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Open Problems from CCCG 2010

Erik D. Demaine∗ Joseph O’Rourke†

The following is a description of the problems pre-
sented on August 9, 2010 at the open-problem session of
the 22nd Canadian Conference on Computational Ge-
ometry held in Winnipeg, Manitoba, Canada.

Coiling Rope in a Box
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Is there a procedure to decide whether a rope of
length L and radius r can be coiled to fit in an
a×b×c box? All five parameters can be assumed to
be rational numbers for the decision question. The
rope is a smooth curve with a tubular neighborhood
of radius r > 0, such that the rope does not self-
penetrate. In particular, the curve should not turn
so sharply that the disks of radius r orthogonal to
the curve that determine the tubular neighborhood
interpenetrate. For an open curve, each endpoint
is surrounded by a ball of radius r.

For a box of dimensions 1×1× 1
2 and rope of ra-

dius r = 1
4 , perhaps the maximum length achiev-

able is L = 1
2 + π

4 ≈ 1.3, realized by a ‘U’-shape as
in Figure 1.

Packing circles in a square is a notoriously dif-
ficult problem, but perhaps it is easier to pack a
rope in a cube, because the continuity of the curve
constrains the options.
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Figure 1: Overhead view of a rope in a box.
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Update. This problem also appeared on Math-
Overflow,1 where Greg and W lodzimierz Kuper-
berg opine that it is open. At the suggestion of
several people during the CCCG presentation, the
poser started exploring the 2D version. If k = 1

2r is
an even integer, then there are two natural strate-
gies for coiling the rope within a box whose height
renders it two-dimensional, as illustrated in Fig-
ure 2. Interestingly, the length of the core rope
curve is identical for the two coilings:

L = 2(k − 1)(rπ/2) + 2(k − 1)2r .

Figure 2: Two 2D coilings in a 1 × 1 × 2r box. Here
r = 1

16 , k = 8, and L = 7π
16 + 49

8 ≈ 7.5.

When Sticks Fall, Will They Weave?
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Imagine n z-vertical sticks uniformly spaced around
a unit-radius circle in the xy-plane. At random
times t1, t2, . . . , tn ≥ 0, each stick is randomly ε-
perturbed from the vertical, and they fall under
the influence of gravity. Will some sticks form a
“teepee” suspended above the xy-plane?

Let us assume that the sticks are one-dimensional
segments of height h, perhaps h = 2 so that they
span the diameter, and that their base points are
pinned to the plane via universal joints. It seems
possible that a subset of sticks could fall to form
a weaving with a cyclic on-top-of graph, as illus-
trated in Figure 3. Assuming a sufficiently large
coefficient of friction µ between pairs of sticks, it

1 http://mathoverflow.net/questions/26525/.
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seems conceivable that such a structure would not
collapse to the plane. Is it possible that some sticks
form a woven “teepee” structure above the plane?
Or would all sticks ultimately flatten to the plane?

Figure 3: A weaving of four sticks.

Update. This problem also appeared on Math-
Overflow,2 where Scott Morrison observed that if
all sticks are released at the same time t = 0, then
they would hit one another with probability zero.

Linkless embeddings of graphs in R3

David Eppstein
University of California, Irvine
eppstein@ics.uci.edu

In one of the early papers on linkless embedding,
Sachs [Sac83] asked a question that still remains
open: is there an analogue of Fáry’s theorem for
three-dimensional drawing? That is, if a graph has
a linkless or flat embedding with curved or polyg-
onal edges, does it automatically have a linkless or
flat embedding with straight line segment edges?
If so, how can we find these straight drawings ef-
ficiently? If not, which graphs do have linkless
straight drawings? An embedding of a graph into
R3 is linkless if, for every pair of disjoint cycles C1

and C2, there is a topological sphere separating C1

from C2; and an embedding is flat if every cycle in
the graph forms the boundary of a topological disk
that is disjoint from all the other vertices and edges
of the graph. A flat embedding is always linkless,
while a linkless embedding may not be flat; how-
ever, every graph with a linkless embedding also
has a flat embedding.

Does every flat embedding have a homeomor-
phic straight embedding? Two embeddings are
homeomorphic if there is a continuous deformation
of space that takes one embedding to the other.
Not every linkless embedding has a homeomorphic
straight embedding: for instance, an embedding of
the triangle K3 that ties it into a trefoil knot is
linkless, but cannot be straightened (the simplest

2 http://mathoverflow.net/questions/29660/.

representation of the trefoil with straight edges re-
quires six edges in the cycle). However, this exam-
ple is not a flat embedding.

