
Single-Player and Two-Player Buttons &
Scissors Games (Extended Abstract)

Kyle Burke1, Erik D. Demaine2, Harrison Gregg3, Robert A. Hearn4, Adam
Hesterberg2, Michael Hoffmann5, Hiro Ito6, Irina Kostitsyna7, Jody Leonard3,

Maarten Löffler8, Aaron Santiago3, Christiane Schmidt9, Ryuhei Uehara10,
Yushi Uno11, and Aaron Williams3

Abstract. We study the computational complexity of the Buttons &
Scissors game and obtain sharp thresholds with respect to several pa-
rameters. Specifically we show that the game is NP-complete for C = 2
colors but polytime solvable for C = 1. Similarly the game is NP-complete
if every color is used by at most F = 4 buttons but polytime solvable
for F ≤ 3. We also consider restrictions on the board size, cut directions,
and cut sizes. Finally, we introduce several natural two-player versions
of the game and show that they are PSPACE-complete.

1 Introduction

Buttons & Scissors is a single-player puzzle by KyWorks. The goal of each level is
to remove every button by a sequence of horizontal, vertical, and diagonal cuts, as
illustrated by Fig. 1. It is NP-complete to decide if a given level is solvable [2].
We study several restricted versions of the game and show that some remain
hard, whereas others can be solved in polynomial time. We also consider natural
extensions to two player games which turn out to be PSPACE-complete.

Section 2 begins with preliminaries, then we discuss one-player puzzles in
Section 3 and two-player games in Section 4. Open problems appear in Section 5.
Due to space restrictions, some proofs are sketched or omitted. A full version of
this article can be found on arXiv.

1 Plymouth State University, kgburke@plymouth.edu
2 Massachusetts Institute of Technology, {edemaine,achester}@mit.edu
3 Bard College at Simon’s Rock,
{hgregg11,jleonard11,asantiago11,awilliams}@simons-rock.edu

4 bob@hearn.to
5 ETH Zürich, hoffmann@inf.ethz.ch
6 The University of Electro-Communications, itohiro@uec.ac.jp
7 Technische Universiteit Eindhoven, i.kostitsyna@tue.nl. Supported in part by

NWO project no. 639.023.208.
8 Universiteit Utrecht, m.loffler@uu.nl
9 Linköping University, christiane.schmidt@liu.se. Supported in part by grant

2014-03476 from Sweden’s innovation agency VINNOVA.
10 Japan Advanced Institute of Science and Technology, uehara@jaist.ac.jp
11 Osaka Prefecture University, uno@mi.s.osakafu-u.ac.jp

2

3 1 4 4
2 1 2 8 6
5 5 8 3

7 6 7 3
8 9 9 9

(a) (b) (c)

Fig. 1. (a) Level 7 in the Buttons & Scissors app is an m×n = 5× 5 grid with C = 5
colors, each used at most F = 7 times; (b) a solution using nine cuts with sizes in
S = {2,3} and directions d= (no vertical cut is used); (c) a gadget used in Theorem 5.

2 Preliminaries

A Buttons & Scissors board B is an m×n grid, where each grid position is either
empty or occupied by a button with one of C different colors. A cut is given by
two distinct buttons b1,b2 of the same color c that share either the x-coordinate,
the y-coordinate, or are located on the same diagonal (45

◦
and −45

◦
). The size

s of a cut is the number of buttons on the line segment b1b2 and so s≥ 2. A cut
is feasible for B if b1b2 only contains buttons of a single color.

When a feasible cut is applied to a board B, the resulting board B′ is obtained
by substituting the buttons of color c on b1b2 with empty grid entries. A solution
to board B is a sequence of boards and feasible cuts B1,x1,B2,x2,. . .,Bt,xt,Bt+1,
where Bt+1 is empty, and each cut xi is feasible for Bi and creates Bi+1.

Each instance can be parameterized as follows (see Fig. 1 for an example):
1. The board size m×n.
2. The number of colors C.
3. The maximum frequency F of an individual color.
4. The cut directions d can be limited to d ∈ { , , , }.
5. The cut size set S limits feasible cuts to having size s ∈ S.

