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Abstract. Bidimensionality is a powerful tool for developing subexpo-
nential fixed-parameter algorithms for combinatorial optimization prob-
lems on graph families that exclude a minor. This paper completes the
theory of bidimensionality for graphs of bounded genus (which is a minor-
excluding family). Specifically we show that, for any problem whose so-
lution value does not increase under contractions and whose solution
value is large on a grid graph augmented by a bounded number of han-
dles, the treewidth of any bounded-genus graph is at most a constant
factor larger than the square root of the problem’s solution value on
that graph. Such bidimensional problems include vertex cover, feedback
vertex set, minimum maximal matching, dominating set, edge dominat-
ing set, r-dominating set, connected dominating set, planar set cover,
and diameter. This result has many algorithmic and combinatorial con-
sequences. On the algorithmic side, by showing that an augmented grid
is the prototype bounded-genus graph, we generalize and simplify many
existing algorithms for such problems in graph classes excluding a mi-
nor. On the combinatorial side, our result is a step toward a theory of
graph contractions analogous to the seminal theory of graph minors by
Robertson and Seymour.

1 Introduction

The recent theory of fixed-parameter algorithms and parameterized complex-
ity [13] has attracted much attention in its less than 10 years of existence. In
general the goal is to understand when NP-hard problems have algorithms that
are exponential only in a parameter k of the problem instead of the problem
size n. Fixed-parameter algorithms whose running time is polynomial for fixed
parameter values—or more precisely f(k) · nO(1) for some (superpolynomial)
function f(k)—make these problems efficiently solvable whenever the parameter
k is reasonably small.
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In the last three years, several researchers have obtained exponential
speedups in fixed-parameter algorithms for various problems on several classes
of graphs. While most previous fixed-parameter algorithms have a running time
of 2O(k)nO(1) or worse, the exponential speedups result in subexponential algo-

rithms with typical running times of 2O(
√

k)nO(1). For example, the first fixed-
parameter algorithm for finding a dominating set of size k in planar graphs [2]
has running time O(8kn); subsequently, a sequence of subexponential algorithms

and improvements have been obtained, starting with running time O(46
√

34kn)

[1], then O(227
√

kn) [16], and finally O(215.13
√

kk +n3 +k4) [14]. Other subexpo-
nential algorithms for other domination and covering problems on planar graphs
have also been obtained [1, 3, 5, 17, 15].

All subexponential fixed-parameter algorithms developed so far are based on
showing a “treewidth-parameter bound”: any graph whose optimal solution has
value k has treewidth at most some function f(k). In many cases, f(k) is sub-
linear in k, often O(

√
k). Combined with algorithms that are singly exponential

in treewidth and polynomial in problem size, such a bound immediately leads
to subexponential fixed-parameter algorithms.

A series of papers [7, 8, 6] introduce the notion of bidimensionality as a general
approach for obtaining treewidth-parameter bounds and therefore subexponen-
tial algorithms. This theory captures essentially all subexponential algorithms
obtained so far. Roughly speaking, a parameterized problem is bidimensional if
the parameter is large in a “grid-like graph” (linear in the number of vertices)
and either closed under contractions (contraction-bidimensional) or closed un-
der minors (minor-bidimensional). Examples of bidimensional problems include
vertex cover, feedback vertex set, minimum maximal matching, dominating set,
edge dominating set, r-dominating set, connected dominating set, planar set
cover, and diameter. Diameter is a simple computational problem, but its bidi-
mensionality has important consequences as it forms the basis of locally bounded
treewidth for minor-closed graph families [9].

Treewidth-parameter bounds have been established for all minor-
bidimensional problems in H-minor-free graphs for any fixed graph H [8, 6].
In this case, the notion of “grid-like graph” is precisely the regular r × r square
grid. However, contraction-bidimensional problems (such as dominating set) have
proved substantially harder. In particular, the largest class of graphs for which
a treewidth-parameter bound can be obtained is apex-minor-free graphs in-
stead of general H-minor-free graphs [6]. (“Apex-minor-free” means “H-minor-
free” where H is a graph in which the removal of one vertex leaves a planar
graph.) Such a treewidth-parameter bound has been obtained for all contraction-
bidimensional problems in apex-minor-free-graphs [6]. In this case, the notion
of “grid-like graph” is an r × r grid augmented to have, for each vertex, O(1)
edges from that vertex to nonboundary vertices. (Here O(1) depends on H .) Un-

fortunately, this treewidth-parameter bound is large: f(k) = (
√

k)O(
√

k). For a
subexponential algorithm, we essentially need f(k) = o(k). For apex-minor-free
graphs, such a bound is known only for the special cases of dominating set and
vertex cover [10, 8].



