
PushPush and Push-1 are NP-hard in 2D

Erik D. Demaine ∗ Martin L. Demaine∗ Joseph O’Rourke†

Abstract

We prove that two pushing-blocks puzzles are in-
tractable in 2D. One of our constructions improves
an earlier result that established intractability in
3D [OS99] for a puzzle inspired by the game PushPush.
The second construction answers a question we raised
in [DDO00] for a variant we call Push-1. Both puzzles
consist of unit square blocks on an integer lattice; all
blocks are movable. An agent may push blocks (but
never pull them) in attempting to move between given
start and goal positions. In the PushPush version, the
agent can only push one block at a time, and moreover
when a block is pushed it slides the maximal extent
of its free range. In the Push-1 version, the agent can
only push one block one square at a time, the minimal
extent—one square. Both NP-hardness proofs are by
reduction from SAT, and rely on a common construc-
tion.

1 Introduction

There are a variety of “sliding blocks” puzzles whose
time complexity has been analyzed. One class, typified
by the 15-puzzle so heavily studied in AI, permits an
outside agent to move the blocks. Another class falls
more under the guise of motion planning. Here a robot
or internal agent plans a path in the presence of mov-
able obstacles. This line was initiated by a paper of
Wilfong [Wil91], who proved NP-hardness of a particu-
lar version in which the robot could pull as well as push
the obstacles, which were not restricted to be squares.
Subsequent work sharpened the class of problems by
weakening the robot to only push obstacles, and by
restricting all obstacles to be unit squares. Even this
version is NP-hard when some blocks may be fixed to
the board (made unpushable) [DO92].

One theme in this research has been to estab-
lish stronger degrees of intractability, in particular,
to distinguish between NP-hardness and PSPACE-
completeness, the latter being the stronger claim. The
NP-hardness proved in [DO92] was strengthened to

∗Dept. Comput Sci., Univ. Waterloo, Waterloo, Ontario N2L
3G1, Canada. {eddemaine, mldemaine}@uwaterloo.ca.
†Dept. Comput. Sci., Smith College, Northampton, MA

01063, USA. orourke@cs.smith.edu. Supported by NSF grant
CCR-9731804.

PSPACE-completeness in an unfinished manuscript
[BOS94]. More firm are the results on Sokoban, a com-
puter game that restricts the pushing robot to only
push one block at a time, and requires the storing
of (some or all) blocks into designated “storage loca-
tions.” This game was proved NP-hard in [DZ95], and
PSPACE-complete by Culberson [Cul98].

Here we emphasize another theme: finding a non-
trivial version of the game that is not intractable. To
date only the most uninteresting versions are known to
be solvable in polynomial time, for example, where the
robot’s path must be monotonic [DO92]. To explore
the variety of pushing-block puzzles it is useful classify
them according to these characteristics:

1. Can the robot pull as well as push?

2. Are all blocks unit squares, or may they have dif-
ferent shapes?

3. Are all blocks movable, or are some fixed to the
board?

4. Can the robot push more than one block at a time?

5. Is the goal for the robot to move from s to t, or is
the goal for the robot to push blocks into storage
locations?

6. The dimension of the puzzle: 2D or 3D?

7. Do blocks move the minimal amount, exactly how
far they are pushed, or do they slide the maximal
amount of their free range?

If our goal is to find the weakest robot and most
unconstrained puzzle conditions that still lead to in-
tractability, it is reasonable to consider robots who can
only push (1), and to restrict all blocks to be unit
squares (2), as in [DO92, DZ95, Cul98], for permitting
robots to pull, and permitting blocks of other shapes,
makes it relatively easy to construct intractable puz-
zles. It also makes sense to explore the goal of simply
finding a path (5) as in [Wil91, DO92], rather than
the more challenging task of storing the blocks as in
Sokoban [DZ95, Cul98]. Allowing the robot to move
in 3D [OS99] gives it more “power” than it has in
2D [DDO00] (6), so we focus on 2D.