Each d ∈ { , , , } is a set of cut directions (i.e. for horizontal and vertical).
We limit ourselves to these options because an m×n board can be rotated 90◦ to
an equivalent n×m board, or 45◦ to an equivalent k×k board for k =m+n−1
with blank squares. Similarly, we can shear the grid by padding row i with i−1
blanks on the left and m−i blanks on the right which converts d= to d= . We
obtain the family of games below (B&S[n×n,∞,∞, ,{2,3}](B) is the original):

Decision Problem: B&S[m×n,C,F,d,S](B).
Input: An m×n board B with buttons of C colors, each used at most F times.
Output: True ⇐⇒ B is solvable with cuts of size s ∈ S and directions d.

Now we provide three observations for later use. First note that a single
cut of size s can be accomplished by cuts of size s1,s2, . . . ,sk so long as s =
s1 + s2 + · · ·+ sk and si ≥ 2 for all i. Second note that removing all buttons of a
single color from a solvable instance cannot result in an unsolvable instance.

3

Remark 1. A board can be solved with cut sizes S = {2,3,. . .} if and only if it can
be solved with cut sizes S′ = {2,3}. Also, {3,4, . . .} and {3,4,5} are equivalent.

Remark 2. If board B′ is obtained from board B by removing every button of
a single color, then B&S[m×n,C,F,d,S](B) =⇒ B&S[m×n,C,F,d,S](B′).

3 Single-Player Puzzle

3.1 Board Size

We solve one row problems below, and give a conjecture for two rows in Section 5.

Theorem 1. B&S[1×n,∞,∞, ,{2,3}](B) is polytime solvable.

Proof. Consider the following context-free grammar,

S→ ε |� | SS | xSx | xSxSx

where � is an empty square and x∈ {1,2,. . .,C}. By Remark 1, the solvable 1×n
boards are in one-to-one correspondence with the strings in this language. ut

3.2 Number of Colors

Hardness for 2 colors. We begin with a straightforward reduction from 3SAT.
The result will be strengthened later by Theorem 7 using a more difficult proof.

Theorem 2. B&S[n×n,2,∞, ,{2,3}](B) is NP-complete.

Proof Sketch: A variable gadget has its own row with exactly three buttons. The
middle button is alone in its column, and must be matched with at least one of
the other two in the variable row. If the left button is not used in this match,
we consider the variable set to true. If the right button is not used, we consider
the variable set to false. A button not used in a variable is an available output,
and can then serve as an available input to be used in other gadgets.

Every clause gadget has its own column, with exactly four buttons. The
topmost button (clause button) is alone in its row; the others are inputs. If at
least one of these is an available input, then we can match the clause button
with all available inputs. We construct one clause gadget per formula clause,
connecting its inputs to the appropriate variable outputs. Then, we can clear all
the clauses just when we have made variable selections that satisfy the formula.

The variables are connected to the clauses via a multi-purpose split gadget
(Fig. 2(a)). Unlike the variable and the clause, this gadget uses buttons of two
colors. The bottom button is an input; the top two are outputs. If the input
button is available, we can match the middle row of the gadget as shown in
Fig. 2(b), leaving the output buttons available. But if the input is not available,
then the only way the middle row can be cleared is to first clear the red buttons
in vertical pairs, as shown in Fig. 2(c); then the output buttons are not available.

We provide a further description of the split gadget and complete the proof
in the full version of this article.

�

4

(a) (b) (c)

Fig. 2. Split gadget (a) and the two possible ways to clear it (b) and (c).

e
v w v wu1 u2

=⇒
e

v w v w
u1 u2=⇒ u3 u4 u5 u6

p1 p2 p3 p1 p2 p3

a

b

c

d

=⇒
a

b c

d

a

b

c

d

=⇒
a

b c

d

Fig. 3. Top-left: splitting 3-cycles when there are no adjacent triangles to edge e;
top-right: splitting 3-cycles when e has adjacent triangles (shaded). Bottom-left: con-
structing Gc from four cuts blocking each other in a cycle; bottom-right: constructing
Gc from the same cuts after reassigning the blocking buttons

