
Cache-Oblivious Priority Queue and

Graph Algorithm Applications

Lars Arge
∗

Dept. of Computer Science

Duke University

large@cs.duke.edu

Michael A. Bender
†

Dept. of Computer Science

SUNY Stony Brook

bender@cs.sunysb.edu

Erik D. Demaine
‡

Lab. for Computer Science

MIT

edemaine@mit.edu

Bryan Holland-Minkley
‡

Dept. of Computer Science

Duke University

bhm@cs.duke.edu

J. Ian Munro
§

Dept. of Computer Science

University of Waterloo

imunro@uwaterloo.ca

ABSTRACT

In this paper we develop an optimal cache-oblivious prior-
ity queue data structure, supporting insertion, deletion, and
deletemin operations in O(1

B
logM/B

N
B
) amortized memory

transfers, where M and B are the memory and block trans-
fer sizes of any two consecutive levels of a multilevel mem-
ory hierarchy. In a cache-oblivious data structure, M and
B are not used in the description of the structure. The
bounds match the bounds of several previously developed
external-memory (cache-aware) priority queue data struc-
tures, which all rely crucially on knowledge about M and
B. Priority queues are a critical component in many of the
best known external-memory graph algorithms, and using
our cache-oblivious priority queue we develop several cache-
oblivious graph algorithms.

∗
Supported in part by the National Science Foundation through

ESS grant EIA–9870734, RI grant EIA–9972879, CAREER grant
CCR–9984099, and ITR grant EIA–0112849.
†Supported in part by the National Science Foundation through
ITR grant EIA–0112849 and by HRL Laboratories and Sandia
National Laboratories.
‡
Supported in part by the National Science Foundation through

ITR grant EIA–0112849.
§
Supported in part by the Natural Science and Engineering Coun-

cil through grant RGPIN 8237-97 and the Canada Research Chair
in Algorithm Design.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
STOC’02, May 19-21, 2002, Montreal, Quebec, Canada.
Copyright 2002 ACM 1-58113-495-9/02/0005 ...$5.00.

1. INTRODUCTION
As the memory systems of modern computers become

more complex, it is increasingly important to design algo-
rithms that are sensitive to the structure of memory. One of
the essential features of modern memory systems is that they
are made up of a hierarchy of several levels of cache, main
memory, and disk. While traditional theoretical computa-
tional models have assumed a “flat” memory with uniform
access time, the access times of different levels of memory
can vary by several orders of magnitude in current machines.
For example, level-two cache is often around 100 times faster
than main memory, while main memory is around 1,000,000
times faster than disks. In order to amortize the large access
time of memory levels far away from the processor, memory
systems often transfer data between memory levels in large
blocks. Thus it is becoming increasingly important to obtain
high data locality in memory access patterns.
The standard approach to obtaining good locality is to

design algorithms parameterized by several aspects of the
memory hierarchy, such as the size of each memory level, and
the speed and block sizes of memory transfers between levels.
Unfortunately, this parameterization often leads to complex
algorithms that are tuned to particular architectures. As a
result these algorithms are inflexible and not portable. To
avoid the complexity of having too many parameters, a lot of
research has been done on simpler two-level memory models.
Recently, a promising new line of research has aimed at de-
veloping memory-hierarchy-sensitive algorithms that avoid
any memory-specific parameterization whatsoever. It has
been shown that if such a so-called cache-oblivious algo-
rithm works optimally on a two-level hierarchy then it works
optimally on all levels of a multilevel memory hierarchy—
cache-oblivious algorithms automatically tune to arbitrary
memory architectures. It seems surprising that data local-
ity can be achieved without using the parameters describing
the structure of the memory hierarchy, but nevertheless it
is possible. Cache-oblivious algorithms have been developed
for fundamental problems such as sorting and searching.

In this paper we develop an optimal cache-oblivious pri-
ority queue. Previously no such structure was known since
known memory hierarchy efficient priority queues all rely
crucially on parameters describing the hierarchy. We use
the priority queue to develop several cache-oblivious graph
algorithms. These are the first such algorithms and the com-
plexity of most of our algorithms match the complexity of
the best known two-level cache-aware algorithms.

1.1 Background and previous results
Most algorithmic work has been done in the Random Ac-

cess Machine (RAM) model of computation, which models
a “flat” memory with uniform access time. Recently how-
ever, some attention has turned to the development of theo-
retical models for modern complicated hierarchical memory
systems—see e.g. [2, 3, 4, 6, 33, 37, 38]. Developing models
that are both simple and realistic is a challenging task since
a memory hierarchy is described by many parameters. In or-
der to avoid the complications of multilevel memory models,
a body of work has focused on two-level memory hierarchies.
Most of this work has been done in the context of problems
involving massive datasets, because the extremely long ac-
cess times of disks compared to other levels of the hierarchy
means that I/O between main memory and disk is often the
bottleneck in such problems.

1.1.1 I/O model.

In the two-level I/O model (or external-memory model)
introduced by Aggarwal and Vitter [5], the memory hierar-
chy consists of an internal memory of size M , and an arbi-
trarily large external memory partitioned into blocks of size
B. The efficiency of an algorithm in this model (a so-called
I/O or external-memory algorithm) is measured in terms
of the number of block transfers it performs between these
two levels (here called memory transfers). The simplicity of
the I/O model has resulted in the development of a large
number of external memory algorithms and techniques. See
e.g. [10, 37] for recent surveys.
The number of memory transfers needed to read N con-

tiguous items from disk is scan(N) = Θ(N
B
) (the linear

or scanning bound). Aggarwal and Vitter [5] showed that
Θ(N

B
logM/B

N
B
) memory transfers are necessary and suffi-

cient to sort N elements. In this paper, we use sort(N) to
denote N

B
logM/B

N
B
(the sorting bound). The number of

memory transfers needed to search for an element among a
set of N elements is Ω(logB N) (the searching bound) and
this bound is matched by the B-tree, which also supports
updates in O(logB N) memory transfers [12, 23, 27, 26]. An
important consequence of these bounds is that, unlike in the
RAM model, one cannot sort optimally with a search tree—
inserting N elements in a B-tree takes O(N logB N) mem-
ory transfers which is a factor of (B logB N)/(logM/B

N
B
)

from optimal. Finally, permuting N elements according
to a given permutation takes Θ(min{N, sort(N)}) memory
transfers and for all practical values of N,M and B this is
Θ(sort(N)) [5]. This represents another fundamental differ-
ence between the RAM and I/O model, since N elements
can be permuted in O(N) time in internal memory.

