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Open Problems from CCCG 2008

Erik D. Demaine∗ Joseph O’Rourke†

The following is a list of the problems presented on
August 14, 2008 at the open-problem session of the 20th
Canadian Conference on Computational Geometry held
in Montréal, Québec, Canada.

Dark Points in Mirror Polygons
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Tokarsky [Tok95] and Castro [Cas97] constructed a
polygon, all of whose edges are mirrors, with the
property that a light placed at a particular interior
point does not illuminate the entire interior, but
rather leaves one dark point. The following conjec-
ture remains:

Conjecture [OP01]: In any mirror polygon with
one interior point light source, the set of dark points
has measure zero.
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Segment Mirrors
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

A related conjecture remains outstanding:

Conjecture [OP01]: No finite collection of dis-
joint, double-sided segment mirrors can trap the
light from any one point source.

It seems most natural to treat the mirrors as
open segments, to avoid endpoint effects, but the
segments should be disjoint when closed.
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Reposed at Oberwolfach Workshop, Discrete Dif-
ferential Geometry, Jan. 2009.

Swimming in an Equilateral Triangle Lake
Ron Graham
University California San Diego
graham@ucsd.edu

A swimmer falls overboard in an equilateral trian-
gle lake in a fog. If the edge length of the triangle
is 1, what is the shortest length swimming path
that ensures the swimmer will reach the shore?
Swimming one unit straight in any direction cer-
tainly reaches the shore. The problem was orig-
inally posed in 1963. Besicovitch showed shortly
afterward that a 3-link chain of length 3

√
21/14 =

0.98198 . . . suffices [Bes65].

Update. The problem was recently solved [CM06]:
Besicovitch’s chain is indeed optimal.
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Simplices Containing the Origin
Peyman Afshani
Center for Massive Data Algorithmics
peyman@madalgo.au.dk

Call two simplices S1 and S2 in Rd connected if they
both contain the origin and S1 and S2 share all ver-
tices except one. (In other words, S2 can be made
from S1 by replacing one vertex with another point,
while still containing the origin.) Is it possible, for
any two simplices S and S′ both containing the ori-
gin, to find a sequence S = S1, S2, . . . , Sk = S′ such
that each Si is connected to Si+1? This is known
to be true in 2D, but d ≥ 3 is open.

Update. The following short proof was discovered
by Donald Sheehy. Let V be the set of vertices of
Sb and St. A Gale transformation maps V to a
point set P in Rd+1 where a simplex in V contain-
ing the origin corresponds to a (d + 2)-dimensional
face of the convex hull H of P , and two connected
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simplices correspond to two adjacent faces of H.
The correctness of the claim follows by observing
that the graph built on the adjacent faces of H is
connected. See [HRZ04] and [K04] for more details
on the tools used above.
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Median Interpoint Distance
Michael Shamos
Carnegie Mellon University
shamos@cs.cmu.edu

Consider the
(
n
2

)
interpoint distances determined

(in general) by n given points in Rd. Can the me-
dian interpoint distance be found in O(n log n)?
Of course it can be found in O(n2) for fixed d.
It is known how to find the kth smallest inter-
point distance in subquadratic time, specifically
O(n4/3 log8/3 n) [AASS93] randomized time. The
same question may be asked about the mean inter-
point distance.

Update. Pat Morin noted that Timothy
Chan’s result [Cha01] achieves randomized time
O(n log n + n2/3k1/3 log5/3 n) for the median inter-
point distance.
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Even-Ranked Sum
Michael Shamos
Carnegie Mellon University
shamos@cs.cmu.edu

Given n points on a line specified by real numbers,
the sum of the n/2 largest numbers can be found in

linear time. Find the sum of the even-ranked num-
bers: the 2nd-smallest, 4th-smallest, 6th-smallest,
etc. Is Ω(n log n) a lower bound?

Update. An Ω(n log n) lower bound was estab-
lished in [MST09].
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Matrices
Michael Shamos
Carnegie Mellon University
shamos@cs.cmu.edu

Given n × n matrices A and B, can you decide
whether A2 = B and/or A−1 = B faster than the
time needed to multiply two matrices?

Update. Pat Morin pointed out that Freivalds’
technique [Fre77] can solve this problem by a ran-
domized algorithm, as follows. Let r be a random
vector in {1, 2, . . . , k}n. Compute F1 = (rA)A and
F2 = rB, each in O(n2) time. If A2 6= B, then the
probability that F1 = F2 is at most 1/k.
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Best-case 3D Hull
Jérémy Barbay
Universidad de Chile
jeremy@dcc.uchile.cl

Does there exist an ordering of n points in 3D so
that their convex hull can be computed in linear
time? This question was originally asked by Jack
Snoeyink in 1997. There was considerable discus-
sion at the conference of the right form this ques-
tion should take in order to avoid trivial solutions.

