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Open Problems from CCCG 2007

Erik D. Demaine∗ Joseph O’Rourke†

The following is a list of the problems presented on
August 20, 2007 at the open-problem session of the 19th
Canadian Conference on Computational Geometry held
in Ottawa, Ontario, Canada.

Rolling a Sphere Upside-Down
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Imagine rolling a unit sphere on a plane without
slipping or twisting, so that the point of contact
follows a closed curve C. The south pole touches
the plane at the start. What is the shortest length
L = |C| that results in the north pole touching after
one complete circuit of C? Figure 1 shows a curve
achieving L = 3π. Also, C cannot be shorter than
the geodesic distance between the poles: L ≥ π.
Another C that achieves L = 3π is an equilateral
triangle of side length π. It is established in [Joh07]
that the poles cannot be interchanged by any C that
is a circle.
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Figure 1: Rolling a sphere to interchange the north and
south pole. Here |C| = 3π.
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Update. At the conference, Jack Snoeyink
found a path with length approximately 2.72 π.
Vishal Verma, a graduate student at UNC Chapel
Hill, joined him [VS07] to improve this to < 2.44 π
for a teardrop-shaped path depicted in Figure 2.

Figure 2: Path of plane/sphere contact in plane (left)
and on sphere (right). Dashed curve at right is the path
of the south pole as the sphere rolls.

Hammersley [Ham83] had posed a more general
form of this problem in the literature on optimal
control: for a unit sphere lying on the plane at
(x0, y0) and having initial orientation C0, deter-
mine the shortest path for it to roll without twist-
ing that brings it to point (x1, y1) with orienta-
tion C1. Although the solution to Hammersley’s
problem does not in general have a closed form,
Arthurs and Walsh [AW86] have given an expres-
sion as a boundary-value problem with ten coupled
partial differential equations that they use to derive
information on the curvature of optimal paths. For
the special case of a closed path above, their result
implies that the curvature is proportional to the
distance along the axis of symmetry, which estab-
lishes that the curve depicted in Figure 2 is optimal
if self-intersections are ruled out.
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Spanning Trees of the Graph of a Polyhedron
Alex Benton
Cambridge University
pb355@damtp.cam.ac.uk

What is the best possible bound on the number
of spanning trees of the 1-skeleton of a polyhedron,
i.e., a 3-connected planar graph?

Update. An upper bound on the number
of spanning trees of a polyhedron graph is de-
rived in [DO07, p. 431], based on a result of
McKay [McK83]: the number is O((16/3)n/n),
which is 2O(n).
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Minimum Length Barrier to X-rays in a Square
Jonathan Lenchner
IBM T.J. Watson Research Center
lenchner@us.ibm.com

Given a unit square, construct a barrier of min-
imum length that intersects every line passing
through a portion of the square. The barrier should
consist of one or more piecewise-smooth curves.
The barrier need not be connected and portions
of the barrier may be located inside, outside, or on
the boundary of the square.

This problem appeared in the July 2007 edition
of IBM’s online puzzle column Ponder This1. Ac-
cording to the column, the problem has also ap-
peared in [Jon64] and in an internal publication of
the Lawrence Livermore National Laboratory.

1See http://domino.research.ibm.com/Comm/wwwr ponder.
nsf/challenges/July2007.html.

The obvious barrier is the entire perimeter of the
square, with cost 4. However, we can also use just
three sides of the square, at cost 3. Even better,
we can use the two diagonals, at cost 2

√
2 ' 2.828.

Better still is to use two adjacent edges of the
square and half of the opposite diagonal, at cost
2 +

√
2/2 ' 2.707, as shown in Figure 3.

Figure 3: A barrier of length 2 +
√

2/2 ' 2.707.

As a final observation, we can do better than us-
ing the two adjacent edges in the previous barrier,
by instead using a three-segment Steiner tree as in
Figure 4, at cost

√
2 +

√
6/2 ' 2.639. This barrier

is conjectured, but not known, to be optimal.

