
Open Problems from CCCG 2001

Erik D. Demaine∗ Joseph O’Rourke†

The following is a list of the problems presented on
August 13, 2001 at the open-problem session of the 13th
Canadian Conference on Computational Geometry held
in Waterloo, Canada. One problem posed at the session
was later withdrawn when it became clear subsequently
that it was already solved in the literature.

Matching Problem on Pseudoline Segments

Ileana Streinu

Smith College

streinu@cs.smith.edu

Suppose we are given

1. an arrangement of n pseudolines;

2. n + 1 vertical lines defining n vertical slabs
(excluding the extreme infinite slabs); and

3. two points, one on the leftmost vertical line,
and one on the rightmost vertical line.

Refer to Figure 1. A monotone matching is a set
of n segments, each the portion of a unique pseu-
doline, and each spanning a unique slab, such that
the left endpoint of each segment is above the right
endpoint of the segment in the previous slab. In
addition, the point on the first vertical line is be-
low the left endpoint of the first segment, and the
point on the last vertical line is above the right
endpoint of the last segment.

What is the complexity of finding a monotone
matching, or reporting that one does not exist?
Under what conditions do they exist?

Examples in which monotone matchings do and
do not exist are available on the web [Str02]. This
problem is in fact motivated by a question on flood-
light illumination, and is stated in [Str94].

References

[SS98] William Steiger and Ileana Streinu. Illumi-
nation by floodlights. Comput. Geom. The-

ory Appl. 10:57–70, 1998. Preliminary ver-
sion in CCCG’94.

∗MIT Laboratory for Computer Science, 200 Technology

Square, Cambridge, MA 02139, USA, edemaine@mit.edu
†Department of Computer Science, Smith College, Northamp-

ton, MA 01063, USA. orourke@cs.smith.edu. Supported by

NSF Distinguished Teaching Scholars award DUE-0123154.

Figure 1: An example of a monotone matching.
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Proximate Point Location

John Iacono

Polytechnic University, Brooklyn

jiacono@poly.edu

Under what conditions can a planar decomposition
be preprocessed in order to support a sequence of
point location queries such that a query is faster
if it is “near” the previous query? (We might say
that such a data structure enjoys the “dynamic
finger property.”) More precisely, if the sequence
of queries is q1, . . . , qm, then the time to perform
query qi should be proportional to the logarithm
of their “distance,” denoted d(qi, qi−1). Two is-
sues remain to be specified precisely: what type of
planar decomposition is supported, and what func-
tion d measures the distance between two queries.
The distance function might involve both geome-
try (e.g., how many features are contained in an



ellipse whose foci are the two points) as well as
combinatorics (e.g., the graph distance in the dual
of the planar decomposition).

Splay trees [ST85] or level-linked trees [BT80]
achieve analogous results for the much simpler
one-dimensional setting. Motivated by this two-
dimensional problem, related results appear in
CCCG 2002 [DIL02] for the variation in which the
goal is to preprocess a set of points to support ex-
act point searches in the time specified above. In
this context, only a certain class of distance func-
tions are feasible; an example is the ellipse-based
distance mentioned above.
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Bar-Magnet Polyhedra

Joseph O’Rourke

Smith College

orourke@cs.smith.edu

[This problem appears as Problem 32 in The
Open Problem Project, http://www.cs.smith.

edu/~orourke/TOPP/P32.html.]

Which polyhedra are bar-magnet polyhedra? For
reasons detailed below, the problem can be
phrased as asking which 3-connected planar graphs
may have their edges directed so that the directions
“alternate” around each vertex.

Let P be a polyhedron with a set of edges E. For
an edge e ∈ E, define a bar magnet as a mapping
of e to either (N,S) or (S,N), which assigns the
endpoints of e opposite poles of a magnet (and cor-
responds to directing the edge). Call a vertex v of
P to be alternating under mappings of its edges to
bar magnets if the incident edges assigns alternat-
ing magnetic poles to v in the cyclic order of those
edges on the surface around v: (N,S,N, S, ...).
Thus if deg(v) is even, the poles alternate, and if
deg(v) is odd, at most two like poles are adjacent
in the circular sequence. Finally, call a polyhedron

a bar-magnet polyhedron if there is a bar-magnet
assignment of each of its edges so that each of its
vertices is alternating.

Updates. At the presentation of the problem,
Therese Biedl proved that the polyhedron formed
by gluing together two tetrahedra with congruent
bases is not a bar-magnet polyhedron: alternation
at the three degree-4 vertices of the common base
forces some other edge to be directed both ways.
Thus not all polyhedra are bar-magnet polyhe-
dra. Erik Demaine proved that a polyhedron all
of whose vertices have even degree is a bar-magnet
polyhedron: the graph has a face 2-coloring, and
the edges of the faces of color 1 can oriented coun-
terclockwise, which then orients each face of color
2 clockwise. He also observed that if every vertex
is of degree 3, Petersen’s theorem yields a perfect
matching that establishes such “simple” polyhe-
dra are bar-magnet polyhedra. It remains open
to characterize those polyhedral graphs (or more
generally, planar graphs) that may be directed to
satisfy alternation.

If one (considerably) loosens the criterion to only
demand “balance” at each vertex (rather than al-
ternation), then every graph may be balanced. De-
fine a node of a graph to be balanced if the number
of N- and S-poles differ by at most one there; equiv-
alently, if the number of in- and out-edges incident
to the node differ by at most one. Then any graph
G may be directed so that it is balanced. One
can prove this by repeatedly directing and then
deleting cycles, and finally balancing the remain-
ing trees. (Proof by the Smith Problem Solving
Group, Oct. 2001.)