1.1.2 Cache-oblivious model.

The main disadvantage of a two-level memory model is
that the programmer must focus efforts on a particular level
of the hierarchy, resulting in programs that are less flexi-

ble to different-scale problems and that do not adapt well
when the dominating level changes. Nevertheless, despite
the disadvantages of two-level models, the I/O model has
been successful because it is convenient for the algorithm
designer to consider only two levels of the hierarchy.
Very recently, a new model that combines the simplicity

of the two-level models with the realism of more complicated
hierarchical models was introduced by Frigo et al. [25]. The
idea in the cache-oblivious model is to design and analyze
algorithms in the I/O model but without using the param-
eters M and B in the algorithm description. It is assumed
that M > B2 (the tall cache assumption) and that when
an algorithm accesses an element that is not stored in main
memory, the relevant block is automatically fetched with a
memory transfer. If the main memory is full, the ideal block
in main memory is elected for replacement based on the
future characteristics of the algorithm, that is, an optimal
paging strategy is assumed. While this model may seem un-
realistic, Frigo et al. [25] showed that it can be simulated by
essentially any memory system with only a small constant-
factor overhead. The main advantage of the cache-oblivious
model is that it allows us to reason about a simple two-level
memory model, but prove results about an unknown, mul-
tilevel memory model. Since an analysis of an algorithm
in the two-level model holds for any block and main mem-
ory size, it holds for any level of the memory hierarchy. As
a concequence, if the algorithm is optimal in the two-level
model, it is optimal on all levels of the memory hierarchy.
Frigo et al. [25] developed optimal cache-oblivious algo-

rithms for matrix multiplication, matrix transposition, Fast
Fourier Transform, and sorting. Optimal cache-oblivious al-
gorithms have also been found for LU decomposition [15,
35]. Bender et al. [13] and subsequently Brodal et al. [16],
Bender et al. [14], and Rahman et al. [32] developed cache-
oblivious B-trees with a search cost of O(logB N) matching
the standard (cache-aware) B-tree. The practical efficiency
of the developed algorithms have been investigated in [32,
16, 14].

1.1.3 Priority queues.

A priority queue maintains a set of elements each with
a priority (or key) under the operations insert, delete, and
deletemin, where a deletemin operation finds and deletes the
minimum key element in the queue. The heap data struc-
ture is a standard implementation of a priority queue and
a balanced search tree can of course also easily be used to
implement a priority queue. In the I/O model a priority
queue based on a B-tree would support all operations in
O(logB N) memory transfers. The standard heap can also
be easily modified (to have fanout B) so that all operations
are supported in the same bound (see e.g. [29]). The ex-
istence of a cache-oblivious B-tree immediately implies the
existence of a O(logB N) cache-oblivious priority queue.
As discussed, the use of an O(logB N) search tree—or pri-

ority queue—to sort N elements results in algorithms that
are a factor of (B logB N)/(logM/B(N/B)) from optimal. To
sort optimally we need a data structure supporting the rele-
vant operations in O(1

B
logM/B

N
B
) memory transfers. Note

that for reasonable values of N , M , and B, this term is
less than 1 and we can therefore only obtain this bound in
an amortized sense. To obtain such a bound, Arge devel-
oped the buffer tree technique [8]. The main idea in this
technique is to perform operations in a lazy (or batched)

Problem Our cache-oblivious result Previous best cache-aware result

Priority queue
O(1

B
logM/B

N
B

) O(1
B

logM/B
N
B

)
[8]

List ranking O(sort(V)) O(sort(V)) [19, 8]

Tree algorithms O(sort(V)) O(sort(V)) [19]

Directed BFS and DFS O((V + E/B) log2 V + sort(E)) O((V + E/B) log2 V + sort(E)) [18]

O(V + EV
BM

) [19]

Undirected BFS O(V + sort(E)) O(V + sort(E)) [30]

Minimal spanning forest O(sort(E) · log2 log2 V) O(sort(E) · log2 log2
V B
E

) [11]

O(V + sort(E)) O(v + sort(E)) [11]

Figure 1: Summary of our results (Priority queue bounds are amortized).

manner using main memory sized buffers attached to the
nodes of the data structure. Arge [8] showed how to use the
buffer tree technique on a B-tree in order to obtain a priority
queue supporting all operations in O(1

B
logM/B

N
B
) amor-

tized memory transfers. However, this structure seems hard
to make cache-oblivious since it (apart from the memory
sized buffers) involves periodically finding the Θ(M) small-
est key elements in the structure and storing them in internal
memory. I/O-efficient priority queues have also been ob-
tained by using the buffer technique on heap structures [24,
28]. Similar to the structure by Arge, the heap structure by
Fadel et al. [24] seems hard to make cache-oblivious because
it requires collecting Θ(M) insertions and periodically per-
forming them all on the structure at the same time. The
structure by Kumar and Schwabe [28] avoids this by us-
ing the buffer technique on a tournament tree data struc-
ture. However, their structure still requires memory sized
buffers. Apart from this they only obtained O(1

B
log2 N)

bounds, mainly because their structure was designed to also
support an update operation. Finally, Brodal and Kata-
jainen [17] developed a priority queue structure based on a
M/B-way merging scheme, which also seems hard to make
cache-oblivious.

1.1.4 I/O-efficient graph algorithms.

The superlinear lower bound on permutation in the I/O
model has some consequences for the I/O-complexity of graph
algorithms, because the solution of almost any graph prob-
lem involves somehow permuting the V vertices or E edges
of the graph. Thus Ω(min{V, sort(V)}) is in general a lower
bound on the number of memory transfers needed to solve
most graph problems. Refer to [9, 19, 30]. As mentioned,
this bound is Θ(sort(V)) in all practical cases. Still, even
though a large number of I/O-efficient graph algorithms
have been developed (see e.g. [37] and references therein),
not many algorithms match this bound. Below we review
the results most relevant to our work.
Like for PRAM algorithms, list ranking—the problem of

ranking the elements in a linked lists stored unordered on
disk—is the most fundamental I/O graph problem. Using
PRAM techniques, Chiang et al. [19] developed the first
I/O-efficient list ranking algorithm. Using an I/O-efficient
priority queue, Arge [8] showed how to solve the problem
in O(sort(V)) memory transfers. The list ranking algo-
rithm and PRAM techniques can be used in the development
of O(sort(V)) algorithms for most problems on trees, such
as computing an Euler Tour, Breadth-First-Search (BFS),

Depth-First-Search (DFS), and computing a centroid de-
composition [19]. The best known DFS and BFS algo-
rithms for general directed graphs use O(V + EV

BM
) [19] or

O((V +E/B) log2 V + sort(E)) [18] memory transfers. For
undirected graphs, an improved O(V + sort(E)) BFS al-
gorithm has been developed [30]. The best known algo-
rithms for computing the connected components and the
minimal spanning forest of a general undirected graph both
use O(sort(E) · log2 log2(

V B
E
)) or O(V + sort(E)) memory

transfers [30, 11]. Both these algorithms are improvements
of algorithms developed in [1, 19, 28].