Update. Following a pointer suggested by Pat
Morin, the poser solved the problem in [Bar08]
by extending work of Snoeyink and van Krev-
eld [SvK97]. Another solution was obtained by the
poser with Timothy Chan and Peyman Afshani,
obtaining “order-oblivious instance-optimal” algo-
rithms for the convex hull and a few other prob-
lems.
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Pleat Folding
Ryuhei Uehara
JAIST
uehara@jaist.ac.jp

How many simple folds does it take to fold a given
1D mountain-valley pattern? More specifically, we
are given a set of creases parallel to the short side of
a long rectangular strip of paper, with each crease
specified either mountain (M) or valley (V), and the
goal is to fold the strip to obtain exactly the given
pattern, minimizing the number of folds. Each fold
is along one of the creases, and unfolds are free.
Each crease may be folded several times, as long as
the final fold creases it in the correct direction.

An easy lower bound is lg n (folding repeatedly in
half), and an easy upper bound is n (fold a crease,
unfold, repeat). The poser can achieve n/2 + log n
by folding the majority, and with some effort, n/3+
polylog n. The alternating (MV )n pattern is an
interesting special case.

Update. Ito et al. [IKI+09] describe the n/2+log n
upper bound and prove an Ω(n/ log n) lower bound
for general patterns, and for the (MV )n pattern,
prove an O(nε) upper bound for any ε > 0. Cardi-
nal et al. [CDD+09] prove a matching upper bound
of O(n/ log n) for general patterns, and for the
(MV )n pattern, prove a tighter upper bound of
O(polylog n).

References

[CDD+09] Jean Cardinal, Erik Demaine, Mar-
tin Demaine, Shinji Imahori, Stefan
Langerman, and Ryuhei Uehara. Algo-
rithmic folding complexity. Manuscript,
2009.

[IKI+09] Tsuyoshi Ito, Masashi Kiyomi, Shinji
Imahori, and Ryuhei Uehara. Complex-
ity of pleat folding. In Abstracts from
the 25th European Workshop Comput.
Geom., March 2009.

Arrangement Cells
Jan Vahrenhold
Technische Universität Dortmund
jan.vahrenhold@cs.tu-dortmund.de

Suppose we are given a set of n hyperplanes in Rd.
The goal is, for each of the Θ(nd) cells of the ar-
rangement A induced by the hyperplanes, to list
all the hyperplanes on its boundary in any order,
using less than Θ(nd) space (ideally O(dn)) in ad-
dition to the input (not counting the write-only
output). This constraint especially rules out con-
structing the arrangement A. It would be fine to
repeat cells; the overall runtime, however, should
be polynomial in n.

Regular Triangulation
Don Sheehy
Carnegie Mellon University
don.r.sheehy@gmail.com

A regular triangulation is an orthogonal projection
of a lower hull of points. An example of a non-
regular triangulation is Schönhardt’s polyhedron.
Edelsbrunner found sufficient conditions (acyclic-
ity criteria) for nonregularity [Ede90]. The deci-
sion problem—is this triangulation regular?—can
be solved by linear programming. Can it be deter-
mined more quickly whether a given triangulation
is regular? An equivalent formulation is to deter-
mine whether a given triangulation is the orthogo-
nal projection of a convex polytope.

The difficulty here is not so much algorithmic.
Rather it is that all the nonregular triangulations
seem to be variations on the Schönhardt poly-
hedron. Does the twisting that happens with
Schönhardt and similar triangulations completely
characterize non-regularity? If so, what character-
izes this twisting?

References

[Ede90] Herbert Edelsbrunner. An acyclicity the-
orem for cell complexes in d dimensions.
Combinatorica, 10(3):251–260, 1990.

Visibility Polygon Morphing
Satyan Devadoss
Williams College
Satyan.Devadoss@williams.edu

Given a simple polygon P and its internal vertex
visibility graph G (an edge connecting two vertices
if the segment is nowhere exterior to P ), can the
vertices of P be moved continuously (one at a time
or simultaneously) along paths so that (a) simplic-
ity of the polygon is maintained at all times, and
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(b) visibility only increases. In other words, if P ′

is a later version of P , then its visibility graph G′

contains a superset of the edges in G. This process
ends with a convex polygon whose visibility graph
is the complete graph.

Update. Oswin Aichholzer, Gelasio Salazar, and
their students proved (at the Mexican Workshop
on Computational Geometry) that the morphing is
possible for monotone polygons. They also found
an example that shows that the problem cannot
be solved by moving one vertex at a time while
strictly increasing the visibility graph in each move.
The context of the posed problem is explained
in [DSSW09], which also extends the monotone re-
sult to star-shaped polygons.
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Packing an Equilateral Triangle with Equal Disks
Ron Graham
University California San Diego
graham@ucsd.edu

What is the densest packing of equal disks in an
equilateral triangle? Let T (N) be the minimum
side length for N points in an equilateral triangle
with pairwise distances at least 1. It is clear that
T

(
n+2

2

)
= n by “the appropriate triangular subset

of the hexagonal packing of the disks (well known
to pool players in the case of n=15)” [GL95].

1. What is the answer for one fewer point?
The conjecture is that the answer is still n:
T

((
n+2

2

)
− 1

)
= n. Ron offered a $500 reward

for settling this question either way.

2. What is the answer for one more point? The
conjecture is that side length more than n is
needed, say, T

((
n+2

2

)
− 1

)
= n + 1

5 . Again
Ron offered $500 for a resolution.

See [GL95].
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