The biggest graph classes for which we know a sublinear (indeed, O(
√

k))
treewidth-parameter bound for many contraction-bidimensional problems are
single-crossing-minor-free graphs and bounded-genus graphs. (“Single-crossing-
minor-free” means “H-minor-free” where H can be drawn in the plane with
one crossing.) For single-crossing-minor-free graphs [12, 11] (in particular, pla-
nar graphs [7]), all contraction-bidimensional problems have a bound of f(k) =
O(
√

k). In this case, the notion of “grid-like graph” is an r× r grid partially tri-
angulated by additional edges that preserve planarity. For bounded-genus graphs
[8], a bound of f(k) = O(

√
k) has been shown, for the same notion of “grid-like

graphs”, but only for contraction-bidimensional problems with an additional
property called α-splittability : upon splitting a vertex, the parameter should
increase by at most α = O(1) (or decrease).

In this paper we complete the theory of bidimensionality for bounded-genus
graphs by establishing a sublinear (f(k) = O(

√
k)) treewidth-parameter bound

for general contraction-bidimensional problems in bounded-genus graphs. Our
notion of “grid-like graph” is somewhat broader: a partially triangulated r×r grid
(as above) with up to g additional edges (“handles”), where g is the genus of the
original graph. This form of contraction-bidimensionality is more general than
α-splittability,3 and thus we generalize the results for α-splittable contraction-
bidimensional problems from [8]. It is easy to construct a parameter that is
contraction-bidimensional but not α-splittable, although these parameters are
not “natural”. So far all “natural” contraction-bidimensional parameters we have
encountered are α-splittable, though we expect other interesting problems to
arise that violate α-splittability.

Our results show that a partially triangulated grid with g additional edges is
the prototype graph of genus g, as observed by Lovász [18]. At a high level, this
property means that, to solve an (algorithmic or combinatorial) problem on a
general graph of genus g, the “hardest” instance on which we should focus is the
prototype graph. This property generalizes the well-known result in graph theory
that the grid is the prototype planar graph. This also completes our theory of
constructing such prototypes for bidimensional problems.

Further algorithmic applications of our results follow from the graph-minor
theory of Robertson and Seymour (e.g., [19]) and its extensions [8, 10]. In par-
ticular, [23, 8] shows how to reduce many problems on general H-minor-free
graphs to subproblems on bounded-genus graphs. Essentially, the difference be-
tween bounded-genus graphs and H-minor-free graphs are “apices” and “vor-
tices”, which are usually not an algorithmic barrier. Applying our new theory
for bounded-genus graphs, we generalize the algorithmic extensions of [8, 10].
Indeed, we simplify the approaches of both [8] and [10], where it was necessary
to “split” bounded-genus graphs into essentially planar graphs because of a lack
of general understanding of bounded-genus graphs. Specifically, we remove the
necessity of Lemmas 7.4–7.8 in [10].

3 This statement is the contrapositive of the following property: if the parameter is k

for the partially triangulated grid with g additional edges, then by α-splitting the
additional edges, the parameter is at most k +αg on the partially triangulated grid.



Last but not least are the combinatorial aspects of our results. In a series of 23
papers (so far), Robertson and Seymour (e.g., [19]) developed the seminal theory
of graphs excluding a minor, which has had many algorithmic and combinatorial
applications. Our completed understanding of contraction-bidimensional param-
eters can be viewed as a step toward generalizing the theory of graph minors
to a theory of graph contractions. Specifically, we show that any graph of genus
g can be contracted to its core of a partially triangulated grid with at most g
additional edges; this result generalizes an analogous result from [23] when per-
mitting arbitrary minor operations (contractions and edge deletions). Avoiding
edge deletions in this sense is particularly important for algorithmic applica-
tions because many parameters are not closed under edge deletions, while many
parameters are closed under contraction.

