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Open Problems from CCCG 2009

Erik D. Demaine∗ Joseph O’Rourke†

The following is a list of the problems presented on
August 17, 2009 at the open-problem session of the 21st
Canadian Conference on Computational Geometry held
in Vancouver, British Columbia, Canada.

Simply Developing Geodesic Polygons
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Let P be a simple piecewise-geodesic curve on a
sphere, i.e., a curve composed of a finite sequence of
arcs of great circles that do not intersect except at
shared endpoints. A development of P is a polyg-
onal chain in the plane whose segments have the
same lengths as the arcs of P, and whose angles
correspond to the angles between the arcs on the
sphere. A development can be viewed as created by
rolling the sphere on the plane, starting at one end
of P, maintaining P in contact with the plane at
all times, and rolling without twisting or slippage
until reaching the other endpoint.

The goal is to establish that certain classes of
(closed) geodesic polygons always develop without
intersection, regardless of the starting point for the
development. The only class known to develop
without intersection are geodesic convex polygons:
those with vertex angles (to one consistent side) at
most π [OS89].

During the presentation of the problem, the
poser illustrated an example of a simple open
curve that develops to a crossing chain, and Jack
Snoeyink observed that closing it to a simple
geodesic polygon P shows that not all star-shaped
geodesic polygons develop without intersection.
The example is shown in Figure 1. Every arc from
a to a point inside P is nowhere exterior to P, so
indeed this is a star-shaped geodesic polygon.

Any natural class of nonconvex geodesic poly-
gons that always develop without intersection
would be of interest. More ambitious would be to
characterize those geodesic polygons that develop
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Figure 1: This polygon on the sphere is star-shaped
from a. When cut open at d, it develops to a crossing
chain in the plane.

without intersection. More ambitiously still, gen-
eralize to geodesic polygons on convex polyhedra,
or on smooth convex surfaces.
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Random Graph Spanners
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Select n points uniformly at random from the
unit square, and then form a graph G = G(n, p)
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by connecting points according to the Erdős–Renyi
model, adding an edge between each pair of points
with probability p. This is not a “random geomet-
ric graph” in the usual sense of that term, because
points are connected without regard to their geo-
metric distance. Rather, it is a random graph built
on geometric points.

1. It is known that the threshold for the creation
of a “giant component” C ⊆ G is p1 = 1/n. Is
C (almost surely) a spanner for the points it
connects, for p = p1 + ε? My conjecture: no.

2. It is known that the threshold for complete
connection of the point set is p2 = lnn/n. Is
G(n, p2 + ε) (almost surely) a spanner? My
conjecture: yes.

Stretch Embedding in Labeled Grids
Belén Palop
Universidad de Valladolid
b.palop@infor.uva.es

Find two labelings Λ1 and Λ2 of the n2 vertices in
the n×n grid graph so as to maximize the minimum
“stretch” between Λ1 and Λ2. Here the labelings
must use the same n2 labels, say 1, 2, . . . , n2. Each
such label λ defines one vertex x1 according to Λ1

and one vertex x2 according to Λ2. The stretch
d(λ) is the `1 distance between vertices x1 and x2.
The goal is to find two labelings that maximize the
minimum stretch over all labels λ.

This phrasing is the inverse of the original posed
problem, in which we are given the two labelings
Λ1 and Λ2 and wish to find a third labeling of ver-
tices in the n×n grid graph that does not “stretch”
either labeling too much, i.e., minimizes the maxi-
mum stretch. A large answer to the problem above
provides a bad example for the latter problem.

An equivalent formulation of the problem is as
follows. Define the combined distance between a
pair of labels (λ1, λ2) as the sum of the `1 distances
between the two vertices marked with those labels
under Λ1, and between the two vertices marked
with those labels under Λ2. Maximizing the mini-
mum combined distance is an equivalent problem.

Shortly after the conference, two groups inde-
pendently established that the optimal stretch is
Θ(
√
n). See [JPT10] in this proceedings.
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Crowd Simulation
Jack Snoeyink and Glen Elliot
Univ. North Carolina
snoeyink@cs.unc.edu

Collision avoidance in crowd simulations leads to
the following problem.

