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Common Developments of Several Different Orthogonal Boxes
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Abstract

We investigate the problem of finding common develop-
ments that fold to plural incongruent orthogonal boxes.
It was shown that there are infinitely many orthogonal
polygons that fold to two incongruent orthogonal boxes
in 2008. In this paper, we first show that there is an or-
thogonal polygon that fold to three boxes of size 1×1×5,
1 × 2 × 3, and 0 × 1 × 11. Although we have to admit
a box to have volume 0, this solves the open problem
mentioned in literature. Moreover, once we admit that
a box can be of volume 0, a long rectangular strip can
be folded to an arbitrary number of boxes of volume 0.
We next consider for finding common non-orthogonal
developments that fold to plural incongruent orthogo-
nal boxes. In literature, only orthogonal folding lines or
with 45 degree lines were considered. In this paper, we
show some polygons that can fold to two incongruent
orthogonal boxes in more general directions.

1 Introduction

Since Lubiw and O’Rourke posed the problem in 1996
[4], polygons that can fold to a (convex) polyhedron
have been investigated. In a book about geometric fold-
ing algorithms by Demaine and O’Rourke in 2007, many
results about such polygons are given [3, Chapter 25].
Such polygons have an application in the form of toys
and puzzles. For example, the puzzle “cubigami” (Fig-
ure 1) is developed by Miller and Knuth, and it is a
common development of all tetracubes except one (of
surface area 16). One of the many interesting problems
in this area is that whether there exists a polygon that
folds to plural incongruent orthogonal boxes. Biedl et
al. answered “yes” by finding two polygons that fold to
two incongruent orthogonal boxes [2] (see also [3, Figure
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Figure 1: Cubigami.

25.53]). Later, Mitani and Uehara constructed infinite
families of orthogonal polygons that fold to two incon-
gruent orthogonal boxes [5]. However, it is open that
whether there is a polygon that can fold to three or
more boxes.

First, we give an affirmative answer to this open prob-
lem, at least in some weak sense. That is, we give a
polygon that can fold to three incongruent orthogonal
boxes of size 0 × 1 × 11, 1 × 1 × 5, and 1 × 2 × 3. Note
that one of the boxes is degenerate, as it has a side of
length 0. Such a box is sometimes called a “doubly cov-
ered rectangle” (e.g., [1]). For boxes of positive volume,
the existence of three boxes with a common unfolding
is still open.

The polygon is found as a side effect of the enumera-
tion of common developments of boxes of size 1× 1× 5
and 1 × 2 × 3. In the previous result by Mitani and
Uehara [5], they randomly generated common develop-
ments of these boxes, and they estimated the number of
common developments of these boxes at around 7000.
However, they overestimated it since their algorithm did
not exclude some symmetric cases. We enumerate all
common developments of boxes of size 1 × 1 × 5 and
1 × 2 × 3, which can be found on a Web page1. As
a result, the number of common developments of these
boxes is 2263. Among 2263 developments, the devel-
opment in Figure 2 is the only one that can fold to
0 × 1 × 11.

Once we admit that a box can be a doubly covered

1http://www.jaist.ac.jp/~uehara/etc/origami/net/

all-22.html
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(c) 0x1x11

(a) 1x1x5

(b) 1x2x3

Figure 2: A common development of three different
boxes. (a) Folding lines to make a 1 × 1 × 5 box. (b)
Folding lines to make a 1 × 2 × 3 box. (c) Folding lines
to make a 0 × 1 × 11 box.

rectangle, we have a new view of this problem since a
doubly covered rectangle seems to be easier to construct
than a box of positive volume. Indeed, we show that
a sufficient long rectangular strip can be folded to an
arbitrary number of doubly covered rectangles.

Next we turn to another approach to this topic. In
an early draft by Biedl et al. [2], they showed a common
development of two boxes of size 1×2×4 and
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2 (Figure 3). In the development, two folding ways to
two boxes are not orthogonal. That is, the set of folding
lines of a box intersect the other set of folding lines
by 45 degrees. This development motivates us to the
following problem: Is there any common development of
two incongruent boxes such that two sets of folding lines
intersect by an angle different from 45 or 90 degrees? We
give an affirmative answer to this question.