2 Preliminaries

All the graphs in this paper are undirected without loops or multiple edges.
Given a graph G, we denote by V (G) the set of its vertices and by E(G) the
set of its edges. For any vertex v ∈ V (G) we denote by Ev the set of edges
incident to v. Moreover, we use the notation NG(v) (or simply N(v)) for the set
of neighbors of v in G (i.e., vertices adjacent to v).

Given an edge e = {x, y} of a graph G, the graph obtained from G by con-
tracting the edge e is the graph we get if we identify the vertices x and y and
remove all loops and duplicate edges. A graph H obtained by a sequence of edge-
contractions is said to be a contraction of G. A graph class C is a contraction-
closed class if any contraction of any graph in C is also a member of C. A
contraction-closed graph class C is H-contraction-free if H 6∈ C. Given any graph
class H, we say that a contraction-closed graph class C is H-contraction-free if
C is H-contraction-free for any H ∈ H.

2.1 Treewidth and Branchwidth

A branch decomposition of a graph (or a hypergraph) G is a pair (T, τ), where T
is a tree with vertices of degree 1 or 3 and τ is a bijection from the set of leaves of
T to E(G). The order of an edge e in T is the number of vertices v ∈ V (G) such
that there are leaves t1, t2 in T in different components of T (V (T ), E(T ) − e)
with τ(t1) and τ(t2) both containing v as an endpoint. The width of (T, τ) is
the maximum order over all edges of T , and the branchwidth of G, bw(G),
is the minimum width over all branch decompositions of G. (In case where
|E(G)| ≤ 1, we define the branch-width to be 0; if |E(G)| = 0, then G has
no branch decomposition; if |E(G)| = 1, then G has a branch decomposition
consisting of a tree with one vertex – the width of this branch decomposition
is considered to be 0). The treewidth tw(G) of a graph G is a notion related to
branchwidth. We need only the following relation:

Lemma 1 ([22]). For any connected graph G where |E(G)| ≥ 3, bw(G) ≤
tw(G) + 1 ≤ 3

2bw(G).



The main combinatorial result of this paper determines, for any k and g,
a family of graphs Hk,g such that any H-contraction-free graph G with genus
g will have branchwidth O(gk). To describe such a family, we will need some
definitions on graph embeddings.

2.2 Graph Embeddings

A surface Σ is a compact 2-manifold without boundary. We will always consider
connected surfaces. We denote by the S0 the sphere (x, y, z | x2 + y2 + z2 =
1). A line in Σ is subset homeomorphic to [0, 1]. An O-arc is a subset of Σ
homeomorphic to a circle. Let G be a graph 2-cell embedded in Σ. To simplify
notations we do not distinguish between a vertex of G and the point of Σ used in
the drawing to represent the vertex or between an edge and the line representing
it. We also consider G as the union of the points corresponding to its vertices
and edges. That way, a subgraph H of G can be seen as a graph H where H ⊆ G.
A face of G is a connected component of Σ − E(G) − V (G). (Every face is an
open set.) We use the notation V (G), E(G), and F (G) for the set of the vertices,
edges, and faces of G. For ∆ ⊆ Σ, ∆ is the closure of ∆. The boundary of ∆ is
bd(∆) = ∆ ∩Σ −∆ and the interior is int(∆) = ∆− bd(∆).

A subset of Σ meeting the drawing only in vertices of G is called G-normal. If
an O-arc is G-normal then we call it noose. The length of a noose is the number
of its vertices.

Representativity [21] is the measure of how dense is the embedding of a graph
in a surface. The representativity (or face-width) rep(G) of a graph G embedded
in surface Σ 6= S0 is the smallest length of a noncontractible noose in Σ. In other
words, rep(G) is the smallest number k such that Σ contains a noncontractible
(non null-homotopic in Σ) closed curve that intersects G in k points.