Given a floor plan represented as a polygon with
holes, preprocess it for “limited visibility queries”:
expand a visibility region (disk or wedge) until it
contains either enough agents or enough polygon
complexity. The agents are points tracked by a
kinetic data structure. Thus one seeks a relevant
subset of the visibility polygon with bounded com-
plexity (in terms of both agents and polygon fea-
tures).

Compatible Tetrahedralizations
Stephen Kobourov
Univ. Arizona
kobourov@cs.arizona.edu

Given two polyhedra P1 and P2 whose surfaces
are combinatorially equivalent (in particular, their
1-skeletons are isomorphic graphs), do they nec-
essarily have a compatible tetrahedralization with
Steiner points? A compatible tetrahedralization
with Steiner points of two polyhedra is a tetra-
hedralization of the interior of each polyhedron,
allowing additional (Steiner) vertices in addition
to the boundary vertices given by the polyhedron,
such that the two tetrahedralizations are combi-
natorially equivalent: there is a bijection between
the vertices of the two tetrahedralizations that pre-
serves triangles and tetrahedra in both directions.

The analogous problem for 2D polygons is known
to be always possible [ASS93], requiring Θ(n2)
Steiner points in the worst case, where n is the
number of vertices of each polygon.

In a more general version of the problem (which
skirts the issue of how to define “polyhedron”),
we are given two tetrahedralizations whose two-
dimensional boundary surfaces are combinatorially
equivalent. Here we wish to find a tetrahedraliza-
tion that refines each given tetrahedralization (i.e.,
includes all existing triangles), such that the two re-
fined tetrahedralizations are combinatorially equiv-
alent.

Compatible tetrahedralizations permit natural
morphing between the geometries.

References

[ASS93] Boris Aronov, Raimund Seidel, and Diane
Souvaine. On compatible triangulations of



CCCG 2010, Winnipeg MB, August 9–11, 2010

simple polygons. Computational Geome-
try: Theory and Applications, 3(1):27–35,
June 1993.

Landmark Navigation
Leo Guibas
Stanford University
guibas@cs.stanford.edu

The task is to navigate from point A to B, using
distances to landmark points Li.

For any point p, define di(p) = d(p, Li) and
d2(p) = (1/n)

∑n
i=1 d

2
i (p). Define “coordinates” for

A,

c(A) =< d2
1(A)− d2(A), . . . , d2

i (A)− d2(A), . . . >

and similarly for c(B). Let

d∗(A,B) = ||c(A)− c(B)||2

With a sufficient number of landmarks, it is known
that following gradient descent of d∗(A,B) will get
you from A to B [FGG+05].

The question is this: what happens if there are
obstacles? In a polygon with holes, one can get
stuck. The poser conjectures that, in a simple poly-
gon, with the vertices as landmarks, and distance
defined by the geodesic distance within the poly-
gon, gradient descent works: one never gets stuck.
There is experimental support for this conjecture.
Perhaps using art-gallery guards as the landmarks
would also suffice.
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Nearest Neighbors for Well-Separated Points
Don Sheehy
Carnegie Mellon University
dsheehy@cs.cmu.edu

Given n well-spaced points in Rd, can they
be preprocessed to achieve O(log n)-time (exact)
nearest-neighbor queries? Points are well-spaced if
the ratio of the radii of the balls enclosing and en-
closed in every point’s Voronoi cell is O(1). It is
known that this condition implies that the Voronoi
diagram has linear complexity, but what about the
natural data structural extension? [reference?]xxx

Hausdorff Core of a Polygon
Robert Fraser
University of Waterloo
r3fraser@cs.uwaterloo.ca

Given a simple polygon P , find a convex poly-
gon contained in P that minimizes the maximum
Hausdorff distance between the two polygons (in
both directions). This problem is related to the
“potato-peeling” problem, which instead asks for
a contained convex polygon of maximum area.
The latter problem can be solved by a dynamic-
programming algorithm in O(n7) time. Is there a
similar dynamic-programming algorithm for exact
construction of this “Hausdorff core”? An approx-
imation algorithm appeared in [DDF+09].

Joseph O’Rourke suggested a variant which re-
moves the requirement that the convex polygon be
enclosed in P , which the poser thought might be
easier.
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