Figure 4: Place the bottom left corner of the square at
(0, 0). Then a barrier consisting of the diagonal segment
[(1/2, 1/2), (1, 1)] together with three segments formed by
joining the corners (0, 1), (0, 0), (1, 0) to a point at ( 1

2 −√
3

6 , 1
2 −

√
3

6 ) yields a barrier of length
√

2 +
√

6
2 ' 2.639.

At the conference, Otfried Cheong suggested that
a lower bound of 2 could be derived from the
Cauchy-Crofton formula, and this was later veri-
fied to be the case.

A clever and even more elementary proof that
2 is a lower bound was found by Ozgur Ozkan, a
student of John Iacono’s at Polytechnic University.
Ozgur’s argument runs as follows:

By a limiting argument, we may assume that the
(approximately) optimal solution is piecewise lin-
ear. Thus let S = {x1, x2, . . .} be the set of line
segments making up a barrier. Let the two diag-
onals of the square be denoted by d1 and d2. In
order to block just the rays which are perpendic-
ular to each of these two diagonals, the projection
of S onto d1 and d2 must cover d1 and d2. Thus, if
θi is the angle xi makes with d1, then |xi| cos θi is
the length of xi’s projection onto d1, and |xi| sin θi
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is the length of xi’s projection onto d2. Therefore

2
√

2 ≤
∑
xi∈S

|xi|(cos θi + sin θi)

≤
∑
xi∈S

|xi|
√

2, so

2 ≤
∑
xi∈S

|xi|.
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Doubly Orthogonal Point Set?
Therese Biedl
University of Waterloo
biedl@softbase.uwaterloo.ca

Is there a point set in 2D that is the vertex set of
an orthogonal polygon such that a rotation of the
point set by a nonmultiple of 90◦ is also the vertex
set of an orthogonal polygon?

Precisely, an orthogonal polygon is a (simple)
polygon whose edges are all either horizontal or
vertical. A vertex is a point on the polygon where
two edges of different slopes meet. (Put differently,
we do not allow “extra” vertices along the edges.)
The open problem is motivated by the question of
whether it is possible to reconstruct an orthogonal
polygon when given only a set of points that is sup-
posed to be its vertex set. (Think of the popular
children’s game connect-the-dots, except that the
numbers on the dots are illegible.)

This problem has been well-studied.
O’Rourke [O’R88] showed that a simple scan-
ning algorithm can recover the orthogonal polygon
in O(n log n) time. Rappaport [Rap86] showed
that, if extra vertices are allowed, then the problem
becomes NP-hard.

We recently started studying the problem where
the given point set is allowed to be rotated before
reconstructing the orthogonal point set ([Gen07];
see also [BG07]). Clearly only O(n) rotations could
possibly yield an orthogonal polygon, because at
least four edges of the polygon have to be on an
edge of the convex hull. Therefore, an O(n2 log n)
algorithm for this problem is trivial. We managed
to improve the time complexity to O(n log n) for
orthogonally convex polygons. The crucial insight
was that, for orthogonally convex polygons, there
can be only one rotation that could possibly work;
and the proof of this insight yielded an algorithm
to find this rotation efficiently.

This raises the natural question of what happens
with orthogonal polygons that are not orthogonally
convex. Our proof very clearly fails for such poly-
gons, hence the open question: is there only one ro-
tation that works? Or could there be two different
rotations for which the set of points is the vertex
set of an orthogonal polygon? The only negative
example that we could find consists of the points
of a regular octagon, which can be interpreted as
the vertex sets of two rectangles in two different
rotations. But this is neither a single polygon nor
simple.

We would also be interested in whether one could
find the rotation efficiently, if there is only one.