Polynomial-Time Algorithm for 1-color and any cut directions. Given
an instance B with C = 1 color and cut directions d∈ { , , , }, we construct a
hypergraphG that has one node per button inB. A set of nodes is connected with
a hyperedge if the corresponding buttons lie on the same horizontal, vertical, or
diagonal line whose direction is in d, i.e., they can potentially be removed by the
same cut. By Remark 1 it is sufficient to consider a hypergraph with only 2- and
3-edges. A solution to B corresponds to a perfect matching in G. For clarity, we
shall call a 3-edge in G a triangle, and a 2-edge simply an edge.

Cornuéjols et al. [1] showed how to compute a perfect K2 and K3 matching
in a graph in polynomial time. However, their result is not directly applicable to
our graph G yet, as we need to find a matching that consists only of edges and
proper triangles, and avoids K3’s formed by cycles of three edges.

To apply [1] we construct graph G′ by adding vertices to eliminate all cycles
of three edges as follows (see top of Fig. 3). Start with G′ = G. Consider an
e= (v,w) ∈G′ in a 3-cycle (a cycle of three edges). There are two cases: e is not
adjacent to any triangle in G′, or e is adjacent to some triangles in G′. In the
first case we add vertices u1 and u2 that split e into three edges (v,u1), (u1,u2),
and (u2,w). In the second case, when e is adjacent to k triangles, we add 2k
vertices u1,u2 . . . ,u2k along e, and replace every 4pivw with 4pivu2i−1.

5

Lemma 1. There exists a perfect edge- and triangle-matching in G′ iff there
exists perfect edge- and triangle-matching in G.

Proof. Given a perfect matching M in G, we construct a perfect matching M ′

in G′. Consider e= (v,w) in G. If e is not adjacent to any triangles in G, then
– if e ∈M then add edges (v,u1) and (u2,w) of G′ to M ′ (both v and w are

covered by e, and all v, w, u1, and u2 are covered by M ′);
– if e 6∈M then add edge (u1,u2) of G′ to M ′ (v and w are not covered by e,

and u1 and u2 are covered by M ′).
In both cases above the extra nodes in G′ are covered by edges in M ′, and if
v and w in G are covered by e in M then v and w are covered by (v,u1) and
(u2,w) in G′. If e is adjacent to some triangles in G,

– if e ∈M then in G′ add edges (v,u1), (u2k,w), and (u2j ,u2j+1) to M ′, for
1≤ j < k;

– if4pivw ∈M for some i then add4pivu2i−1, edges (u2j−1,u2j) for 1≤ j < i,
(u2j ,u2j+1) for i≤ j < k, and (u2k,w) of G′ to M ′;

– if neither e nor any triangle adjacent to e is in M then add edges (u2j−1,u2j)
of G′ to M ′, for 1≤ j ≤ k.

In all the above cases the extra nodes in G′ are covered by edges in M ′, and if
v and w in G are covered by e or a triangle in M then v and w are also covered
by (v,u1) and (u2,w) or by a corresponding triangle in G′.

Refer to the full version of this article for the details on how to create a
perfect matching in G from one in G′. ut

Thus, a perfect edge- and triangle-matching in G that does not use a 3-cycle
(if it exists) can be found by first converting G to G′ and applying the result
in [1] to G′. A solution of B consisting of 2- and 3-cuts can be reduced to a
perfect edge- and triangle-matching in G; however, the opposite is not a trivial
task. A perfect matching in G can correspond to a set of cuts CM in B that
are blocking each other (see bottom of Fig. 3). To extract a proper order of the
cuts we build another graph Gc that has a node per cut in CM and a directed
edge between two nodes if the cut corresponding to the second node is blocking
the cut corresponding to the first node. If Gc does not have cycles, then there
is a partial order on the cuts. The cuts that correspond to the nodes with no
outgoing edges can be applied first, and the corresponding nodes can be removed
from Gc. However, if Gc contains cycles, there is no order in which the cuts can
be applied to clear up board B. In this case we will need to modify some of the
cuts in order to remove cycles from Gc. We provide the details in the full version
of this article.