1.2 Our results
The main result of this paper is an optimal cache-oblivious

priority queue. Our structure supports insert, delete, and
deletemin operations in O(1

B
logM/B

N
B
) amortized memory

transfers and O(logN) amortized computation time—it is
described in Section 2. As discussed, even though several
efficient priority queues were previously known for the I/O
model, none of them can readily be made cache-oblivious.
One key difficulty in designing a cache-oblivious priority
queue is that in order to be optimal the structure has to
adapt to arbitrary values of both B and M , in contrast to
existing cache-oblivious data structures, which only adapt
to B [13, 14, 16]. We overcome this difficulty by a novel
combination of several new ideas with ideas used in previ-
ous recursively defined cache-oblivious algorithms and data
structures [25, 13], the buffer technique of Arge [8, 28], and
theM/B-way merging scheme utilized by Brodal and Kata-
jainen [17]. We believe that our ideas will be useful in the
development of other cache-oblivious data structures, in par-
ticular structures that adapt to both B and M .
In the second part of the paper, Section 3, we use the

priority queue to develop several cache-oblivious graph algo-
rithms. Previously, no such algorithms were known. We first
show how to solve the list ranking problem in O(sort(V))
memory transfers. Using this result we develop O(sort(V))
algorithms for fundamental problems on trees such as the
Euler Tour, BFS, and DFS problems. Using these algo-
rithms and the techniques used in them many other prob-
lems on trees can be solved efficiently. The complexity of
all of these algorithms matches the complexity of the best
known cache-aware algorithms. Next we consider DFS and
BFS on general graphs. Using our priority queue and a
modified version of a data structure used in the O((V +
E/B) log V +sort(E)) DFS and BFS algorithms for directed
graphs [18], we make these algorithms cache-oblivious. We

also discuss how the best known O(V + sort(E)) BFS algo-
rithm for undirected graphs [30] can be made cache-oblivious.
Finally, we develop two cache-oblivious algorithms for com-
puting a minimal spanning forest (MSF), and thus also for
computing connected components, of an undirected graph
using O(sort(E) · log2 log2 V) and O(V + sort(E)) memory
transfers, respectively. The two algorithms can be combined
to compute the MSF in O(sort(E) · log2 log2

V
V ′
+V ′) mem-

ory transfers for any V ′ independent of B and M . Figure 1
summarizes our results. We believe our priority queue and
the developed algorithms can be used in the development of
many other cache-oblivious algorithms.

2. PRIORITY QUEUE
In this section we describe our new optimal cache-oblivious

priority queue. In Section 2.1 we define the data structure
and in Section 2.2 we describe the supported operations.

2.1 Structure

2.1.1 Levels.

Our priority queue data structure consists of Θ(log logN)
levels whose sizes vary from N to a constant size c. The size
of a level corresponds (asymptotically) to the number of ele-
ments that can be stored within it. The i’th level from above
has size N (2/3)i−1

and for convenience we refer to the levels
by their size. Thus the levels from largest to smallest are
level N , level N2/3, level N4/9, . . . , level X9/4, level X3/2,
level X, level X2/3, level X4/9, . . . , level c9/4, level c3/2, and
level c. Intuitively, smaller levels store elements with smaller
keys or elements that were more recently inserted. In par-
ticular, the minimum key element and the most recently
inserted element are always in the smallest (lowest) level c.
Both insertions and deletions are initially performed on the
smallest level and may propagate up through the levels.

2.1.2 Buffers.

Elements are stored in a level in a number of buffers, which
are also used to transfer elements between levels. Level X
consists of one up buffer uX that can store up to X ele-
ments, and at most X1/3 down buffers dX

1 , . . . , d
X
X1/3 each

containing between 1
2
X2/3 and 2X2/3 elements. Thus the

maximum capacity of level X is 3X. Refer to Figure 2. Note
that the size of a down buffer at one level matches the size
(up to a constant factor) of the up buffer one level down.
We maintain three invariants about the relationships be-

tween the elements in buffers of various levels:

Invariant 1. At level X, elements are sorted among the
down buffers, that is, elements in dX

i have smaller keys than
elements in dX

i+1, but the elements within d
X
i are unordered.

The element with largest key in each down buffer dX
i is

called a pivot element. Pivot elements simply mark the
boundaries between the ranges of the keys of elements in
down buffers.

Invariant 2. At level X, the elements in the down buffers
have smaller keys than the elements in the up buffer.

Invariant 3. The elements in the down buffers at level X
have smaller keys than the elements in the down buffers at
the next higher level X3/2.

The three invariants ensure that the keys of the elements
in the down buffers get larger as we go from smaller to larger
levels of the structure. Furthermore, an order exists between
the buffers on one level: keys of elements in up buffers are
larger than keys of elements in down buffers; therefore, down
buffers are drawn below up buffers on Figure 2. However,
the keys of the elements in an up buffer are unordered rel-
ative to the keys of the elements in down buffers one level
up. Intuitively, up buffers store elements that are “on their
way up”, that is, they have yet to be resolved as belong-
ing to a particular down buffer in the next level (or higher
levels). Analogously, down buffers store elements that are
“on their way down”—these elements are partitioned into
several clusters so that we can quickly find the cluster of
smallest key elements of size roughly equal to the next level
down. In particular, the element with overall smallest key
is in the first down buffer at level c.