(a) 1x2x4 box (b)   2x  2x3  2 box

Figure 3: A common development of two different boxes
by Biedl et al. [2]. (a) Folding lines to make a 1× 2× 4
box. (b) Folding lines to make a

√
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2 × 3

√
2 box.

2 Common orthogonal developments of boxes of
size 1 × 1 × 5 and 1 × 2 × 3

For a positive integer S, we denote by P (S) the set
of three integers a, b, c with 0 < a ≤ b ≤ c and
ab+bc+ca = S, i.e., P (S) = {(a, b, c) | ab+bc+ca = S}.
When we only consider the case that folding lines are
on the edges of unit squares, it is necessary to sat-
isfy |P (S)| ≥ k to have a polygon of size 2S that can
fold to k incongruent orthogonal boxes of positive vol-
umes. The smallest S with P (S) ≥ 2 is 11 and we have
P (11) = {(1, 1, 5), (1, 2, 3)}. In this section, we con-
centrate at this special case. That is, we consider the
developments that consist of 22 unit squares. Mitani
and Uehara developed two randomized algorithms that
try to find common developments of two different boxes
[5]. Both algorithms essentially generate common de-
velopments randomly. Using the faster algorithm, they
also estimated the number of common developments of
the boxes of size 1× 1× 5 and 1× 2× 3 at around 7000.
However, they overestimated it since their algorithm did
not exclude some symmetric cases.

We develop another algorithm that tries all common
developments of these boxes. For a common develop-
ment P of the boxes, let P ′ be a connected subset of
P . That is, P ′ be a set of unit squares and it pro-
duces a connected simple polygon. Then, clearly, we
can stick P ′ on these two boxes without overlap. We
use the term common partial development of the boxes
to denote such a smaller polygon. For example, one unit
square is the common partial development of the boxes
of surface area 1, and a rectangle of size 1 × 2 is the
common development of them of surface area 2, and so
on. Let Li be the set of common partial developments
of the boxes of surface area i. Then |L1| = |L2| = 1, and
|L3| = 2, and one of our main results is |L22| = 2263.
The outline of the first algorithm is as follows:
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i 1 2 3 4 5 6 7 8 9
Li 1 1 2 5 12 35 108 368 1283

i-ominos 1 1 2 5 12 35 108 369 1285
i 10 11 12 13 14

Li 4600 16388 57439 193383 604269
i-ominos 4655 17073 63600 238591 901971

i 15 16 17 18
Li 1632811 3469043 5182945 4917908

i-ominos 3426576 13079255 50107909 192622052
i 19 20 21 22

Li 2776413 882062 133037 2263

Table 1: The number of common partial developments
of two boxes 1 × 1 × 5 and 1 × 2 × 3 of surface area i
with 1 ≤ i ≤ 22. (For 1 ≤ i ≤ 18, we give the number
of i-ominos, for comparison.)

Input : None;
Output: Polygons that consist of 22 squares and

fold to boxes of size 1 × 1 × 5 and
1 × 2 × 3;

let L1 be a set of one unit square;1

for i = 2, 3, 4, . . . , 22 do2

Li := ∅;3

for each common partial development P in4

Li−1 do
for every polygon P+ of size i obtained by5

attaching a unit square to P do
check if P+ is a common partial6

development, and add it into Li if it is a
new one;

end7

end8

end9

output L22;10

We implemented the algorithm and obtain all com-
mon developments in L22

2. One can find all of them
at http://www.jaist.ac.jp/~uehara/etc/origami/
net/all-22.html. All the values of Li with 1 ≤ i ≤ 22
are shown in Table 1. The first main theorem is as fol-
lows:

Theorem 1 The number of the common developments
of boxes of size 1 × 1 × 5 and 1 × 2 × 3 into unions of
unit squares is 2263.

3 Boxes including doubly-covered rectangles

3.1 Three boxes of surface area 22

Among the 2263 developments in Theorem 1, there is
only one development that gives an affirmative answer

2The first program with a naive implementation was too slow.
We tuned it with many technical tricks, and now it outputs L22

in around 10 hours.