The versions explored in this paper superficially seem
that they might lend themselves to polynomial-time
algorithms: in both, the robot can only push one
block (4), and all blocks are pushable (3). We ex-
plore two different versions, the first again inspired by a



x1

x2

x3

x1 + x2

x1 + ~x2

~ x1 + x3

~x1 + x2 + x3

~x1 + ~x3

t

T

F

T

F

T

F

C1

C2

C3

C4

s

Fork

One-Way

Variable

Clause

Lock

Key

Crossovers

x1

x2

x3

x1 + x2

x1 + ~x2

~ x1 + x3

~x1 + x2 + x3

~x1 + ~x3

t

T

F

T

F

T

F

C1

C2

C3

C4

s

Figure 1: Left: Complete construction of the NP-hardness reduction for PushPush from [OS99] for the formulas
in Eq. (1) and Eq. (2) (including the shaded portion). Right: Solution path for Eq. (2). [Based on Figs. 6 and 7
in [OS99].]

computer game, PushPush.1 The key difference in this
game is in characteristic (7): when a block is pushed,
it necessarily slides (as without friction) the maximal
extent of the available empty space in the direction in
which it was shoved. It was established in [OS99] that
the problem is intractable in 3D, but its status in 2D
was left open in that paper. Here we settle the issue by
extending the reduction to 2D.

Continuing the theme of weakening the robot’s ca-
pabilities, we also study a version we call Push-1, with
the same characteristics as PushPush except that the
one pushed block moves the minimal amount, just one
square at a time.

Although our original proof for the hardness of Push-
Push [DDO00] very much relied on maximal sliding,

1The earliest reference we can find to the game is a ver-
sion written for the Macintosh by Alan Rogers and C.M.
Mead III, Copyright 1994, http://www.kidsdomain.com/down/

mac/pushpush.html. Another version for the Amiga was writ-
ten by Luigi Recanatese in 1997, http://de.aminet.net/aminet/
dirs/game_think.html. See also http://daisy.uwaterloo.ca/

~eddemain/pushingblocks/ for our implementation.

the proof we offer in this paper establishes both games
NP-hard via the exact same construction. We arrange
so little freedom that maximal and minimal sliding be-
come the same. We start in Section 2 with the 3D Push-
Push construction from [OS99], whose overall structure
is followed in the new proof, described in Section 3. A
summary of related results is presented in the final sec-
tion.

2 PushPush in 3D

We first review the hardness proof from [OS99], which
forms a skeleton for our proofs. Observe that any 2× 2
cluster of movable blocks is forever frozen to a Push-
Push or Push-1 robot, for there is no way to chip away
at this unit. This makes it easy to construct “corri-
dors” surrounded by fixed regions to guide the robot’s
activities. To describe the PushPush 3D construction,
we use an orthogonal graph, whose edges represent the
corridors, understood to be surrounded by sufficiently

2



many 2 × 2 clusters to render any movement outside
the graph impossible. The few movable blocks are rep-
resented by circles.

2.1 3D SAT Reduction

The reduction is from SAT, i.e., satisfiability of formu-
las in conjunctive normal form. The basic idea is to
have variable “gadgets” or “units” that force the robot
to make a choice between two paths (setting the vari-
able xi to t or f). Each variable gadget connects to
the relevant clause gadgets. The variable units are ar-
ranged in a linked chain that must be visited in order,
after which the clause units must visited one after the
other. The clause units are impassable unless they were
earlier visited from a variable unit. The only paths from
s to t force the robot to traverse all variables and then
all clauses; so all clauses must be satisfied.

The complete construction for four clauses C1∧C2∧
C3 ∧ C4 is shown in Fig. 1, left. Two versions of the
clauses are shown in the figure: an unsatisfiable formula
(the dark lines), and a satisfiable formula (including the
shaded x2 wire):

(x1 ∨ x2) ∧ (x1∨ ∼x2) ∧ (∼x1 ∨ x3) ∧ (∼x1∨ ∼x3) (1)

(x1 ∨x2)∧ (x1∨ ∼x2)∧ (∼x1 ∨x2 ∨x3)∧ (∼x1∨ ∼x3) (2)

Here we are using ∼ x to represent the negation of the
variable x. A path from s to t in the satisfiable version
is illustrated in Fig. 1, right.