Update: Maarten Löffler and Elena Mum-
ford [LM07] resolved this question in the nega-
tive. In fact, they consider a more general prob-
lem: given a set of points in Rd, is it the vertex
set of some connected rectilinear graph (not nec-
essarily a polygon)? They prove that any point
set in Rd has at most one orientation where it is
a vertex set of a connected rectilinear graph. For
contrast, Figure 5 shows an example of two recti-
linear graphs on the same point set, but note that
G′ is not connected (similar to the regular-octagon
example above). For the special case where the
points are in the plane and have rational coordi-
nates, Fekete and Woeginger [FW97, Theorem 4.7]
already proved that at most one orientation is pos-
sible.

G G′

Figure 5: Two rectilinear graphs in the plane with the
same vertex set, but different slopes. Note that G′ is not
connected.

The details of the argument in the planar case
are mostly algebraic, but the main idea is to deter-
mine the “greatest common divisor” in some sense
between the coordinates of the vertices of an axis-
aligned connected rectilinear graph, and argue that,
if there is a connected rectilinear graph in another
orientation, we can use that to travel to a point
that is not a multiple of this divisor away from the
others, which leads to a contradiction. The result
can be extended to arbitrary dimensions by simply
projecting it down to a suitable plane.

To find the right orientation of the graph (in the
planar case), we can improve the O(n2 log n) result
to O(n2) by taking the dual of the problem. A rela-
tively simple algorithm can sweep the arrangement
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of lines and identify potential good orientations, of
which there are at most O(n). We maintain the
sorted order of the other lines, which allows us to
test an orientation in linear time.

If the goal is to find a orientation that allows a
planar connected rectilinear graph (a more general
case than simple polygons), then the problem be-
comes NP-hard. Because we know that there is at
most one such orientation, we can use the algorithm
described above to find it. Then we can compute
the maximal rectilinear graph with this slope. How-
ever, now we need to decide whether this graph has
a planar connected subgraph. Jansen and Woegin-
ger [JW93] proved this problem NP-complete.

The main remaining open question is whether the
(unique) rectilinear orientation can be computed in
less than quadratic time. Also, algorithmic exten-
sions to higher dimensions are open.
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Pushing Cubes Around
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Dumitrescu and Pach [DP04] have showed that any
configuration of unit squares on the integer lat-
tice can be reconfigured to any other such shape
via two types of moves, while remaining connected
throughout. “Connected” here means 4-connected,
i.e., edge-edge connected. I ask the same question
for a configuration of unit cubes, where connectiv-
ity must be via face-face connections. Such ob-
jects, formed by face-to-face gluing of unit cubes,
are called polycubes. The two moves permitted
are exactly the Dumitrescu-Pach moves, shown in
Figure 6, except now available parallel to any of
the three coordinate planes. Perhaps applying
the Dumitrescu-Pach algorithm to each xy-layer of
cubes will help, but even if this maintains connec-
tivity, in general cubes must be transfered between
layers.

(a) (b)

Figure 6: Cube moves based on Dumitrescu-Pach square
moves.

Update. Zachary Abel and Scott D. Komin-
ers [AK08] have recently announced a solution to
this problem in the affirmative and have given a
generalization to configurations of hypercubes of
any dimension. Their method uses iterative relo-
cation of modules from a configuration V to form
a canonical chain at a distinguished module of V .
They efficiently locate a module on the boundary
of V which can either be relocated to the canonical
chain immediately or can be relocated after recur-
sive modification of the interior V .

Specifically, their methods prove the existence
of a module x on V ’s outer boundary such that
if V \ {x} is not connected then V \ {x} consists
of exactly two components, one of which is disjoint
from the outer boundary of V . Furthermore, this
module x may be located quickly. Indeed, the so-
lution yields an algorithm which requires at most
O(n2) calculation time and at most O(n2) moves;
this is asymptotically optimal.
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Surface Flips
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Although this problem can be stated with more
generality, I choose to pose it only for a polycube
object P as defined in the previous problem. For
any portion S of the surface P that constitutes a
topological disk, and whose boundary is a cycle C
of edges of P all lying in one plane Π, we define
a surface flip as reflecting S through Π, as long
as this operation maintains weak simplicity of the
resulting surface P ′. See Figure 7.