Figure 4: Tiling by the common development of three
different boxes.

to the open problem in [5]:

Theorem 2 There is a common development of three
boxes of size 1×1×5, 1×2×3, and 0×1×11. Moreover,
the development is a polygon such that (1) it can fold to
three boxes by orthogonal folding lines, and (2) it forms
a tiling.

Proof. The development is depicted in Figure 2. It is
easy to see that all folding lines in Figure 2(a)-(c) are
orthogonal. The tiling is given in Figure 4. �

In Theorem 2(1), one may complain that some folding
lines are not on the edges of unit squares. Then, split
each unit square into four unit squares. On the refined
development for three boxes of surface area 88, we again
have the claims in Theorem 2 for the boxes of size 2 ×
2 × 10, 2 × 4 × 6, and 0 × 2 × 22, and all folding lines
are on the edges of unit squares.

3.2 A rectangular strip can be folded to an arbitrary
number of doubly-covered rectangles

Theorem 3 A rectangular L × 1 paper (L > 1) can be
folded into at least

2 + bLc

different doubly-covered rectangles in at least

1 +
⌊

L
4

⌋
+

⌈
L
4

⌉
+ bLc

different ways.

Proof. Figure 5a shows how a long ribbon of width
1 can be wrapped by “twisting” it around a rectangu-
lar strip. Here we show that we can obtain bLc differ-
ent doubly covered rectangles based on this way. First,
we consider the points p0, q0, q1, a, b, c, in Figure 5b).
(Without loss of generality, we assume that q0b ≥ q1a.)
Let p1 be the center of bc, and hi is the point such that
pihi is a perpendicular of ab for i = 0, 1. We first ob-
serve that p0a and bc are in parallel, the angles ap0b
and p0bc are right angles, and p0 is the center of q0q1.
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Figure 5: Another way of folding a ribbon to a doubly-
covered rectangle

Thus, careful analysis tells us that 4q0p0b, 4h0p0b, and
4h1p1a are congruent. By symmetry, 4q1p0a, 4h0p0a,
and 4h1p1b are also congruent. Hence the points ap0bp1

form a rectangle. Therefore, the folding lines in Fig-
ure 5a) can be obtained by filling the rectangles like
Figure 5b). Let k and w be the number of the rect-
angles and the length of the diagonal of the rectangle,
respectively. Then, to obtain a feasible folding lines, we
need k ≥ 1, kw = L, and w = ab ≥ 1. Therefore, for
each k = 1, 2, . . . , bLc, we can obtain a doubly covered
rectangle of size p0b and kp0a.

In addition, we have the two ways of folding the rib-
bon in half along the long axis (leading to a L× 1

2 rect-
angle) or along the short axis (leading to a (L/2) × 1
rectangle).

1

d

a)

b)

d)

c)

α

11

A

B C

Figure 6: Folding a ribbon to a doubly-covered rect-
angle. For better visibility, one side of the ribbon is
shaded.

We next turn to another idea of folding. Figure 6a
shows how a long ribbon of width 1 can be wrapped by
“winding” it around a rectangular strip in such a way
that the space between successive windings is equal to
the width of the ribbon. By bending it backward at the
end, as in Figure 6b–c, one obtains a doubly covered

strip. Figure 6d shows the geometric construction: start
with a right triangle ABC with the long side d = BC =
cot α + tanα on a long edge of the ribbon and the right
angle A on the opposite edge. When the length L of the
ribbon is an even multiple of d (L = 2n · d), the folding
will close into a doubly covered rectangle.

Figure 7: A different way of folding a ribbon to a
doubly-covered rectangle

The minimum possible value of d is 2. d changes
continuously with α, and any value of d larger than
2 can be obtained. So n, the number of repetitions,
can take all values between 1 and nmax := bL/4c.
For each n in this range, one can form a right tri-
angle ABC with hypotenuse d = L/(2n) and legs
1
2 (
√

d2 + 2d ±
√

d2 − 2d). One can use the longer leg
as the wrapping direction, as in Figure 6, or the shorter
leg, as in Figure 7. This leads to doubly covered rect-
angles of dimensions

(
n · 1

2 (
√

d2 + 2d +
√

d2 − 2d)
)
×

1
2 (
√

d2 + 2d−
√

d2 − 2d) and 1
2 (
√

d2 + 2d+
√

d2 − 2d)×(
n · 1

2 (
√

d2 + 2d −
√

d2 − 2d)
)
.