2.1.3 Layout.

We store the priority queue in a linear array as follows.
The levels are stored consecutively from smallest to largest.
Thus each level occupies a single region of memory. Level X
reserves space for exactly 3X elements, X for the up buffer
and 2X2/3 for each possible down buffer. The up buffer
is stored first, followed by the down buffers stored in an
arbitrary order but linked together to form an ordered linked

list. Thus 3
∑log3/2 logc N

i=0 N (2/3)i

= O(N) is an upper bound
on the total size of the array.

Lemma 1. The cache-oblivious priority queue uses O(N)
space.

2.2 Operations
To implement the priority queue operations we will use

two general operations, push and pull. Push inserts X ele-
ments into level X3/2, and pull removes the X elements with
smallest keys from level X3/2 and returns them in sorted or-
der. This way, deletemin corresponds to pulling an element
from the smallest level, and insert corresponds to pushing
an element into the smallest level. More generally, whenever
an up buffer in level X overflows we push the X elements
in the buffer one level up, and whenever the down buffers
in level X becomes too empty we pull X elements from one
level up.

2.2.1 Push.

To insertX elements into levelX3/2, we first sort theX el-
ements cache-obliviously using O(1+ X

B
logM/B

X
B
) memory

transfers [25]. Next we distribute the elements in the sorted

list into the X1/2 down buffers of level X3/2 by scanning
through the list and simultaneously visiting the down buffers
in (linked) order. More precisely, we append elements to the

end of the current down buffer dX3/2

i , and advance to the

next down buffer dX3/2

i+1 as soon as we encounter an element

with larger key than the pivot of dX3/2

i . Elements with keys
larger than the pivot of the last down buffer are inserted

in the up buffer uX3/2

. Scanning through X elements take
O(1+X/B) memory transfers. Even though we do not scan
through every down buffer, we perform at least one mem-
ory access for each of the X1/2 buffers. Thus the total cost
of distributing the X elements is O(X/B + X1/2) memory
transfers.

level X

level X3/2

level X9/4

level X2/3

at most X1/3 down buffers each of size ≈ X2/3

at most X1/2 down buffers each of size ≈ X

up buffer of size X3/2

up buffer of size X

Figure 2: Levels X2/3, X, X3/2, and X9/4 of the priority queue data structure.

During the distribution a down buffer may run full, that
is, contain 2X elements. In this case, we split the buffer
into two down buffers each containing X elements. This
split can be performed in O(1 + X/B) memory transfers
by first finding the median of the elements in the buffer in
O(1 + X/B) transfers [25], and then partitioning the ele-
ments into the two new buffers in a simple scan. (Here we
are exploiting that the down buffers can be stored out-of-
order). Because X elements must have been inserted since
the last time the buffer split, the amortized splitting cost
per element is O(1/X + 1/B). If the level already had the

maximum number X1/2 of down buffers before the split, we
remove the last down buffer dX

X1/3 by inserting the less than

2X elements in dX
X1/3 into the up buffer. In total, the amor-

tized number of memory transfers used on splitting buffers
while distributing the X elements is O(1+X/B). The whole
process maintains Invariant 1-3.
If the up buffer runs full during the above process, that is,

contains more thanX3/2 elements, then all of these elements
are recursively pushed into the next level up. Note that after
such a recursive push, X3/2 elements have to be inserted
(pushed) into the up buffer of level X3/2 before another
recursive push is needed. Ignoring the cost of this recursion
for the moment we have:

Lemma 2. A push of X elements from level X up to
level X3/2 can be performed in O(X1/2+X

B
logM/B

X
B
) mem-

ory transfers amortized while maintaining Invariants 1–3.

2.2.2 Pull.

To delete the X smallest keys elements from level X3/2,
first assume that the down buffers contain at least 3

2
X ele-

ments. In this case the first three down buffers dX3/2

1 , dX3/2

2 ,

and dX3/2

3 together contain the smallest between 3
2
X and 6X

elements (Invariants 1 and 2). We find and remove the X
smallest elements simply by sorting these elements using
O(1 + X

B
logM/B

X
B
) memory transfers. The remaining be-

tween X/2 and 5X elements are left in one, two, or three
down buffers of size between X/2 and 2X. These buffers
can easily be constructed in O(1+X/B) transfers, and thus
this procedure uses O(1 + X

B
logM/B

X
B
) memory transfers

in total. It is easy to see that it maintains Invariants 1–3.
In the case where the down buffers contain fewer than 3

2
X

elements, we first pull the X3/2 elements with smallest keys
from the next level up. Because these elements do not neces-
sarily have smaller keys than the, say U , elements in the up

buffer uX3/2

, we first sort this up buffer and merge the two
sorted lists. Then we insert the U elements with largest keys
into the up buffer, and distribute the remaining between
X3/2 and X3/2+ 3

2
X elements into X1/2 down buffers of size

betweenX andX+ 3
2
X1/2 each (such that the O(1/X+1/B)

amortized down buffer split bound is maintained). It is easy
to see that this procedure maintains the three invariants. Af-
terwards, we can find the X minimal key elements as above.
Note that after a recursive pull, X3/2 elements have to be
deleted (pulled) from the down buffers of level X3/2 before
another recursive pull is needed. Note also that a pull on
level X3/2 does not affect the number of elements in the up

buffer uX3/2

. Because we fill up the down buffers after a
recursive pull using one sort and one scan of X3/2 element,
this cost is dominated by the cost of the recursive pull op-
eration on the next level up. Ignoring these costs for the
moment we have:

Lemma 3. A pull of X elements from level X3/2 down
to level X can be performed in O(1+ X

B
logM/B

X
B
) memory

transfers amortized while maintaining Invariants 1–3.

2.2.3 Total cost.

To analyze the amortized cost of an insert or deletemin, we
consider the total number of memory transfers used to per-
form push and pull operations during N/2 operations. After
every N/2 operations we rebuild the structure such that all

up buffers are empty and such that level X has X1/3 down
buffers of size X2/3 (except for level N , which has Θ(N1/3)

down buffers of size N2/3). This way the largest level of the
priority queue is always of size Θ(N), and after the rebuild-
ingX elements have to be pushed into or pulled from levelX
before recursive push or pulls are needed. We can easily per-
form the rebuilding in a sorting step using O(N

B
logM/B

N
B
)

memory transfers, or O(1
B
logM/B

N
B
) transfers per opera-

tion.
We charge a push of X elements from level X up to level

X3/2 to level X. Since X elements have to be inserted in
the up buffer uX of level X between such pushes, and as
elements can only be inserted in uX when elements are in-

serted (pushed) into level X (pulls from level X and from

level X3/2 into level X do not affect the number of elements
in uX), O(N/X) pushes are charged to level X during the
N/2 operations. Similarly, we charge a pull of X elements

from level X3/2 down to level X to level X. Since between
such pulls (at least) X elements have to be deleted from the
down buffers of level X by pulls on X (push of elements
into level X only increase the number of deletions needed
and push of elements from level X to level X3/2 does not
affect the number of elements in down buffers of level X),
O(N/X) pulls are charged to level X during the N/2 oper-
ations.
By Lemma 2 and 3 we know that a push or pull charged

to level X uses O(X1/2 + X
B
logM/B

X
B
) memory accesses.