(b)(a)

Figure 7: Surface flip about red 4-cycle.

Note that, whereas the previous problem pre-
served the volume, this move preserves the surface
area. Also, the combinatorial structure of the sur-
face does not change under these surface flips.

Characterize the class of polycube shapes that
are connected by surface flips. In particular, are
all shapes with the same combinatorial type con-
nected?

Polycube Pops
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Again this problem is restricted to polycubes, and
the moves preserve the surface area, but now they

will alter the combinatorial structure. My goal is
to define a set of moves that will be able to convex-
ify a polycube, or convert to some other canonical
form, in a manner that will serve in some sense as
a generalization of the vertex pop moves for unit
orthogonal polygons (i.e., polyominoes) explored
in [ABB+07].

There are five moves, two primary moves, and
three moves concerned with collocated faces, which
we will call “fences” (the analog of “pins” in 2D).
They are named as follows:

1. Corner pop.
2. U-pop.
3. Fence walk.
4. Fence pop.
5. Fence corner pop.

The two primary moves are illustrated in Fig-
ure 8. The first move, a corner pop, is the one
most closely inspired by a vertex pop: three faces
incident to the corner of a cube are replaced by the
three other faces of that cube. The second move, a
U-pop, also replaces three faces of a cube by three
others. Note that both moves preserve surface area.

(a) (b)

(c) (d)

Figure 8: Two “pop” moves: (a,b) Corner pop; (c,d)
U-pop.

To complete the definition of these moves, we
need to specify how the adjacent faces are con-
nected. This is shown in Figure 9, which makes
it clear that in an abstract network of quadrilater-
als forming the surface, the two moves replace the
“wirings” internal to a 6- or 8-cycle; all exterior
connections remain in place.

To have hope of reaching an interesting canoni-
cal form, it is important to permit the surface to
become weakly simple, with perhaps several faces
lying back-to-back on top of one another. We call
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(a) (b)

(c) (d)

Figure 9: Combinatorial diagrams corresponding to the
3D moves in Fig. 8. (a,b) Corner pop; (c,d) U-pop.

two collocated faces a fence. It seems that three
fence moves are needed. The fence walk, illustrated
geometrically in Figure 10 and combinatorially in
Figure 11(a,b), can be viewed as replacing three
faces of a cube with three others, but this time two
of the three faces are collocated.

(b)(a)

Figure 10: Fence walk.

A fence pop takes a connected tree of fences all
perpendicular to the same plane Π, and reflects
them through Π. This move involves no combi-
natorial change. Finally, a variation on this is a
fence corner pop, which does involve a combinato-
rial change, shown in Figure 11(c,d).

(c) (d)

(a) (b)

Figure 11: (a,b) Fence walk. (c,d) Fence corner pop.

Figure 12 shows an example of two shapes that
can be connected by these polycube pop moves:

two corner pops, one per dent, two fence corner
pops, and finally a U-pop. Note that the dents
in (a) of the figure consist of 4 faces each, and are
replaced by 2 faces. The extra 4 faces gained are
then enough to build the highest cube in (b).

(a) (b)

Figure 12: Object (a) can be converted to (b) via poly-
cube pops.

There are (at least) two questions here:
(1) Which class of shapes can be convexified (con-
verted to an orthogonally convex polyhedron, e.g.,
Figure 12(b)) via the above five moves? (2) If not
all shapes, then is there a natural set of moves that
does suffice to connect all polycubes of the same
surface area?
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Dice Rolling in a Rectangle
Erik Demaine
MIT
edemaine@mit.edu

When a rectangle R is fully labeled, and so there
are no free nor blocked cells inside R, what is the
complexity of deciding whether a cube can roll
over R compatibly with the labels? For defini-
tions, see [BBD+07]. That paper conjectures this
restricted decision problem is solvable in polyno-
mial time.