It is more convenient to work with Euler genus. The Euler genus eg(Σ) of
a surface Σ is equal to the non-orientable genus g̃(Σ) (or the crosscap number)
if Σ is a non-orientable surface. If Σ is an orientable surface, eg(Σ) is 2g(Σ),
where g(Σ) is the orientable genus of Σ. Given a graph G its Euler genus eg(G)
is the minimum eg(Σ) where Σ is a surface where G can be embedded.

2.3 Splitting Graphs and Surfaces

In this section we describe precisely how to cut along a noncontractible noose in
order to decrease the genus of the graph until we obtain a planar graph.

Let G be a graph and let v ∈ V (G). Also suppose we have a partition
Pv = (N1, N2) of the set of the neighbors of v. Define the splitting of G with
respect to v and Pv to be the graph obtained from G by (i) removing v and its
incident edges; (ii) introducing two new vertices v1, v2; and (iii) connecting vi

with the vertices in Ni, i = 1, 2. If H is the result of the consecutive application
of the above operation on some graph G then we say that H is a splitting of G.
If additionally in such a splitting process we do not split vertices that are results
of previous splittings then we say that H is a fair splitting of G.



The following lemma defines how to find a fair splitting for a given noncon-
tractible noose. It will serve as a link between Lemma 8 and Lemma 10 in the
proof of the main result of this paper.

Lemma 2. Let G be a connected graph 2-cell embedded in a nonplanar surface
Σ, and let N be a noncontractible noose of Σ. Then there is a fair splitting G′

of G affecting the set S = (v1, . . . , vρ) of the vertices of G met by N , such that
(i) G′ has at most two connected components, (ii) each connected component of
G′ can be 2-cell embedded in a surface with Euler genus strictly smaller than
the Euler genus of Σ, and (iii) there are two faces f1 and f2, each in the 2-cell
embedding of a connected component of G′ (and the connected components are
different for the two faces if G′ is disconnected), such that the boundary of fi,
for i ∈ {1, 2}, contains Si = (vi

1, . . . , v
i
ρ) where v1

j and v2
j are the vertices created

after the splitting of the vertex vj , for j = 1, . . . , ρ.

3 Incomplete Embeddings and Their Properties

In this section we give a series of definitions and results that support the proof
of the main theorem of the next section. In particular, we will need special
embeddings of graphs that are incomplete, i.e., only some of the edges and
vertices of the graph are embedded in a surface. Moreover, we will extend the
definition of a contraction so that it will also consider contractions of faces for
the part of the graph that is embedded.

Let Σ be a surface (orientable or not). Given a graph G, a vertex set V ⊆
V (G) and an edge set E ⊆ E(G) such that ∪v∈V Ev ⊆ E, we say that G is (V, E)-
embeddable in Σ if the graph G− obtained by G if we remove from it all the
vertices in V and all the edges in E, i.e., the graph G− = (V (G)−V, E(G)−E)
has a 2-cell embedding in Σ. We call the graph G− ground of G and we call the
edges and vertices of G− landed. In contrary, we call the vertices in V and E
flying. Notice that the flying edges are partitioned into three categories: those
that have both endpoints in V (G) − V (we call them bridges), those with one
endpoint in V (G) − V and one endpoint in V (we call them pillars), and those
with both endpoints in V (we call them clouds). From now on, whenever we refer
to a graph (V, E)-embeddable in Σ we will accompany it with the corresponding
2-cell embedding of G− in Σ.

The set of atoms of G with respect to some (V, E)-embedding of G in Σ is
the set A(G) = V (G)∪E(G)∪ F (G) where F (G) is the set of faces of the 2-cell
embedding of G− in Σ. Notice that a flying atom can only be a vertex or an
edge. In this paper, we will consider the faces as open sets whose borders are
cyclic sequences of edges and vertices.