By Lemma 1 and by the construction above we obtain the following theorem.

Theorem 3. B&S[n×n,1,∞,d,{2,3}](B) is polytime solvable for all d∈{ , , , }.

3.3 Frequency of Colors

Theorem 4. B&S[n×n,∞,3, ,{2,3}](B) is polytime solvable.

6

Proof. A single cut in any solution removes a color. By Remark 2, these cuts do
not make a solvable board unsolvable. Thus, a greedy algorithm suffices. ut

Hardness was established for maximum frequency F = 7 in [2]. We strengthen
this to F = 4 via the modified clause gadget in Fig. 1 (c). In this gadget the
leftmost circular button can be removed if and only if at least one of the three
non-circular buttons is removed by a vertical cut. Thus, it can replace the clause
gadget in Section 4.1 of [2]. Theorem 5 is proven in the full version of this article.

Theorem 5. B&S[n×n,∞,4, ,{2,3}](B) is NP-complete.

3.4 Cut Sizes

Section 3.2 provided a polytime algorithm for 1-color. However, if we reduce the
cut size set from {2,3,4} to {3,4} then it is NP-complete. We also strengthen
Theorem 2 by showing that 2-color puzzles are hard with cut size set {2}.

Hardness for Cut Sizes {3,4} and 1-Color

Theorem 6. B&S[n×n,1,∞, ,{3,4}](B) is NP-complete.

Proof. We show B&S[n×n,1,∞, ,{3,4}](B) to be NP-hard by a reduction from
PLANAR 3-SAT, which was shown to be NP-complete by Lichtenstein [3].

An instance F of the PLANAR 3-SAT problem is a Boolean formula in 3-
CNF consisting of a set C of m clauses over n variables V. The variable-clause
incidence graph G = (C ∪ V,E) is planar, and all variables are connected in a

(a) (b)

(c)

Fig. 4. (a) The only two cut possibilities in the variable gadget (shown in black and
gray), corresponding to truth assignments of “true” and “false”, respectively. (b) The
bend gadget for the 1-color case. (c) The clause gadget for the 1-color case.

7

cycle. The PLANAR 3-SAT problem is to decide whether there exists a truth
assignment to the variables such that at least one literal per clause is true.

We turn the planar embedding of G into a Buttons & Scissors board, i.e., we
present variables, clauses and edges by single-color buttons that need to be cut.
We provide detailed descriptions of each gadget in the full version of this article.

The variable gadget, shown in Fig. 4(a), enables us to associate horizontal
and diagonal cut patterns with “true” and “false” values, respectively.

The bend gadget, shown in Fig. 4(b), enables us to bend a wire to match
the bends in G’s embedding while enforcing that the same values are propagated
through the bent wire.

(b)(a)

Fig. 5. (a) The not gadget, negating the input truth assignment, for the 1-color case.
(b) The split gadget for the 1-color case.

The split gadget, shown in Fig. 5(b), enables us to increase the number of
wires leaving a variable and propagating its truth assignment.

The not gadget, shown in Fig. 5(a), enables us to reverse the truth assign-
ment in a variable wire.

The clause gadget is shown in Fig. 4(c). This gadget simulates a conjunction
of literals.

Thus, the resulting Buttons & Scissors board has a solution if and only if at
least one of the literals per clause is set to true, that is, if and only if the original
PLANAR 3-SAT formula F is satisfiable. It is easy to see that this reduction
is possible in polynomial time. In addition, given a Buttons & Scissors board
and a sequence of cuts, it is easy to check whether those constitute a solution,
i.e., whether all cuts are feasible and result in a board with only empty grid
entries. Hence, B&S[n× n,1,∞, ,{3,4}](B) is in the class NP. Consequently,
B&S[n×n,1,∞, ,{3,4}](B) is NP-complete. ut

Hardness for Cut Size {2} and 2-Colors An intermediate problem is below.
Decision Problem: Graph Decycling on (G,S).
Input: Directed graph G= (V,E) and a set of disjoint pairs of vertices S⊆V ×V .
Output: True, if we can make G acyclic by removing either s or s′ from G for
every pair (s,s′) ∈ S. Otherwise, False.