Fig. 1 identifies the essential components of the con-
struction, whose functionality will be duplicated under
the more demanding Push-1 conditions:

1. Variable units, where passage of the robot sets t
or f.

2. Fork gadgets, which force upon the robot the
variable-setting binary choice.

3. One-Way gadgets, which permit passage in one
direction but not the other.

4. Clause units, which may only be traversed if one
of its incident literals is t.

5. Lock & Key mechanisms, which prevent passage
unless a key block has been pushed.

6. Crossover units, which allow two “wires” to cross
without the possibility of leakage from one to the
other.

By far the greatest challenge is to construct 2D
crossovers.

3 Push-1 in 2D

We concentrate on Push-1, and argue at the end our
construction also works for PushPush. The complexity

of the constructions demand that we abandon the or-
thogonal graph representation, and instead show all the
blocks. Fixed blocks (that is, effectively fixed blocks)
are shaded more darkly than movable ones; the robot
is depicted as a small disk.

3.1 One-Way Gadget

The simple One-Way gadget is shown in Fig. 2. It only
permits passage in the “forward” a-to-b direction. Note
that after passage, it becomes a two-way corridor.

Aa

b

Figure 2: Passage from b to a is prevented by block A.

3.2 Fork Gadget

The Fork gadget, shown in Fig. 3, is the same mecha-
nism as employed in Fig. 1.

X

a

b

c

Figure 3: Fork gadget. Block X is initially at point x.

Lemma 1 A Fork gadget with central block X in posi-
tion x, permits passage from a to b, or from a to c, but
once b is reached from a, c is inaccessible via x; and
symmetrically, b is inaccessible via x once c is reached
from a.

Proof: To reach b from a, block X must be pushed
down into the corridor heading toward c. Then from b
it is no longer possible to traverse that corridor from
point x toward c. (Of course it might be possible to
reach c via some other route.) 2

3.3 Variable Unit

It is now easy to construct a a variable unit follow-
ing the design in Fig. 1: a Fork upon entrance, and

3



Fk

O-W O-W

Lk
a

b

u

v

Variable Unit

Clause Unit

F T

H

H

xi

xi

xk

xj

xk

xj

Figure 4: The connections between a variable unit (left)
and a clause unit (right). Here i < j < k. Notation:
O-W = One-Way; Fk = Fork; Lk = Lock; H = H-gadget.

a One-Way unit in the t and in the f paths upon exit
from the unit (see Fig. 4(left)). The Fork prevents leak-
age into the negated half by Lemma 1. Note also the
variable-clause wires have been spit into one-way wires,
for reasons to be explained shortly.

3.4 H-Gadget

The H -gadget, shown in Fig. 5,2 would be more accu-
rately named a “parallel tracks XOR”; the symbol ‘H’
is chosen to indicate parallel tracks with some interac-
tion. The following lemma summarizes its properties.

Lemma 2 The H-gadget in its initial configuration
(Fig. 5a) may be traversed from x0 to x1 (x-passage),
or from y0 to y1 (y-passage), but not in the reverse
directions. After x-passage, y-passage is no longer pos-
sible (Fig. 5b), and after y-passage, x-passage is no
longer possible.

Proof: Clear by inspection. 2

2This version was suggested by Michael Hoffmann [personal
communication, Aug. 2000].

Y

X

x1

y0

x0

y1 Y

X

x1

y0

x0

y1

(a) (b)

Figure 5: (a) H-gadget in initial configuration; (b) after
passage through x-corridor.

3.5 No-Reverse Gadget

Say a gadget with distinct entrance points is traversed
if the robot enters at one point and exits at another.
Notice that the One-Way gadget is “destroyed” by (for-
ward) traversal, in that subsequently it may be tra-
versed in either direction. We will need a No-Reverse
gadget, shown in Fig. 6, both to enforce the direction-
ality of the variable-clause wires, and later as a sub-
component of a crossover (Section 3.8).

C

B

A

C

BA

a

a

b

b

Figure 6: A No-Reverse gadget before (above) and after
(below) traversal.

Lemma 3 The No-Reverse gadget may be traversed
forward from a to b, but after forward traversal, it may
not be next traversed in reverse from b to a.