3.1 Contraction Mappings

A strengthening of a graph being a contraction of another graph is for there to
be a “contraction mapping” which preserves some aspects of the embedding in a
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Fig. 1. An example of a contraction of a graph (V, E)-embeddable in S0. The con-
traction is shown in a three-step sequence: contracting the edges of the face {d, e, f},
then the edge {a, g}, and then edge {z, h}. A contraction mapping from G to H is
defined as follows: φ(a)=φ(g)=φ(h)=φ({a, g})=φ({g, h})=x, φ(b)=b, φ(c)=c, φ(d)=
φ(f)=φ(e)=φ({f, d})=φ({d, e})=φ({e, f})=φ({d, e, f})=y, φ({a, b})=φ({g, b})=
{x, b}, φ({a, c})=φ({g, c})={x, c}, φ({b, c})={b, c}, φ({b, d})={b, y}, φ(c, e)={c, y},
φ({a, b, c})={x, b, c}, φ({b, d, e, c})={b, c, y}, φ({h, d})=φ({h, e})=φ({h, f})={x, y},
φ({a, b, d, f, e, c})={x, b, y, c}.

surface during the contractions. See Fig. 1 for an example. Given two graphs G
and H that are (VG, EG)- and (VH , EH)-embeddable in Σ and Σ′, respectively,
we say that φ : A(G)→ A(H) is a contraction mapping from G to H with respect
to their corresponding embeddings if the following conditions are satisfied:

1. For any v ∈ V (G), φ(v) ∈ V (H).
2. For any e ∈ E(G), φ(e) ∈ E(H) ∪ V (H).
3. For any f ∈ F (G), φ(f) ∈ F (H) ∪ E(H) ∪ V (H).
4. For any v ∈ V (H), G[φ−1(v)] is a connected subgraph of G.
5. {φ−1(v) | v ∈ V (H)} is a partition of V (G).
6. If φ({x, y}) = v ∈ V (H) then φ(x) = φ(y) = v.
7. If φ({x, y}) = e ∈ E(H) then {φ(x), φ(y)} ∈ E(H).
8. If f ∈ F (G) and φ(f) = v ∈ V (G) and f = (x0, . . . , xr−1) then

φ({xi, xi+1} = φ(xi) = v for any i = 0, . . . , r − 1 (where indices are taken
modulo r).

9. If f ∈ F (G) and if φ(f) = e (an edge of H) then there are two edges of f
contained in φ−1(e).

10. If f ∈ F (G) and if φ(f) = g (a face of H) then each edge of g is landed and
is the image of some edge in f .

Notice that, from Conditions 1, 2, and 3, the preimages of the faces of H are
faces of G. The following lemma is easy.

Lemma 3. If there exists some contraction mapping from a graph G to a graph
H with respect to some embedding of G and H, then H is a contraction of G.

3.2 Properties of Contraction Mappings

It is important that the two notions (contraction and existence of a contraction
mapping) are identical in the case where G and H have no flying atoms, i.e.,
VG = VH = EG = EH = ∅. We choose to work with contraction mappings
instead of simple contractions because they include stronger information enough
to build the induction argument of Lemma 10.



Fig. 2. A (7 × 7)-grid, a partially triangulated (7 × 7)-grid, and a (7, 9)-gridoid (the
flying edges and vertices are the distinguished ones).

Lemma 4. Let G be a graph (V, E)-embeddable on some surface Σ and let H
be the graph occurring from G after contracting edges in E(G−). Then G[V ] =
H [V ], H is also (V, E)-embeddable in Σ, and there exists a contraction mapping
φ from G to H with respect to their corresponding embeddings.

We omit the proof of this and other lemmas from this abstract.

3.3 Gridoids

A partially triangulated (r × r)-grid is any graph that contains a (r × r)-grid as
a subgraph and is a subgraph of some triangulation of the same (r × r)-grid.

We call a graph G a (r, k)-gridoid if it is (V, E)-embeddable in S0 for some
pair V, E where |E| ≤ k, E(G[V ]) = ∅ (i.e., G does not have clouds), and so that
G− is a partial triangulated (r′ × r′)-grid embedded on the S0 for some r′ ≥ r.
For an example of a (7, 9)-gridoid and its construction; see Fig. 2.

4 Main Result

In this section we will prove that if a graph G has branchwidth more that
4k(eg(G) + 1) then G will contain as a contraction some (k− 12eg(G), eg(G))-
gridoid where k ≥ 12eg(G).

4.1 Transformations of Gridoids

Lemma 5. Let G be a (r, k)-gridoid (∅, E)-embeddable in S0 and let v ∈ V (G−).
Then there exists some contraction mapping φ from G to some (r − 4, k + 1)-
gridoid ({v}, E ∪ {{v, y}})-embeddable in S0 such that φ(v) = v.