8

u

v

t

(a)

u

v

s t

(b)

u
v

t

w

(c)

v

u

s

w

x

t

(d)

Fig. 6. Three types of nodes: (a) in-degree 1 (tu) and out-degree 1 (uv); (b) in-degree
2 (su and tu) and out-degree 1 (uv); (c) in-degree 1 (tu) and out-degree 2 (uv and uw).
In (d) the nodes u and v are linked in S and we can choose to remove u or v.

Lemma 2. Graph Decycling reduces to Buttons & Scissors with 2 colors.

Proof. Consider an instance (G,S) to graph decycling. First, we observe that
we can assume that every vertex in G has degree 2 or 3, and more specifically,
in-degree 1 or 2, and out-degree 1 or 2. Indeed, we can safely remove any vertices
with in- or out-degree 0 without changing the outcome of the problem. Also, we
can replace a node with out-degree k by a binary tree of nodes with out-degree
2. The same applies to nodes with in-degree k.

Furthermore, we can assume that every vertex that appears in S has degree 2.
Indeed, we can replace any degree 3 vertex by two vertices of degree 2 and 3,
and use the degree 2 vertex in S without changing the outcome. Similarly, we
can assume that no two vertices of degree 3 are adjacent. Finally, we can assume
that G is bipartite, and furthermore, that all vertices that occur in S are in the
same half of V , since we can replace any edge by a path of two edges.

Now, we discuss how to model such a graph in a Buttons & Scissors instance.
Each node will correspond to a pair of buttons, either a red or a green pair ac-
cording to a bipartition of V . These pairs of buttons will be mapped to locations
in the plane on a common (horizontal for red, vertical for green) line, and such
that any two buttons of the same color that are not a pair are not on a common
(horizontal, vertical, or diagonal) line (unless otherwise specified). If two nodes
of opposite colors u and v are connected by an edge in G, we say that u blocks
v. In this case, one of the buttons of u will be on the same line as the buttons of
v, and more specifically, it will be between the two buttons of v. That is, v can
only be cut if u is cut first. Buttons of opposite colors that are not connected by
an edge will not be on any common lines either.

As discussed above, we can assume we have only three possible types of nodes.
Fig. 6(a) illustrates the simplest case, of a node u with one incoming edge tu
and one outgoing edge uv. Clearly, t blocks u and u blocks v. To model a node
with in-degree 2, we need to put two buttons of different same-colored nodes on
the same line (see Fig. 6(b)). As long as the other endpoints of these two edges
are not on a common line this is no problem: we never want to create a cut
that removes one button of s and one of t, since that would create an unsolvable

9

instance. Finally, to model a node with out-degree 2, we simply place a vertical
edge on both ends of u (see Fig. 6(c)). Note that is it important here that we do
not connect two nodes with out-degree 2 to the same two nodes with in-degree
2, since then we would have both pairs of endpoints on a common line; however,
we assumed that nodes of degree 3 are never adjacent so this does not occur.

It remains to create a mechanism to remove vertices from G as dictated by S.
This is illustrated in Fig. 6(d) with details in the full version of this article. ut

A proof of Lemma 3 is in the full version of this article. Lemmas 2 and 3 give
Theorem 7.

Lemma 3. SAT reduces to Graph Decycling.

Theorem 7. B&S[n×n,2,∞, ,{2}](B) is NP-complete.

4 Two-Player Games

We consider three two-player Buttons & Scissors variants. First we consider
color restricted games where (a) each player can only cut specific colors, and (b)
players are not restricted to specific colors. For (a) player blue may only cut Blue
buttons, while the red player may only cut Red buttons. For (b) we distinguish
by winning criterion: for (Impartial) the last player who makes a feasible cut
wins; for (Scoring) players keep track of the total number of buttons they’ve
cut. When no cuts can be made, the player with the most buttons cut wins.

In the following sections, we show that all variants are PSPACE-complete.