Proof: Block A must be moved leftward to leave room
for B to be moved down. The moved position of A then
blocks access to a from inside the gadget, preventing
reversal. (Note, however, that two forward traversals
render it an open corridor.) 2

3.6 The Lock

The lock and key mechanism for PushPush used in
Fig. 1 is straightforward, with key blocks preventing

4



the full slide of a necessarily pushed block. Our Push-1
Lock gadget, shown in its initial configuration in Fig. 7,
is more intricate. It has four access points, labeled a,
b, u, and v. Passage from a to b is blocked by a locked
“door” composed of blocks A, . . . ,K. The “key” block
L can be accessed via u and pushed to unlock the door,
then permitting a-to-b passage.

I J K L

E F

C

G H

B D

A

a

v

b

u

Figure 7: Initial configuration of Locked Door.

Lemma 4 A Lock has the following properties:

1. Upon first encounter, it cannot be traversed from
any of {a, b, v}; only passage from u to v is possi-
ble.

2. After entrance from u, only v can be reached. This
remains true even if re-entered from u later.

3. After entrance from u, the state of the gadget may
be altered (unlocked) to permit later passage from
a to b.

4. After such later a-to-b traversal, all of {a, b, u} are
open to each other through the gadget.

Proof: That traversal is blocked from three of the en-
trance points is clear by inspection of Fig. 7. The door
is unlocked by entrance from u and pushing L down.
Note that from here K can be pushed left (and H can
be pushed down, etc.), but neither a nor b is accessible.

After unlocking from u and entrance from a, a series
of movements can be made that eventually give the
robot access to A from above. Start with four moves:
push K right, H down, G right, D down. The config-
uration here is shown in Fig. 8. Now the “wall” to the
left can be methodically moved by pushing I down, J
left, E down, F left, B down, and C left (or right). Now
A can be pushed down the vertical corridor, reaching
a state (Fig. 9) where {a, b, u} are mutually accessible,
but v is cut off, as claimed in the lemma. 2

I J K

LE F

C

G

HB

DA

a

v

b

u

Figure 8: After unlocking, partially traversed.

I

J K

L

E

F

C

G

H

B D

A

a

v

b

u

Figure 9: After complete traversal.

3.7 Clause Unit

The clause unit in Fig. 1 employed one key block per
literal, which made for a simple construction. Using the
Lock as just described requires all literals to access the
same unlocking point u, in essence sharing the same
key for the lock. A naive joining of the literal lines
at u would permit several types of pernicious leakage
between the lines. Insulation can be achieved by the
arrangement shown in the schematic in Fig. 4(right).

Lemma 5 A Clause unit may be traversed from a to b
only if it has been visited from an incident literal. Such
a visit from a literal does not give access to points a or
b; nor does it permit leakage from one literal wire to
another.

Proof: From the xi variable unit in Fig. 4, the robot
can reach point xi in the clause, unlock the lock via
entrance u, returning out exit v and back up to xi.
From there it will be shown later that it may only return
to its variable unit along the lower directed path.

As the robot traverses the xi-u path in the clause
unit, it passes through the H-gadgets, closing off later
access via xj and xk by Lemma 2. This ensures that
the lock can only be unlocked once, by one of the liter-
als: whichever literal path is traversed first necessarily
closes off the other literal paths. This prevents leakage
between literals.

5



Once the lock is opened by one of the literals with
access to unlocking point u, it may be later traversed
from a to b by Lemma 4(3). 2

We now have assembled enough parts to claim that
Push-1 is NP-hard in 3D, for we have designed sub-
stitutes for all components in Fig. 1. It remains to
construct a crossover.

3.8 Crossovers

In 3D, a general crossover without leakage is triv-
ial, permitting passage in either direction an arbitrary
number of times. Unfortunately it seems impossible
to construct such a powerful gadget for both Push1
and PushPush in 2D. For our original 2D PushPush
proof [DDO00], we designed a bidirectional crossover
that could be traversed once in each of the four direc-
tions, but was partially “destroyed” by each traversal,
so that subsequent crossings are not possible. This
suffices for the proof, as there is never any need to
visit a Clause unit twice from the same Variable unit.
However, we were unable to mimic the functionality of
our complex “double lock gadget” from [DDO00] for a
Push-1 robot. Instead, we found it necessary to further
exploit properties of the Variable-Clause visits, and in
particular, to enforce directionality, and to exploit a
natural sorting of the visits. Let the Variable units be
labeled x1, . . . , xn (as in Fig. 1); the linking of these
units then ensures xi is traversed prior to xj for i < j.
Our construction will arrange the wires so that the ver-
tical (n-s) wire at a crossover will always be traversed
prior to the horizontal (w-e) wire, and always at most
once. We describe the crossover construction in three
stages:

1. XOR Crossover

2. Limited Unidirectional Crossover

3. Bidirectional Crossover arrangement

3.8.1 XOR Crossover

The XOR Crossover is used in two places. First, hor-
izontal wires from the f-side of a particular Variable
unit cross the vertical t-wire of that unit (cf. Fig. 1).
The Variable unit construction ensures that passage
through the crossover will be either via the verti-
cal wire, or the horizontal, but never both; so an
“exclusive-or” crossover suffices here. Second, an XOR
Crossover will be embedded inside the more com-
plex Limited Unidirectional Crossover described in Sec-
tion 3.8.2. The XOR Crossover shown in Fig. 10 has
these properties:

Lemma 6 An XOR Crossover may be traversed from
x0 to x1 without leakage to y0 or y1, or from y0 to y1
without leakage to x0 or x1.

Y

X

x1

y0

x0

y1

Figure 10: XOR Crossover.

Proof: Consider passage from x0 to x1. This requires
pushing block X rightward, which then seals off y1.
And y0 is sealed off by block Y . The claim for the other
direction follows from the symmetry of the design. 2

3.8.2 Limited Unidirectional Crossover

The key component to our crossover design is what we
call a Limited Unidirectional Crossover (LUC), whose
core is shown in Fig. 11. It is limited in that it relies
on the vertical being traversed prior to the horizontal
(if both are), and unidirectional in that passage is only
permitted in one direction along the wires. It is also
limited in that it is designed to be traversed at most
once in each direction. Section 3.9 will extend to bidi-
rectionality.

The four entrance/exit points are labeled n, s, e, w.
Not shown in the figure are two No-Reverse gadgets af-
ter the e and s exits preventing return. Entrances from
w and n feed into an XOR crossover. The e entrance
is protected from entrance by a One-Way gadget, but
such protection is superfluous for the s entrance. The
remainder of the design consists of two (differently ori-
ented) Locks (L1 and L2), and two No-Reverse gadgets
(NR1 and NR2). Its essential behavior is captured by
this lemma:

Lemma 7 A Limited Unidirectional Crossover, in its
initial state, may not be entered from e or from s. It
may be traversed:

1. w-to-e without leakage to n or s; or

2. n-to-s without leakage to w or e; or

3. n-to-s followed later by w-to-e passage.

Proof: Initial entrance from e is stopped by block W3

in a One-Way gadget, and entrance from s is stopped
by block L2 of lock L2. We now detail the three possible
traversals.

6



1. w-to-e. If passage is through the XOR, then the
only possible leakage is to s via L2. But L2 is
locked and cannot be traversed in that direction,
b2 to v2, by Lemma 4(1).

2. n-to-s. Passage from n through the XOR neces-
sarily unlocks L1. From point v1, there are two
options: to c1, through NR1, and entrance a2 of
L2. But further progress along this route is not
possible, and in fact the robot is now stuck be-
cause of the No-Reverse unit. The second option,
to c2, through NR2, brings the robot to u2, the
unlocking entrance to L2. After unlocking L2, the
robot reaches s. At no point is it possible to access
e or w, because Lemma 4(1) guarantees that only
the u2 to v2 passage through L2 is possible.

3. n-to-s then w-to-e. After n-to-s passage, both L1
and L2 are unlocked, as we just noted. Consider
now an attempt at a w-to-e passage. The XOR
is blocked (by Y ) from the earlier n-to-s traversal.
But the robot can instead go through L1 from a1
to b1, and then via c1 to L2, passing through it
from a2 to b2.

2

Note that the lemma makes no claims about repeated
passages, as the overall design will prevent this possi-
bility.