Fig. 3 illustrates the contractions in one case, where v has degree 4.

Lemma 6. Let G be a (r, k)-gridoid (∅, E)-embeddable in S0 and let e be some of
its flying edges. Then there exists some (r−4, k)-gridoid H (∅, E ′)-embeddable in
S0 for some E′ and a contraction mapping φ of G to H such that φ(e) ∈ V (H).

Lemma 7. Let G be a (r, k)-gridoid (∅, E)-embeddable in S0 and let a be some
of its atoms. Then there exists some (r − 4, k)-gridoid (∅, E)-embeddable in S0

and a contraction mapping φ from G to H with respect to their corresponding
embeddings such that φ(a) ∈ V (H).



Fig. 3. An example of the first case in the proof of Lemma 5.

4.2 Excluding Gridoids as Contractions

Lemma 8. Let G be a graph (∅, ∅)-embeddable on some surface Σ. Let also
H be a (r, k)-gridoid (∅, E)-embeddable on the sphere and assume that φ is a
contraction mapping from G to H with respect to their corresponding embeddings.

Let now {vi
1, . . . , v

i
ρ}, i = 1, 2 be subsets of the vertices of two faces fi, i = 1, 2

of the embedding of G where f1 ∩ f2 = ∅ (we assume that the orderings of the
indices in each subset respect the cyclic orderings of the vertices in fi, i = 1, 2).
Let G′ be the graph obtained if we identify in G the vertex v1

i with the vertex v2
i .

Then, the following hold:

a. G′ has some 2-cell embedding on a surface of bigger Euler genus.
b. There exist some (r− 12, k +1)-gridoid H, (∅, E ∪{{e}})-embeddable on the

sphere such that there exists some contraction mapping from G′ to H with
respect their corresponding embeddings.

Proof. a. Let Σ be the surface where G is embedded. We define a surface Σ− from
Σ by removing the two “patches” defined by the (internal) points of the faces f1 and
f2. Notice that G is still embeddable on Σ− and that Σ− is a surface with border
whose connected components are the borders B1, B2 of the faces f1 and f2. We now
construct a new surface from Σ− by identifying the borders B1 and B2 in a way that
v1

i is identified with v2

i . Notice that the embedding that follows is a 2-cell embedding
and that the new surface has bigger Euler genus.

b. From conditions 1, 2, and 3, φ(f1) is either a vertex or an edge or a face of H.
We apply Lemma 7 to construct a contraction mapping σ1 from H to some (r − 4, k)-
gridoid H1 where σ1(φ(f1)) ∈ V (H1). Notice again that σ1(φ(f2)) is either a vertex or
an edge or a face of H1. We again use Lemma 7 to construct a contraction mapping
σ2 from H1 to some (r − 8, k)-gridoid H2 where σ2(σ1(φ(fi))) = vi ∈ V (H2), i = 1, 2.
We now apply Lemma 5 for v1 and construct some contraction mapping σ3 from H2

to some (r − 12, k + 1)-gridoid H3, ({v1}, E ∪ {{v1, y}})-embeddable in S0 such that
σ3(v1) = v1. Summing up we have that φ′ = φ◦σ1 ◦σ2 ◦σ3 is a map from G to H3 with
respect to the (∅, ∅)-embedding of G on Σ and the ({v1}, E∪{{v1, y}})-embeddable of
H3 in S0. Moreover, we have that φ′(f1) = v1 and φ′(f2) = v2 ∈ V (H3) (to facilitate
the notation we assume that σ3(v2) = v2).

Notice now that if v is the result of the identification in H3 of the vertex v1 with
the vertex v2 we take a new graph H (∅, E ∪ {{v, y}})-embeddable in S0. Let A′ be all
the atoms of G that are not included in the faces f1 and f2. Notice that these atoms
are not harmed while constructing G′ from G and we set µ(a) = φ′(a) for each a ∈ A′.
Finally, for each atom a ∈ A(G′)−A we set µ(a) = v. It now is easy to check that µ is
a contraction mapping from G′ to H with respect to their corresponding embeddings.
As H is a (r − 12, k + 1)-gridoid we are done. �
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Fig. 4. An example of the transformations in the proof of Lemma 10.

