achieving a configuration with an interior boundary
was difficult with our experimental setup. The over-
head camera’s field of view was too small to position
enough robots in the workspace to construct a robust
configuration with two boundaries. Reducing the al-
lowable range for neighbors in software allowed more
robot into the field of view, but this does not change
the physical communication range of the system, so
the added network traffic increased the errors in the
neighbor position estimates. The few examples we were
able to build were fragile, as any connection between
the outer and inner boundaries would create a “short
circuit”, merging the two into a single boundary. Fig-
ure 8 shows such an example. Because of this difficulty,
we measure the accuracy of classifying the exterior
boundary, but not of the interior boundaries.

We define the physical accuracy of the global bound-
ary classification algorithm as the ratio of correctly

(a) Image of robots classifying an (b) Screen capture from the same
interior and exterior boundary. run with turning angle annota-
tions.

Fig. 8. a. Picture of robots running the global boundary classification
algorithm. The robots flashing their blue lights have classified their
boundary as exterior, and the green robots have classified theirs as
interior. Robots flashing red lights are not boundaries. The lights
are blinking with a sinusoidal pattern. In the picture, brightness
variations are evident, and the missing red robot in the upper left
has been caught with its lights down. (Which is very embarrassing
for a robot) b. An annotated data frame from the same experiment,
showing the robot’s boundary status and some of the turning angles.

=y

© o o o o
v oo N ® o
! .)

accuracy

o
N

© o ©°
- N w
!

\
A\

0 ‘ = ‘
0.001 0.01 0.1 1
RSR
==& |ocal boundary classification ==®==subgraph construction

=8 global boundary classification

Fig. 9. Accuracy results for boundary detection algorithms vs. RSR.
The black line is the accuracy of the cyclic-shape local boundary
classification algorithm, the blue line is for boundary subgraph
construction, and the red line is global boundary classification.

classified robots on the subgraph to the total number of
robots on the subgraph, using a centralized version of
the algorithm as ground truth classification. The accu-
racy of the global boundary classification is shown by
the red line in Figure 9. As with the other algorithms,
the accuracy of global boundary classification starts
high, but quickly declines as the RSR increases. The
errors from the subgraph accuracy metric also affect
this data, and produce the slight upward trend at high
RSRs in these results as well.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a distributed boundary detection
algorithm suitable for multi-robot systems with dy-
namic network topologies. A proof of the key property
of the algorithm was presented, and the performance
has been evaluated in extensive empirical tests. To
the best of our knowledge, this is the first boundary
detection technique designed specifically for mobile
robots. The cyclic-shape local boundary classification
algorithm uses local network geometry, and is more
accurate in rapidly changing network topologies than
algorithms that use global communication floods.

VII. ACKNOWLEDGMENTS

We thank Sandor Fekete, Sébastien Collette, Martin
Demaine, and Stefan Langerman for helpful initial dis-
cussions. McLurkin is supported by grants from Boeing
Corporation and DARPA’s ASSIST program (contract
number NBCH-C-05-0137).

REFERENCES

[1] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. On the shape of
a set of points in the plane. Information Theory, IEEE Transactions
on, 29(4):551-559, July 1983.

[2] Q. Fang, J. Gao, and L. J. Guibas. Locating and bypassing holes
in sensor networks. Mobile Networks and Applications, 11(2):187-
200, 2006.

[3] S. P. Fekete, M. Kaufmann, A. Kroeller, and K. Lehmann. A
new approach for boundary recognition in geometric sensor
networks. Arxiv preprint cs.DS/0508006, 2005.

[4] S. P. Fekete, A. Kroeller, D. Pfisterer, S. Fischer, and
C. Buschmann. Neighborhood-based topology recognition in
sensor networks. Algorithmic Aspects of Wireless Sensor Networks:
First International Workshop (ALGOSENSOR), pages 123-136,
2004.

[5] Robert Ghrist, David Lipsky, Sameera Poduri, and Gaurav S.
Sukhatme. Surrounding nodes in coordinate-free networks. In
Workshop on the Algorithmic Foundations of Robotics, 2006.

[6] A. Kroeller, S. P. Fekete, D. Pfisterer, and S. Fischer. Deter-
ministic boundary recognition and topology extraction for large
sensor networks. In Proceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm, pages 1000-1009, 2006.

[7] Xiang-Yang Li, Peng-Jun Wan, and Yu Wang. Power efficient
and sparse spanner for wireless ad hoc networks. In Computer
Communications and Networks, 2001. Proceedings. Tenth Interna-
tional Conference on, pages 564-567, 2001.

[8] S. Madden, J. Hellerstein, and W. Hong. TinyDB: In-Network
query processing in TinyOS. Intel Research, IRB-TR-02-014,
October, 2002.

[9] J. McLurkin. Measuring the accuracy of distributed algorithms
on Multi-Robot systems with dynamic network topologies. 9th
International Symposium on Distributed Autonomous Robotic Sys-
tems (DARS), 2008.

[10] James McLurkin. Stupid Robot Tricks: A Behavior-Based Distributed
Algorithm Library for Programming Swarms of Robots. S.M. thesis,
Massachusetts Institute of Technology, 2004.

[11] Sameera Poduri, Sundeep Pattem, Bhaskar Krishnamachari,
and Gaurav S. Sukhatme. A unifying framework for tunable
topology control in sensor networks. Technical report, 2005.

[12] Franco P. Preparata and Michael 1. Shamos. Computational
geometry: an introduction. Springer-Verlag New York, Inc., 1985.

[13] Yu Wang and Xiang-Yang Li. Distributed spanner with bounded
degree for wireless ad hoc networks. In Parallel and Distributed
Processing Symposium., Proceedings International, IPDPS 2002, Ab-
stracts and CD-ROM, pages 194-201, 2002.

[14] Yue Wang, Jie Gao, and Joseph S.B. Mitchell. Boundary recogni-
tion in sensor networks by topological methods. In Proceedings
of the 12th annual international conference on Mobile computing and
networking, pages 122-133, Los Angeles, CA, USA, 2006. ACM.