More Pseudotriangulations than Triangulations?

Jack Snoeyink

U. North Carolina, Chapel Hill

snoeyink@cs.unc.edu

[This problem appears as Problem 40 in The
Open Problem Project, http://www.cs.smith.

edu/~orourke/TOPP/P40.html.]

For a planar point set S, is the number of pseudo-
triangulations always at least the number of trian-
gulations, with equality only when S is in convex
position?

A pseudotriangle is a planar polygon with exactly
three convex vertices. Each pair of convex vertices
is connected by a reflex chain, which may be just
one segment. (Thus, a triangle is a pseudotrian-
gle.) A pseudotriangulation of a set S of n points
in the plane is a partition of the convex hull of S

into pseudotriangles using S as a vertex set. A



minimum pseudotriangulation, or pointed pseudo-

triangulation, has the fewest possible number of
edges for a given set S of points.

The conjecture (“yes”) has been established for
all sets of at most 10 points: ≤ 9 by [BKPS01],
and 10 by Oswin Aichholzer [personal communica-
tion, 28 Mar. 2002]. See [Str00, KKM+01, O’R02]
for examples, explanation of the term “pointed,”
and further details. In CCCG 2002, Aichholzer
et al. [AAKS02] establish that the number of
pointed pseudotriangulations on n points is mini-
mized when the points are in convex position.
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Morse theory with two parameters?

Jack Snoeyink

U. North Carolina, Chapel Hill

snoeyink@cs.unc.edu

In topology, Morse theory studies the behavior of
a function f : X → R by considering level sets
L(d) = {x ∈ X|f(x) = d}. One example applica-
tion is the contour tree, which can be used to draw
level sets (also known as isosurfaces). As Pascucci
describes in [Pas01], the contour tree is obtained
by contracting each connected component of an
isosurface to a point. We can use the contour tree,
therefore, to determine a “seed point” on each con-
nected component from which that component can
be traced out. The size of this tree is the number
of topological changes in isosurfaces.

Suppose that we have the output of a simulation
as a time-varying scalar field f(x, y, z, t), and we
would like to view it by considering isosurfaces
I(t, d) = {(x, y, z) | d = f(x, y, z, t)}. Can we
create a two-parameter version of the contour tree
that, given t and d, will determine “seed points”
for isosurfaces I(t, d)? In general, what can we say
about Morse theory for two parameters?
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Smallest Sphere Intersecting Lines

Hamish Carr

U. British Columbia

hcarr@cs.ubc.ca

Given a set of n lines in 3-space, how quickly can
we find the smallest sphere that intersects all of
the lines? The same question may be asked for
rays. Four lines define a sphere, so the sphere can
be found in O(n5) time. Is there a better way?

In two dimensions, and indeed in higher dimen-
sions for the analogous problem of finding the
smallest ball intersecting hyperplanes, the problem
can be solved in linear time [BJMR91] by linear
programming in constant dimension.
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Sigmoid Curve Fitting Problem

Chee Yap

New York U.

yap@cs.nyu.edu

The motivation for this problem comes from our
work on edge detection. We want to detect edges
with “ramp profiles.” The typical cross-section of
an image around a ramp edge is a signal that has a
“sigmoid shape,” which we define as any curve that
is monotonic non-decreasing, starting and ending
with slope 0, with unimodal derivative.

The problem is: Given a finite signal f :
[−w,+w] → R, fit the best sigmoid curve s :
[−w,+w] → R to this signal. As a start, “best”
can be defined by any reasonable measure (e.g.,
the integral of the squared difference).

Often curve fitting problems ask for the best fit
selected from a parametric family. But we do not
assume any finitely parameterizable family of sig-
moid curves. Another alternative is to propose a
reasonable parametric family of sigmoid functions.

The non-parametric version seems more difficult.
To make it tractable, let us assume the discrete
version. So f is defined only on the integer values
from −w to +w. Now, a discrete sigmoid func-
tion s has the property that it is monotonic and
its second-order difference is unimodal. This sup-
ports a search for all such functions using dynamic
programming, but this is at best Θ(n4), and per-
haps as slow as Θ(n5) time.

Vertex-Unfolding of Nonsimplicial Polyhedra

Erik Demaine

Massachusetts Inst. Technology

edemaine@mit.edu

[This problem appears as Problem 42 in The
Open Problem Project, http://www.cs.smith.

edu/~orourke/TOPP/P42.html.]

Consider a polyhedron with simply connected
facets (no holes on a facet) and without bound-
ary (every edge is incident to exactly two facets).
Can the polyhedron be cut along potentially all of
its edges, but leaving certain faces connected at
vertices, and unfolded into one piece in the plane
without overlap? Such an unfolding is called a
vertex-unfolding, to distinguish from widely stud-
ied edge-unfoldings and general unfoldings. An
important subproblem here is whether all convex

polyhedra have vertex-unfoldings; a negative an-
swer would also resolve whether all convex polyhe-
dra have edge-unfoldings.

It is known that all simplicial polyhedra have
vertex-unfoldings [DEE+02]. These vertex-
unfoldings have a special structure called a “facet
path” which does not exist in general, even for con-
vex polyhedra [DEE+02].
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Embedding Triangles in 4-space

Tamal Dey

Ohio State U.

tamaldey@cis.ohio-state.edu

How many triangles can be embedded with n

points in 4-space? The triangle vertices must be se-
lected among the n points, and the triangles must
have pairwise disjoint interiors. It is known that
the bound is Θ(n2) in 3-space, and Θ(n3) in R

d for
d ≥ 5. I conjecture that the right bound is Θ(n2)
in 4-space.