This cost is reduced to O(X
B
logM/B

X
B
) when considering

a sequence of push and pulls: first consider a push or pull
of X ≥ B2 elements into or from level X3/2 ≥ B3. In
this case we trivially have that O(X1/2 + X

B
logM/B

X
B
) =

O(X
B
logM/B

X
B
). If B ≤ X ≤ B2, the X1/2 term in the

push bound can dominate and we have to analyze the cost
of a push more carefully. In this case we are working on
level X3/2 where B3/2 ≤ X3/2 ≤ B3. There is a constant
number of such levels. Recall that the X1/2 cost was from
distributing X sorted elements into the less than X1/2 down
buffers of level X3/2. More precisely, a block of each buffer
may have to be loaded and written back without transferring
a full block of elements into the buffer. However, because
X1/2 ≤ B and M = Ω(B2) (the tall-cache assumption), a
block for each of the buffers can fit into main memory. In
fact, a block of each of the buffers of each of the constant
number of levels between B3/2 and B3, as well as all levels
less than B3/2, fit in memory. Consequently, if a fraction
of the main memory is used to keep a partially filled block
of each buffer of these levels in memory at all times, and
only full block are written to disk, the X1/2 term would be
eliminated. The optimal paging strategy will do at least
as good as this strategy and thus eliminate the X1/2 term.
(LRU and FIFO strategies achieve the same effect within a
constant factor of the value of M [25].) Finally, push and
pull operations of X < B elements have no transfer cost at
all since the optimal paging strategy can keep all levels less
than B3/2 in main memory at all times.
Altogether, each of the O(N/X) push and pull opera-

tions charged to levelX uses O(X
B
logM/B

X
B
) memory trans-

fers. Thus the total amortized transfer cost of an insert or
deletemin operation in the sequence of N/2 such operations

is O(
∑

∞

i=0
1
B
logM/B(N

(2/3)i

/B)) = O(1
B
logM/B

N
B
).

We note that a delete operation can be supported in the
same bound using ideas from [8, 28]. Basically, to delete an
element, we insert a special “delete element” with the rele-
vant key into the priority queue, and the deletion actually
occurs when this element arrives in the same buffer as the el-
ement to be deleted. Note that the delete operation requires
that we know the key of the element to be deleted. Details
will appear in the full paper where we will also analyze the
(RAM) computation time of each of the operations.

Theorem 1. A set of N elements can be maintained in
a linear-space cache-oblivious priority queue data structure
supporting each insert, deletemin, and delete operation in
O(1

B
logM/B

N
B
) amortized memory transfers and O(log2 N)

amortized computation time.

3. GRAPH ALGORITHMS
In this section we discuss how our cache-oblivious priority-

queue can be used to develop several cache-oblivious graph
algorithms. We first consider the simple list ranking problem
and algorithms on trees, and then we go on and consider
BFS, DFS and minimal spanning tree algorithms.

3.1 List ranking
In the list ranking problem we are given a linked list of

V nodes, each with a pointer (edge) to the next node in
the list, stored as an unordered sequence. The goal is to
determine the rank of each node v, that is, the number of
edges from v to the end of the list.
Based on ideas from efficient PRAM algorithms [7, 21],

Chiang et al. [19] designed an O(sort(V)) I/O model list
ranking algorithm. The main idea in this algorithm is to
find an independent set of Θ(V) nodes (nodes without edges
to each other), contract the edges incident to the nodes in
this set (“bridge out” the nodes in the independent set),
recursively rank the remaining list, and finally reintegrate
the contracted nodes in the list (compute their rank). Ex-
cept for the computation of the independent set, the non-
recursive steps of this algorithm can easily be performed
using only a constant number of scans and sorts of the
unordered list. Thus they can also be performed cache-
obliviously in O(sort(V)) memory accesses. Details will
appear in the full paper. Chiang et al. [19] gave several
O(sort(V)) algorithms for computing an independent set of
size V/c for some constant c > 0, resulting in a T (V) =
O(sort(V)) + T (V/c) = O(sort(V)) list ranking algorithm.
The independent set algorithms of Chiang et al. [19] are

based on 3-coloring algorithms. Every node is colored with
one of three colors such that adjacent nodes have different
colors. The independent set then consists of the set of nodes
with the most popular color. Their algorithms required B
not being too large or M/B not being too small. These
constraints were later removed by Arge [8] and Kumar and
Schwabe [28] using I/O-efficient priority queues. The main
idea in the resulting 3-coloring algorithm is as follows. An
edge (v, w) is called a forward edge if v appears before w in
the (unordered) sequence of nodes—otherwise it is called a
backward edge. First the list is split into two sets consisting
of forward running segments (forward lists) and backward
running segments (backward lists). Each node is included
in at least one of these sets and nodes at the head or tail of
a segment (nodes at which there is a reversal of the direc-
tion) will be in both sets. This step can easily be performed
cache-obliviously in a scan of the nodes of the list. Next the
nodes in the forward lists are colored red or blue by color-
ing the head nodes red and the other nodes alternatingly
red and blue. The coloring is performed using a priority
queue. In a single scan the head vertices are identified, col-
ored, and inserted in a priority queue with keys equal to
their position in the unordered list. Next the minimal key
node v is repeatedly extracted and v’s successor is colored
the opposite color of v and inserted in the queue. Since only
forward list are colored, the nodes will be colored (accessed)
in the order they are stored on disk, that is, in a single scan
of the list. Apart from this scan, a total of O(V) opera-
tions are performed on the priority queue. Consequently,
using our cache-oblivious priority queue, the coloring can
be performed cache-obliviously in O(sort(V)) memory ac-
cesses. After coloring the forward lists red or blue, the nodes

in the backward lists are colored green and blue in a similar
way, with the head nodes being colored green. In total, ev-
ery node is colored with one color, except for the heads/tails
which have two colors. By coloring a head/tail node red un-
less it was initially colored blue and green, in which case it
is colored green, a 3-coloring is obtained [19].