4.1 Cut-By-Color Games

In this section the first player can only cut blue buttons, the second player can
only cut red buttons, and the last player to make a cut wins.

Theorem 8. The partisan LAST two-player Buttons & Scissors game, where
one player cuts blue buttons, the other red buttons, is PSPACE-complete.

Proof. The proof is by reduction from G%free(CNF) [5]: given a boolean formula
Φ(x1, . . . ,xn) in CNF and a partition of the variables into two disjoint subsets
of equal size Vb and Vr, two players take turns in setting values of the variables,
the first (Blue) player sets the values of variables in Vb, and the second (Red)
player sets the values of variables in Vr. Blue wins if, after all variables have
been assigned some values, formula Φ is satisfied, and loses otherwise.

For a given instance of formula Φ we construct a Buttons & Scissors board
B, such that Blue can win the game on B if and only if he can satisfy formula
Φ. We will prove this statement in different formulation: Red wins the game on
B if and only if formula Φ cannot be satisfied. For a complete example see the
full version of this article.

The red variable gadget is shown in Fig. 7(a). Red “sets the value” of the
corresponding variable by choosing the first cut to be a (false) or b (true), and

10

(a) (b) (c) (d) (e)

Fig. 7. (a) The red (dashed) variable gadget, (b) the blue (solid) variable gadget, (c)
the split gadget, (d) the OR gadget, and (e) the AND gadget. Lines (or arcs used for
clarity) indicate which buttons are aligned.

thus unlocking one of the two cuts, c or d, respectively, for Blue to follow up
(and to propagate the value of the variable).

The blue variable gadget is shown in Fig. 7(b). Blue “sets the value” of
the corresponding variable by choosing the first cut to be a (false) or b (true),
and thus unlocking one of the two cuts, d or e, respectively, for the red player
to follow up. Blue has one extra cut c that is used to pass the turn to Red.
Alternatively, Blue can choose to start with the 3-button cut c and disallow Red
from making any cuts in the gadget. In that case the corresponding variable
cannot be used to satisfy Φ.

Fig. 7(d) depicts the OR gadget: if Blue cuts a or b (or both), Red can leave
the gadget with cut h. Cuts a and b unblock cuts c and d, respectively, which in
turn unblock e and f , respectively.

Fig. 7(e) depicts the AND gadget for two inputs. The proper way of passing
the gadget: Blue makes both cuts a and b, and Red makes cuts c and d when they
get unblocked, thus enabling Blue to make cut g and exit the gadget. However,
Red could also take an “illegal” cut x, thus, unblocking two extra cuts, e and f ,
for the blue player, and, hence, putting Red at a disadvantage. Thus, if at any
point in the game Red chooses (or is forced to) make cut x in any of the AND
gadgets, the game result is predetermined, and Red cannot win on B.

Fig. 7(c) shows the split gadget; it enables us to increase the number of cuts
leaving a variable and propagating its truth assignment. Blue’s cut a unblocks
Red’s cut b, which unblocks both c and d. If Blue cuts c and d this enables Red
to cut e and f , respectively. The gadget also exists with Blue and Red reversed.

A variant of the split gadget evaluates the formula Φ: cuts e and f are deleted.
If the variable values are propagated to this gadget and Red is forced to make
the cut b, Blue then gets extra cuts which Red will not be able to follow up.

The game progresses as follows: Blue selects an assignment to a blue variable.
This unlocks a path of red-blue cuts that goes through some AND and OR
gadgets and leads to the final gadget. As the order of the cuts in such a path is

11

deterministic, and does not affect the choice of values of other variables, w.l.o.g.,
we assume that Red and Blue make all the cuts in this path (until it gets “stuck”)
before setting the next variable. The path gets stuck when it reaches some AND
gadget for which the other input has not been cleared. The last cut in such a
path was made by Red, thus afterwards it will be Blue’s turn, and he may choose
to make the leftover cut c from the variable gadget to pass the turn to Red.