3.9 Bidirectional Crossover

We achieve bidirectionality by arranging Limited Uni-
directional Crossovers together in the pattern shown in
Fig. 12 for any pair of literal (variable-clause) wires that
cross. Recall from Fig. 4 that a literal wire is in fact
two parallel wires, one intended for moving variable-to-
clause, the other for clause-to-variable. The direction-
ality of these wires is enforced by the properties and
orientation of the LUCs along it: Lemma 7 guarantees
they may not be entered initially from e or s, and the
NR gadgets at these exits ensure that reverse traversal
is not possible. The two wires in Fig. 12 are labeled
1 and 2, with wire 1 from Variable unit xi and 2 from
Variable unit xj with i < j. Thus the 1-wire will al-
ways be traversed first, and the crossover exploits this;
this is one sense it which it is limited. Each Limited
Unidirectional Crossover is oriented so that its “local”
n-to-s is wire 1, and w-to-e wire 2.

Lemma 8 A Bidirectional Crossover permits passage

1. forward and back along wire 1; or

2. forward and back along wire 2; or

3. forward and back along wire 1 followed by forward
and back along wire 2.

All these passages avoid leakage as long as each unit is
traversed at most once in each allowable direction.

Proof: The claimed properties follow directly from
Lemma 7 and the design. Consider top-to-bottom pas-
sage along the 1-wire, common to claims (1) and (3).
This takes the robot through the left two LUCs, leaving
them, by Lemma 7(3), in a state to permit later passage
left-to-right (through the top left LUC) and right-to-left
(through the bottom left LUC), both without leakage.

Consider left-to-right passage along the 2-wire with-
out prior traversal of the 1-wire, i.e., claim (2) of the
lemma. The robot faces two LUCs: the e-entrance of
the lower LUC and the w-entrance of the upper LUC.
By Lemma 7, the e-entrance is blocked, so the robot
may only pass through the upper LUC. Again leakage
is prevented to n or to s through this and the upper-
right LUC as well. The lower LUCs are accessible and
available for the return trip. 2

3.10 Overall Behavior

Consider the robot making a choice of t on variable xi.
If xi appears in some clause C, the robot is forced by
the design to travel down the variable-to-clause wire,
as in Fig. 4. As it crosses a literal wire for xj with
j < i, it crosses w-to-e; as it crosses a literal wire for
xk with k > i, it crosses n-to-s. By the design of the
LUCs, it both can do this, and is prevented from de-
viating from the literal path while doing so. When it
reaches the clause unit C, there are two possibilities.
First, the clause was previously visited along an earlier
literal wire, in which case the closed H-gadgets leave
it no choice but to return along the clause-to-variable
wire without entering C. (Note that then it must con-
tinue lower along the t-wire within the variable com-
ponent: it cannot back up and revisit an earlier literal
wire.) Second, the clause has not yet been visited, in
which case it has the option of unlocking the clause
Lock and returning to its variable component. If in
this case it opts not to unlock the Lock, then only if
some other literal is selected later could the lock be suc-
cessfully unlocked, permitting later passage along the
final clause-threading wire.

3.11 Main Theorem

Now the conclusion that Push-1 is NP-hard follows im-
mediately, for we have successfully constructed all the
components necessary. The overall design continues to
follow Fig. 1, with additional turns in the wires to ar-
range all crossovers to respect the ordering of the wires
crossed. Finally, a review of each constituent of the
construction shows that all retain their essential prop-
erties even if the robot has PushPush powers. We may
conclude:

7



I1

c1

b1

a1

J1 K1 L1

E1 F1

C1

G1 H1

B1 D1

A1

v1

u1

a2

v2

b2

u2

Y

X

A2

J2

K2

L2

E2

F2

C2

G2

H2

B2

D2

I2

N2

O2

R2

N1

O1

R1

d1

c2

w

n

e

s

x1

y1

x0

y0

W3

Figure 11: A Limited Unidirectional Crossover. Although all blocks are movable, only the lightly shaded blocks
might be moved. Not shown are NR gadgets beyond the e and s exits.

Theorem 1 PushPush and Push-1 are both NP-hard
in 2D.

We leave it open whether Theorem 1 can be strength-
ened in either direction: either by proving either prob-
lem is in NP, in which case it is NP-complete, or by
showing that either is PSPACE-complete.