Theorem 2. The list ranking problem on a V node list
can be solved cache-obliviously in O(sort(V)) memory ac-
cesses.

3.2 Algorithms on trees
Many efficient PRAM algorithms on undirected trees uses

Euler Tour techniques [34, 36]. An Euler of a graph is a path
that traverses each edge exactly once and forms a cycle. Not
every graph has an Euler Tour but a tree where each undi-
rected edge has been replaced with two directed edges does.
Using ideas utilized in efficient PRAM algorithms, an Euler
Tour of such a modified tree can easily be computed using
a scan of the graph followed by a list ranking step. Thus
it can be computed cache-obliviously in O(sort(V)) mem-
ory accesses. Using an Euler Tour, list ranking, and sorting,
the BFS and DFS numberings of the nodes of a tree can also
easily be computed cache-obliviously in O(sort(V)) memory
accesses [34, 36, 19]. Another example of a problem that can
be solved using these primitives is centroid decomposition.
Details will appear in the full paper.

Theorem 3. The Euler Tour, BFS, DFS, and centroid
decomposition problems on a tree can be solved cache-oblivi-
ously in O(sort(V)) memory accesses.

3.3 DFS and BFS
We now consider DFS and BFS algorithms for general

graphs. We first consider directed graphs and then we de-
velop an improved algorithm for BFS on undirected graphs.

3.3.1 Directed graphs.

For brevity, we only discuss directed DFS. All the dis-
cussed algorithms can easily be modified to solve the BFS
problem. In the RAM model, directed DFS can be solved in
linear time using a stack containing vertices v that have not
yet been visited but have an edge (w, v) incident to a visited
vertex w. In the I/O model this algorithm may require Ω(E)
memory transfers since one memory transfer may be needed
to check if v have already been visited when edge (w, v) is
processed. Chiang et al. [19] improved this toO(V+E

B
V
M
) by

storing the stack in main memory and periodically remov-
ing all edges incident to vertices on the stack. It seems hard
to make this algorithm cache-oblivious since it depends cru-
cially on knowledge of the main memory size. Buchsbaum
et al. [18] described another O((V + E

B
) log2 V + sort(E))

algorithm. This algorithm uses three basic structures: a
priority queue, a stack, and a so-called buffered repository
tree. While a stack is cache-oblivious (push or pop requires
O(1/B) memory accesses amortized), the buffered reposi-
tory tree need to be modified in order to be cache-oblivious.
A buffered repository tree (BRT) maintains O(E) ele-

ments with keys in the range [1..V] under the operations
insert and extract. The insert operation inserts a new el-
ement, while the extract operation reports and deletes all
elements with a certain key. Our cache-oblivious version of
the BRT tree consists of a static binary tree with the keys 1

through V in the leaves. Each node and leaf of the tree has
a buffer associated with it. The buffer of a leaf v contains
elements with key v and the buffers of the internal nodes
are used to perform insertions in a batched manner. An in-
sert is performed by inserting the new element into the root
buffer. An extraction of elements with key v is performed by
traversing a root-leaf path to the leaf containing v. At each
node µ on this path the associated buffer is scanned, the
relevant elements reported and deleted, and the remaining
elements distributed among the two buffers associated with
the children of µ. At the leaf v the elements in the buffer
are reported and deleted. When emptying a buffer, an el-
ement with key w is distributed to the buffer of the child
of µ on the path to w, and we make sure that elements in-
serted in a buffer at the same time are placed in consecutive
memory locations. This way the buffer of a node µ can be
viewed as consisting of a linked list of buckets of elements in
consecutive memory locations, with the number of buckets
being equal to the number of buffer emptyings that have
been performed on the parent of µ since the last emptying
of µ’s buffer.

Lemma 4. A cache-oblivious BRT supports insert and ex-
tract operations in O(1

B
log2 V) and O(log2 V) memory ac-

cesses amortized, respectively.

Proof. Emptying the buffer of a node (or a leaf) µ con-
taining X elements in K buckets takes O(1 + X/B + K)
memory accesses. We charge the X/B-term to the inserts
that inserted the X elements. Since each element is charged
at most once on each level of the tree, an insert is charged
O(1

B
log2 V) accesses in total. The K-term is charged to the

extract operation that created the K buckets. Since an ex-
tract creates 2 buckets on each level of the tree, it is charged
a total of O(log2 V) memory accesses.

Using our cache-oblivious BRT structure and cache-oblivi-
ous priority queue in the algorithm by Buchsbaum et al. [18]
we can obtain a cache-oblivious DFS algorithm. A number
of data structures are maintained during this algorithm: a
stack S containing the vertices on the path from the root of
the DFS tree to the current vertex, a priority queue P (v)
for each vertex v containing edges (v, w) connecting v with
a possibly unvisited vertex w, as well as a global BRT struc-
ture D containing edges (v, w) incident to a vertex w that
has already been visited but where (v, w) are still present in
P (v). The key of an edge (v, w) in D is v. Initially all edges
are inserted in the P (v)’s. To compute the DFS tree, the
vertex u on the top of the stack is repeatedly considered.
All edges (u,w) corresponding to u are extracted from D
and deleted from P (u). If P (u) is now empty all neighbors
of u have been visited and it is removed from the top of the
stack. Otherwise a delete is performed on P (u) to obtain a
vertex v to visit next. This vertex is pushed on the stack
and edges (w, v) incident to it are inserted in D (since v is
now visited). Note that the edges are not deleted directly
from the relevant P (w)’s since that could cost a memory
access per edge. Since the algorithm performs O(V) stack
operations and extract operations on D, O(E) inserts on D
and operations on the priority queues, and uses O(1) ex-
tra memory accesses to access a priority queue every time
a vertex is processed, it uses O((V + E

B
) log2 V + sort(E))

memory accesses in total. Refer to [18] for details.