If the final gadget is not unblocked yet, Red always has a cut to make after
Blue makes a move, as there is the same number of blue and red variables.
However, if Blue can force Red to make moves until the final gadget is reached,
then Blue gets extra cuts; thus, Red will run out of moves and lose the game.
Otherwise, if Blue cannot fulfill some AND or OR gadgets, the Red player will
make the last move and win. Therefore, if Φ cannot be satisfied, Red wins. ut

4.2 Any Color Games

Theorem 9. Impartial two-player Buttons & Scissors is PSPACE-complete.

Theorem 10. Scoring two-player Buttons & Scissors is PSPACE-complete.

We show that Impartial is PSPACE-complete, then use one more gadget to
show Scoring is PSPACE-complete. We reduce from Geography1, (PSPACE-
complete [4]). We use Lemma 4 to start with low-degree Geography instances.

Lemma 4. Geography is PSPACE-complete even when vertices have max de-
gree 3 and the max in-degree and out-degree of each vertex is 2.

The full version of this article proves Lemma 4 and Theorem 9 with these gadgets:
– In-degree 1, out-degree 1: The gadget for this is a pair of buttons such

that removing the first pair frees up the second, as in Fig. 8(a).
– In-degree 1, out-degree 2: See Fig. 8(b) and the full version of this article.
– In-degree 2, out-degree 1: See Fig. 8(c) and the full version of this article.
– In-degree 0: The gadgets for this look just like the gadgets for the analagous

in-degree 1 gadgets, but without the button pair for the incoming edge.
– Out-degree 0: Each edge is a button pair that won’t free up other buttons.

To show Scoring is hard, we create a reduction where after each turn,
that player will have cut the most buttons; the last player to move wins. This
alternating-advantage situation is caused by an initial gadget. The optimal play
sequence begins by cutting two buttons, then three, then three, then three a
final time. After these four moves, the first player will have five points and the
second player six. Each subsequent cut removes two buttons so each turn ends
with the current player ahead.

Fig. 8(d) shows the starting gadget that sets up this initial back-and-forth.
The color-f buttons will be the last two cut; the right-hand f button must be
blocking the next gadget. Lemma 5 postulates that f will be last.

1 Specifically, Directed Vertex Geography, usually called Geography.

12

a b

(a)

a

b

c

x

x

z z

z

y

y
c

b

a

(b)

a

c
b

y

y

x

x

x

a

b
c

(c)
a

b

c

d

e f

(d)

Fig. 8. Reduction gadgets for vertex with (a) one incoming arc and one outgoing arc,
(b) one incoming arc and two outgoing arcs, and (c) two incoming arcs and one outgoing
arcs. (d) The starting gadget for Scoring.

Lemma 5. If a player has a winning strategy, then part of that winning strategy
includes cutting all possible buttons of colors a, b, c, d, and e before cutting f .

The full version of this article proves Lemma 5, and also shows how these
lemmas provide Theorem 10.

5 Open Problems

Interesting problems for boards with a constant number of rows are still open.
A conjecture for m= 2 rows appears below.

Conjecture 1. There is a polynomial time algorithm that removes all but s but-
tons from any full 2×n board with C = 2 colors for some constant s.

References

1. G. Cornuéjols, D. Hartvigsen, and W. Pulleyblank. Packing subgraphs in a graph.
Operations Research Letters, 1(4):139–143, 1982.

2. H. Gregg, J. Leonard, A. Santiago, and A. Williams. Buttons & Scissors is NP-
complete. In Proc. 27th Canad. Conf. Comput. Geom., 2015.

3. D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput., 11(2):329–343,
1982.

4. D. Lichtenstein and M. Sipser. Go is polynomial-space hard. J. ACM, 27(2):393–
401, 1980.

5. T. J. Schaefer. On the complexity of some two-person perfect-information games.
Journal of Computer and System Sciences, 16(2):185–225, 1978.

	Single-Player and Two-Player Buttons & Scissors Games (Extended Abstract)
	Introduction
	Preliminaries
	Single-Player Puzzle
	Board Size
	Number of Colors
	Frequency of Colors
	Cut Sizes

	Two-Player Games
	Cut-By-Color Games
	Any Color Games

	Open Problems