4 Summary

We conclude by summarizing in Table 1 previous work
according to the classification scheme offered in Sec-
tion 1, and comparing it to recent work. The first
six lines show previous results, including the results
from [OS99]. (The 2D storage result is, incidentally,
not difficult.) The two boldface lines of the table are
the results of this paper.

The penultimate line of the table describes a re-
cent result by Hoffmann [Hof00]: “Push-∗” is NP-hard,
where all blocks are movable and the robot can push
an arbitrary number of blocks, sliding the minimal
amount. This settles an open problem from [DO92].

Finally, the last line of the table suggests a new open
problem with the same characteristics as Push-1, but
with the added stipulation that the robot never revisit
a square it previously occupied. It is easy to see that
this new problem, which we dub Push-1X, is in NP,
which already places it on a different footing than all
other problems. Perhaps Push-1X (or some variation
thereof) is in P?3

3Note added Aug. 2000: A new proof by M. Hoffmann and
E. Demaine [forthcoming] shows that even Push-1X is NP-hard.

8



1 2 3 4 5 6 7
Name Push? Blocks Fixed? # Path? Dim Sliding Complexity

pull L fixed k path 2D min NP-hard [Wil91]
push unit fixed k path 2D min NP-hard [DO92]

Sokoban push unit movable 1 storage 2D min NP-hard [DZ95]
Sokoban push unit movable 1 storage 2D min PSPACE [Cul98]

PushPush3D push unit movable 1 path 3D max NP-hard [OS99]
push unit movable 1 storage 2D max NP-hard [OS99]

PushPush2D push unit movable 1 path 2D max NP-hard

Push-1 push unit movable 1 path 2D min NP-hard

Push-∗ push unit movable k path 2D min NP-hard [Hof00]
Push-1X push unit movable 1 noncrossing 2D min open3

path

Table 1: Pushing block problems.

LUC

LUC

LUC

LUC

1

1

2 2

Figure 12: Bidirectional Crossover. LUC = Limited
Unidirectional Crossover (Fig. 11), oriented with w left
of ‘L’ and n above ‘U’.

Acknowledgments

We thank Therese Biedl for helpful discussions. The
third author acknowledges many insights from meetings
of the Smith Problem Solving Group.

Finally, we are grateful to Thomas Shermer for un-
covering an error in our proof, and helping to fix it
[personal communication, Aug. 2000]. In particular
our earlier version4 permitted some LUCs to be retra-
versed, which led to leakage that undermined the re-

4Presented at the 12th Canad. Conf. Comput. Geom., Aug.
2000.

duction.

References

[BOS94] D. Bremner, J. O’Rourke, and T. Sher-
mer. Motion planning amidst movable square
blocks is PSPACE complete. Draft, June,
1994.

[Cul98] J. Culberson. Sokoban is PSPACE-complete.
In Proc. Internat. Conf. Fun with Algorithms,
pages 65–76, Elba, Italy, June 1998. Carleton
Scientific.

[DDO00] E. D. Demaine, M. L. Demaine, and
J. O’Rourke. PushPush is NP-hard in
2D. Technical Report 066, Smith Col-
lege, Northampton, MA, January 2000. Pa-
per cs.CG/0001019, arXiv.org e-print archive,
http://arXiv.org/abs/cs.CG/0001019.

[DO92] A. Dhagat and J. O’Rourke. Motion plan-
ning amidst movable square blocks. In Proc.
4th Canad. Conf. Comput. Geom., pages 188–
191, 1992.

[DZ95] D. Dor and U. Zwick. SOKOBAN and other
motion planning problems. Comput. Geom.
Theory Appl., 13(4):215–228, 1999.

[Hof00] M. Hoffmann. Push-∗ is NP-hard. Proc. 12th
Canad. Conf. Comput. Geom. Fredericton,
New Brunswick, Canada, pages 205–209, Au-
gust 2000.

[OS99] J. O’Rourke and the Smith Problem Solving
Group. PushPush is NP-hard in 3D. Techni-
cal Report 064, Smith College, Northampton,

9



MA, November 1999. Paper cs.CG/9911013,
arXiv.org e-print archive, http://arXiv.

org/abs/cs.CG/9911013.

[Wil91] G. Wilfong. Motion planning in the presence
of movable obstacles. Ann. Math. Artif. In-
tell., 3:131–150, 1991.

10