3.3.2 Undirected graphs.

While known I/O model algorithms for directed DFS and
BFS take the same number of memory transfers, an im-
proved O(V + sort(E)) algorithm has been developed by
Munagala and Ranade for undirected BFS [30]. The main
idea in this algorithm is to visit the vertices in the graph in
“layers” defined by their distance from the root of the BFS
tree. Since the graph is undirected, layer i + 1 vertices can
be obtained from two lists of layer i and i− 1 vertices using
a few scan and sort steps. The resulting algorithms, which
is easily seen to be cache-oblivious, uses O(V + sort(E))
memory accesses. Refer to [30] for details, which will also
appear in the full version of this paper.

Theorem 4. The DFS or BFS tree of a directed graph
can be computed cache-obliviously in O((V + E

B
) log2 V +

sort(E)) memory accesses. The BFS tree of an undirected
graph can be computed cache-obliviously in O(V + sort(E))
memory accesses.

3.4 Minimal Spanning Forest
We now consider algorithms for computing the minimal

spanning forest (MSF) of an undirected weighted graph.
In the I/O model, a string of algorithms have been devel-
oped for the problem, culminating in an algorithm using
O(sort(E) · log2 log2(

V B
E
)) memory transfers developed by

Arge et al. [19, 1, 28, 11]. This algorithm consists of two
phases [11]. In the first phase an edge contraction algo-
rithm inspired by PRAM MSF algorithms is used [20, 22].
After the number of vertices has been reduced to O(E/B),
a modified version of Prim’s algorithm is then used in the
second phase. Using our cache-oblivious priority queue we
can modify both of the phases to work cache obliviously.
However, since we cannot decide cache obliviously when the
first phase has reduced the number of vertices to O(E/B),
we are not able to combine the two phases as effectively as
in the I/O model. Below we first sketch how to make the
algorithms used in the two phases cache-oblivious, and then
we discuss their combination. Details will appear in the full
paper.

3.4.1 Phase 1.

The basic algorithm based on vertex contraction proceeds
in stages [20, 19, 28]. In each stage the minimum weight
edge incident to each vertex is selected and output as part of
the MSF, and the vertices connected by the selected edges
are contracted into super-vertices (that is, the connected
components of the graph of selected edges are contracted).
This way the number of vertices is reduced to O(V/2i) after
i stages. We can easily select the minimum weight edges
cache-obliviously in O(sort(E)) memory accesses using a
few scans and sorts. To perform the contraction, we se-
lect a leader vertex in each connected component of the
graph of selected edges and replace every edge (u, v) in
the graph with the edge (leader(u), leader(v)). To select
the leaders, we use of the following three properties: the
selected edges of a connected component form a tree, ex-
actly one edge in each tree (the minimal weight edge in
the tree) is selected twice, and the weights of the edges
along a simple path from this edge to a leaf of the tree
appear in increasing order. Thus in a single scan of the se-
lected edges we can select the leaders of each component by
identifying one of the vertices incident to each of the edges

selected twice. We can then use our cache-oblivious tree
algorithms developed in Section 3.2 (and thus our cache-
oblivious priority queue) to distribute the identity of the
leader to each vertex in each component in O(sort(V)) mem-
ory transfers. Finally, we can easily replace each edge (u, v)
with (leader(u), leader(v)) cache-obliviously in O(sort(E))
memory accesses using a few scanning and sorting steps. In
total we perform a stage in O(sort(E)) memory accesses
and thus to reduce the number of vertices to V ′ = V/2i we
use O(sort(E) · log2(V/V

′)) memory accesses. By group-
ing the stages into super-stages as in [11], we can improve
this to O(sort(E) · log2 log2(V/V

′)). Thus we can obtain an
O(sort(E) · log2 log2 V) MSF algorithm by continuing until
all edges have been contracted.

3.4.2 Phase 2.

A standard implementation of Prim’s MST algorithm [31]
uses Ω(E) memory transfers. Recall that this algorithm
grows the MST iteratively from a source node while main-
taining a priority queue on the vertices not included in the
MST. Arge et al. [11] showed how to implement it to use
O(V + sort(E)) memory transfers by storing edges in the
priority queue instead of vertices. Their algorithm can im-
mediately be made cache-oblivious using our cache-oblivious
priority queue.

3.4.3 Combined algorithm.

In the I/O model, an O(sort(E) · log2 log2(
V B
E
)) MSF al-

gorithm can be obtained by running the phase 1 algorithm
until the number of vertices have been reduced to V ′ = E/B
using O((sort(E)·log2 log2(

V B
E
)) memory transfers and then

finishing the MSF in O(V ′ + sort(E)) = O(sort(E)) mem-
ory transfers using the phase 2 algorithm. As mentioned, we
cannot combine the two phases as effectively in the cache-
oblivious model. In general however, we can combine the
two algorithms to obtain an O(sort(E)·log2 log2(V/V

′)+V ′)
algorithm for any V ′ independent of B and M .

Theorem 5. The minimal spanning forest of an undi-
rected weighted graph can be computed cache-obliviously in
O(min{V +sort(E)), sort(E)·log2 log2 V }) memory accesses
or more generally in O(sort(E) · log2 log2(V/V

′)+V ′) mem-
ory accesses for any V ′ independent of B and M .

4. CONCLUSIONS
In this paper we presented an optimal cache-oblivious pri-

ority queue and used it to develop efficient cache-oblivious
algorithms for several graph problems. We believe the ideas
utilized in the priority queue will prove useful in the devel-
opment of other cache-oblivious data structures.
Many important problems still remains open in the area of

cache-oblivious algorithms and data structures. In the area
of graph algorithms for example, it remains open to develop
a cache-oblivious MSF algorithm with complexity match-
ing the best known cache-aware algorithm. Cache-oblivious
shortest path algorithms also still have to be developed.

References

[1] J. Abello, A. L. Buchsbaum, and J. R. Westbrook.
A functional approach to external graph algorithms.
In Proc. Annual European Symposium on Algorithms,
LNCS 1461, pages 332–343, 1998.

[2] A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir.
A model for hierarchical memory. In Proc. ACM Symp.
on Theory of Computation, pages 305–314, 1987.

[3] A. Aggarwal and A. K. Chandra. Virtual memory al-
gorithms. In Proc. ACM Symp. on Theory of Compu-
tation, pages 173–185, 1988.

[4] A. Aggarwal, A. K. Chandra, and M. Snir. Hierarchical
memory with block transfer. In Proc. IEEE Symp. on
Foundations of Comp. Sci., pages 204–216, 1987.