For d = 2, the two possibilities coincide. So the total
number of possibilities is bL/4c+dL/4e−1. This equals
2bL/4c except when L is a multiple of 4. In this case,
we have to subtract 1 to compensate the overcounting
for the case d = 2.

But we can see that each doubly covered rectangle
by winding can be also obtained by twisting. Hence we
obtain 2 + bLc different doubly covered rectangles in
total. �

4 Non-orthogonal polygons that fold to two incon-
gruent boxes

Figure 8 shows a common unfolding of a 4 × 4 × 8 box
and a

√
10 × 2

√
10 × 2

√
10 box. It was obtained by

solving an integer programming problem. The integer
programming model formulates the problem of selecting
a subset of 160 unit squares of the axis-aligned square
grid underlying Figure 8, subject to the following con-
straints.

1. They should form a connected set in the plane.

2. When folded on the 4 × 4 × 8 box, every square of
the surface is covered exactly once. (There are no
overlaps.)

3. When folded on the
√

10×2
√

10×2
√

10 box, every
part of the surface is covered exactly once. Note
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that the surface of the
√

10×2
√

10×2
√

10 box can
be partitioned into 160 unit squares, which are how-
ever not aligned with the edges of the box. These
squares result from folding the standard grid onto
the box surface as shown in Figure 8. Some of these
squares bend across an edge of the box.

The algorithm of Section 2 can be viewed as a sys-
tematic incremental way of finding all solutions to this
problem.

The dimensions of the boxes were chosen as follows:
A 1 × 1 × 2 box has surface area 10, and a 1 × 2 × 2
box has surface area 16. By scaling the first box with
the factor 4 and the second box with the factor

√
10, we

get two boxes with equal surface areas. A square lattice
of side length

√
10 can be embedded on the standard

integer grid by choosing the vector
(
1
3

)
as a generating

“unit vector”.
The alignment of the two box unfoldings, with the

symmetric layout of two “central” faces sharing two ver-
tices, was fixed and was chosen by hand.

Figure 9 has been made from Figure 8 in an attempt
to conceal the obvious folding directions. Further puz-
zles along these lines (for printing and cutting out) are
given on a web page3.

5 Concluding remarks

It is an open question if a polygon exists that can fold
to three or more orthogonal boxes such that all of them
have positive volume. We are exploring the possibil-
ity to find such examples by our integer programming
model of Section 4. If we take the approach in Sec-
tion 2, the smallest S with |P (S)| ≥ 3 is given by
P (23) = {(1, 1, 11), (1, 2, 7), (1, 3, 5)}. Thus we need to
construct polygons of surface area 46, which is much
bigger than 22.

In Section 3.2, we use three different ideas for folding
a rectangular ribbon R to a doubly-covered rectangle.
It would be interesting to classify all ways of folding
ribbons into doubly-covered rectangles. In fact, we can
generalize the ideas of “twisting” and “winding”; see
Figures 10 and 11. These folding ways correspond to a
kind of the billiard ball problem on a rectangular table.
Hence, to specify all the folding ways in the figures, we
have to find all pairs of relatively prime integers p and
q with pq = bcLc for c = 1, 1/4. The number of such
pairs seems to be related to the maximal value of prime
divisors of numbers in reduced residue system for bcLc
4.

3http://www.inf.fu-berlin.de/~rote/Software/

folding-puzzles/
4http://oeis.org/A051265

Figure 8: A common development of two different
boxes. The set of folding lines for one box intersect
the other set by neither 90 nor 45 degrees, but at
arctan 3 ≈ 72◦.
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Figure 10: A generalization of twist folding to a doubly
covered rectangle.

Figure 11: A generalization of wind folding to a doubly
covered rectangle.