Two variants were suggested at the presentation:
(1) What if R is labeled only with a subset of the
six die labels? (2) What if the sides of R are glued
to form a torus (left glued to right, top glued to
bottom)?
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Room Reconstruction from Point/Normal Data
Jack Snoeyink
Univ. North Carolina Chapel Hill
snoeyink@cs.unc.edu

Many sensors, such as the Delta-sphere con-
structed at UNC Chapel Hill, can send out beams
and get range information for scattered points in a
room. Suppose that your sensor gives not only a
point, but also the normal to a plane when it hits
a wall (perhaps by gathering individual point re-
turns and using consensus to reduce error in wall
positioning). You’d like to determine whether you
have seen all the walls in your room. That is, from
just the walls you have seen, can you construct a
room that explains all observations? These ques-
tions are interesting even in the orthogonal case,
where the walls must lie parallel to the coordinate
planes.

This problem is relatively easy with a single sen-
sor of known position in 2D: sort the sensed points
radially and use the corresponding lines to con-
struct a polygon, then check whether it is star-
shaped with the sensor in the kernel. What about
3D, where the walls can have more complex shapes?

There are many variants on this problem:
whether there are one or more sensors, whether you
know each sensor(s) position, whether sensors re-
turn a few or all points (visibility polygon), whether
the room must be orthogonal or simply connected,
and whether the room reconstructed from the walls
is unique.

Update: Biedl and Snoeyink have since been
able to show that it is NP-hard to determine
whether there is a unique reconstruction of an or-
thogonal polygon from a collection of 2D visibility
polygons representing the information from several
sensors.

Wireless Reflections
Boaz Ben-Moshe
College of Judea and Samaria
benmo@yosh.ac.il

Given a transmitter and receiver in an environ-
ment with barries (walls, etc.), and given an integer

c > 1, find all the paths that go from transmitter to
receiver by c billiard reflections (and perhaps also
go through walls via transmission). In general, c
will be small, say, c < 100. The problem arises in
MIMO (Multiple-Input, Multiple-Output) commu-
nications.

Update: Ben-Moshe et al. have in some sense
solved their problem and are implementing an algo-
rithm as part of the Israeli Short Range Communi-
cation Consortium, http://www.isrc.org.il/index.
asp.

Polygon that Projects as Chain
Prosenjit Bose
Carleton Univ.
jit@scs.carleton.ca

Is there a (closed) simple polygon in 3-space that
projects to an open polygonal chain in three or-
thogonal directions? It is known that there is an
open polygonal chain in 3-space that projects to a
(closed) simple polygon in three orthogonal direc-
tions.

This problem was posed by Jack Snoeyink at an
earlier CCCG, reporting a problem originally posed
by Claire Kenyon.

Stretch Factor for Points in Convex Position
Prosenjit Bose
Carleton Univ.
jit@scs.carleton.ca

The stretch factor for a geometric graph G is the
maximum, over all vertices u and v in G, of the ra-
tio of the length of the shortest path from u to v in
G to the Euclidean distance between them, |u− v|.
If G has a stretch factor of t, it is called a t-spanner.
Chew conjectured that the Delaunay triangula-
tion is a t-spanner [Che89] for some constant t.
Dobkin et al. [DFS90] established this for t =
π(1+

√
5)/2 ≈ 5.08. The value of t was improved to

2π/(3 cos(π/6)) ≈ 2.42 by Keil and Gutwin [KG92],
and further strengthened in [BM04]. Chew showed
that t is π/2 ≈ 1.57 for points on a circle, providing
a lower bound. “It is widely believed that, for ev-
ery set of points in R2, the Delaunay triangulation
is a (π/2)-spanner” [NS07, p. 470].

This suggests the following special case: for
points S in convex position (i.e., every point is on
the hull of S), is the Delaunay triangulation of S a
(π/2)-spanner?
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