[5] A. Aggarwal and J. S. Vitter. The Input/Output com-
plexity of sorting and related problems. Communica-
tions of the ACM, 31(9):1116–1127, 1988.

[6] B. Alpern, L. Carter, E. Feig, and T. Selker. The uni-
form memory hierarchy model of computation. Algo-
rithmica, 12(2-3), 1994.

[7] R. J. Anderson and G. L. Miller. A simple randomized
parallel algorithm for list-ranking. Information Process-
ing Letters, 33:269–273, 1990.

[8] L. Arge. The buffer tree: A new technique for optimal
I/O-algorithms. In Proc. Workshop on Algorithms and
Data Structures, LNCS 955, pages 334–345, 1995.

[9] L. Arge. The I/O-complexity of ordered binary-decision
diagram manipulation. In Proc. Int. Symp. on Algo-
rithms and Computation, LNCS 1004, pages 82–91,
1995.

[10] L. Arge. External memory data structures. In J. Abello,
P. M. Pardalos, and M. G. C. Resende, editors, Hand-
book of Massive Data Sets. Kluwer Academic Publish-
ers, 2002. (To appear).

[11] L. Arge, G. S. Brodal, and L. Toma. On external mem-
ory MST, SSSP and multi-way planar graph separa-
tion. In Proc. Scandinavian Workshop on Algorithms
Theory, LNCS 1851, pages 433–447, 2000.

[12] R. Bayer and E. McCreight. Organization and main-
tenance of large ordered indexes. Acta Informatica,
1:173–189, 1972.

[13] M. A. Bender, E. D. Demaine, and M. Farach-Colton.
Cache-oblivious B-trees. In Proc. IEEE Symp. on Foun-
dations of Comp. Sci., pages 339–409, 2000.

[14] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A
locality-preserving cache-oblivious dynamic dictionary.
In Proc. ACM-SIAM Symp. on Discrete Algorithms,
pages 29–38, 2002.

[15] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiser-
son, and K. H. Randall. An analysis of dag-consistent
distributed shared-memory algorithms. In Proc. ACM
Symp. on Parallel Algorithms and Architectures, pages
297–308, 1996.

[16] G. S. Brodal, R. Fagerberg, and R. Jacob. Cache obliv-
ious search trees via binary trees of small height. In
Proc. ACM-SIAM Symp. on Discrete Algorithms, pages
39–48, 2002.

[17] G. S. Brodal and J. Katajainen. Worst-case efficient
external-memory priority queues. In Proc. Scandina-
vian Workshop on Algorithms Theory, LNCS 1432,
pages 107–118, 1998.

[18] A. L. Buchsbaum, M. Goldwasser, S. Venkatasubrama-
nian, and J. R. Westbrook. On external memory graph
traversal. In Proc. ACM-SIAM Symp. on Discrete Al-
gorithms, pages 859–860, 2000.

[19] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamas-

sia, D. E. Vengroff, and J. S. Vitter. External-memory
graph algorithms. In Proc. ACM-SIAM Symp. on Dis-
crete Algorithms, pages 139–149, 1995.

[20] F. Chin, J. Lam, and I. Chen. Efficient parallel algo-
rithms for some graph problems. Communications of
ACM, 1982.

[21] R. Cole and U. Vishkin. Deterministic coin tossing with
applications to optimal list-ranking. Information and
Control, 70(1):32–53, 1986.

[22] R. Cole and U. Vishkin. Approximate parallel schedul-
ing. II. Applications to logarithmic-time optimal par-
allel graph algorithms. Information and Computation,
92(1):1–47, 1991.

[23] D. Comer. The ubiquitous B-tree. ACM Computing
Surveys, 11(2):121–137, 1979.

[24] R. Fadel, K. V. Jakobsen, J. Katajainen, and
J. Teuhola. Heaps and heapsort on secondary storage.
Theoretical Computer Science, 220(2):345–362, 1999.

[25] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachan-
dran. Cache-oblivious algorithms. In Proc. IEEE Symp.
on Foundations of Comp. Sci., pages 285–298, 1999.

[26] S. Huddleston and K. Mehlhorn. A new data structure
for representing sorted lists. Acta Informatica, 17:157–
184, 1982.

[27] D. E. Knuth. Sorting and Searching, volume 3 of The
Art of Computer Programming. Addison-Wesley, Read-
ing MA, second edition, 1998.

[28] V. Kumar and E. Schwabe. Improved algorithms and
data structures for solving graph problems in external
memory. In Proc. IEEE Symp. on Parallel and Dis-
tributed Processing, pages 169–177, 1996.

[29] A. LaMarca and R. E. Ladner. The influence of caches
on the performance of heaps. Journal of Experimental
Algorithmics, 1, 1996.

[30] K. Munagala and A. Ranade. I/O-complexity of graph
algorithms. In Proc. ACM-SIAM Symp. on Discrete Al-
gorithms, pages 687–694, 1999.

[31] R. C. Prim. Shortest connection networks and some
generalizations. Bell Syst. Tech. J., 36:1389–1401, 1957.

[32] N. Rahman, R. Cole, and R. Raman. Optimized pre-
decessor data structures for internal memory. In Proc.
Workshop on Algorithm Engineering, LNCS 2141,
pages 67–78, 2001.

[33] J. E. Savage. Extending the Hong-Kung model to mem-
ory hierachies. In Proceedings of the 1st Annual Inter-
national Conference on Computing and Combinatorics,
volume 959 of LNCS, pages 270–281, 1995.

[34] R. E. Tarjan and U. Vishkin. An efficient parallel bi-
connectivity algorithm. SIAM Journal of Computing,
14(4):862–874, 1985.

[35] S. Toledo. Locality of reference in LU decomposition
with partial pivoting. SIAM Journal on Matrix Analy-
sis and Applications, 18(4):1065–1081, 1997.

[36] U. Vishkin. On efficient parallel strong orientation. In-
formation Processing Letters, 20:235–240, 1985.

[37] J. S. Vitter. External memory algorithms and data
structures: Dealing with MASSIVE data. ACM Com-
puting Surveys, 33(2):209–271, 2001.

[38] J. S. Vitter and E. A. M. Shriver. Algorithms for par-
allel memory, II: Hierarchical multilevel memories. Al-
gorithmica, 12(2–3):148–169, 1994.