The following is one of the main results in [8].

Theorem 1. Let G be a graph 2-cell embedded in a non-planar surface Σ of
representativity at least θ. Then one can contract edges in G to obtain partially
triangulated (θ/4× θ/4)-grid.

We also need the following easy lemma.

Lemma 9. Let G be a graph and let H be the graph occurring from G after
splitting some vertex v ∈ V (G). Then bw(H) ≤ bw(G) + 1.

We are now ready to prove the central result of this section.

Lemma 10. Let G be a graph (∅, ∅)-embeddable on a surface Σ of Euler genus g
and assume that bw(G) ≥ 4(r−12g)(g+1). Then there exists some (r−12g, g)-
gridoid H, (∅, E)-embeddable in S0 such that there exists some contraction map-
ping from G to H with respect to their corresponding embeddings.

Proof. First, if the graph G is disconnected, we discard all but one connected compo-
nent C such that bw(C) = bw(G).

We use induction on g. Clearly, if g = 0, G is a planar graph and after applying
Lemma 3, the result follows from the planar exclusion theorem of RS. (The induction
base use strongly the fact that for conventional embeddings the contraction relation is
identical to our mapping.)

Suppose now that g ≥ 1 and the theorem holds for any graph embeddable in a
surface with Euler genus less than g. Refer to Fig. 4. If the representativity of G is at
least 4(r − 12g), then by Theorem 1 we can contract edges in G to obtain a partially
triangulated ((r − 12g) × (r − 12g))-grid (with no additional edges), and we are done.
Otherwise, the representativity of G is less than 4(r − 12g). In this case, the smallest
noncontractible noose has vertex set S of size less than 4(r−12g). Let G′ be a splitting
of G with respect to S as in Lemma 2. Recall that G′ is now (∅, ∅)-embeddable on a
surface of Euler genus g′ ≤ g − 1.



By Lemma 9, the branchwidth of G′ is at least the branchwidth of G minus |S|. As
|S| ≤ 4(r−12g) we have that bw(G′) ≥ 4(r−12g)(g +1)−4(r−12g) = 4(r−12g)g ≥
4(r − 12g)(g′ + 1). By the induction hypothesis there exist some (r − 12g′, g′)-gridoid
H ′, (∅, E)-embeddable in S0 such that there exists some contraction mapping from G′

to H with respect to their corresponding embeddings. From Lemma 8, there exist some
(r − 12g′ − 12, g′ + 1)-gridoid H, (∅, E ∪ {{e}})-embeddable on the sphere such that
there exists some contraction mapping from G to H with respect to their corresponding
embeddings. As r − 12g′ − 12 ≥ r − 12g and g′ + 1 ≤ g, we are done. �

And we have the conclusion of this section.

Theorem 2. If a graph G excludes all (k − 12eg(G), eg(G))-gridoids as con-
tractions, for some k ≥ 12eg(G), then G has branchwidth at most 4k(eg(G)+1).

By Lemma 1 we can obtain a treewidth-parameter bound as desired.

5 Algorithmic Consequences

Define the parameter corresponding to an optimization problem to be the func-
tion mapping graphs to the solution value of the optimization problem. In par-
ticular, deciding a parameter corresponds to computing whether the solution
value is at most a specified value k. A parameter is contraction-bidimensional if
(1) its value does not increase under taking of contractions and (2) its value on
a (r, O(1))-gridoid is Ω(r2).4

Theorem 3. Consider a contraction-bidimensional parameter P such that,
given a tree decomposition of width at most w for a graph G, the parameter
can be decided in h(w) · nO(1) time. Then we can decide parameter P on a

bounded-genus graph G in h(O(
√

k)) · nO(1) + 2O(
√

k)n3+ε time.

Corollary 1. Vertex cover, minimum maximal matching, dominating set, edge
dominating set, r-dominating set (for fixed r), and clique-transversal set can be

solved on bounded-genus graphs in 2O(
√

k)n3+ε time, where k is the size of the
optimal solution. Feedback vertex set and connected dominating set can be solved

on bounded-genus graphs in 2O(
√

k log k)n3+ε time.
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