Analogously to Wagner’s theorem for planar
graphs, the linklessly embeddable graphs may be
characterized by a set of seven forbidden graph mi-
nors (the Petersen family, which includes K6 and
the Petersen graph) [RST95]. Based on this charac-
terization, it is possible to recognize linklessly em-
beddable graphs and find flat embeddings for them
in linear time [KKM10]. For planar graphs, another
important result that goes beyond recognition and
embedding is Fáry’s theorem, which states that if
a graph has a noncrossing embedding in the plane
with arbitrary curves (or polygonal chains) for its
edges, then it also has a noncrossing embedding
with straight line segments for its edges. This re-
sult underlies many graph drawing techniques, be-
cause straight-line edges are easier for computers
to draw and easier for humans to read.
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Covering points with rectangles
Matias Korman
Université Libre de Bruxelles
mkormanc@ulb.ac.be

Given a set S of n points and an integer k ≤ n,
how efficiently can we find the axis-aligned rectan-
gle of minimum area that covers n − k points of
S, that is, all but k of the points? The motivation
for the problem comes from clustering, where the
k points to ignore are outliers which we would like
to identify.

Several known algorithms solve this problem,
with running times O(n + k3) [AB+11], O(n +

http://mathoverflow.net/questions/29660/
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k2(n− k)) [SK98], and O((n− k)2n log n) [AI+91]
(when the rectangle can have any orientation). Ob-
serve that, unless k = o(n) or k = n − c for some
constant c, all these algorithms run in cubic time.
The question is whether subcubic time is possible
for the general problem.

Several specializations of the problem render it
much simpler. For example, if the aspect ratio
of the rectangle is prescribed, the problem can be
solved in O(n log n) time [Cha99]. Let L,R, T, B
be the set of k leftmost, rightmost, topmost, and
bottommost points of S, respectively. If (L ∪R) ∩
(T ∪ B) = ∅, each dimension can be solved inde-
pendently, leading to an O(n + k2)-time algorithm.
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Counting points in circles
Maarten Löffler
University of California, Irvine
mloffler@ics.uci.edu

Given n equal-radius circles whose centers form the
points of a regular

√
n ×

√
n grid, and given n

points in the plane, how quickly can we count the
number of points in each circle? This problem can
be solved, in the more general case where the cir-
cle centers are not constrained to form a grid, in
O∗(n4/3) time via batched circular range queries.
But does the grid structure help at all?

A similar question arises by dualizing the prob-
lem: given n equal-radius circles whose centers
form a regular grid, and given n points, count the
number of circles containing each point.

Domatic partition problems
David Matula
Southern Methodist University
matula@lyle.smu.edu

The domatic partitioning problem asks to partition
a graph into a maximum number of vertex-disjoint
dominating sets. It is known to be NP-hard. The
new problem is the independent domatic partition
problem, which seeks to partition a graph into a
maximum number of disjoint independent dominat-
ing sets. For more details, see [MLM10].

References

[MLM10] Dhia Mahjoub, Angelika Leskovskaya,
and David W. Matula. Approximating
the independent domatic partition prob-
lem in random geometric graphs—An ex-
perimental study. In CCCG, pages 195–
198, 2010.

Separating and covering points in the plane
Filip Morić
Ecole Polytechnique Fédérale de Lausanne
filip.moric@epfl.ch

1. Let B and R be sets of n blue and n red points in
the plane in general position (i.e., no three points
are collinear). What is the minimum number f(n)
such that one can always find a simple polygon with
at most f(n) sides that separates the blue and red
points (i.e., the blue points are inside and the red
points are outside of the polygon)? It is known that
n ≤ f(n) ≤ 3dn

2 e. (Note that the problem is inter-
esting only under the general position assumption,
for if all the points were on a line in the order red,
blue, red, blue, . . . , then we would need at least a
2n-gon to separate them.)

2a. What is the smallest number g(n) such that any
n points in the plane can be covered by a simple
(non-self-intersecting) polygonal line with at most
g(n) sides? Only trivial bounds are known: n/2 ≤
g(n) ≤ n.

2b. What is the smallest number h(n) such that any
n points in the plane can be covered by a polyg-
onal line (possibly self-intersecting) with at most
h(n) sides? The known bounds are n/2 ≤ h(n) ≤
n/2+o(n), where the lower bound is obvious, while
the upper bound is obtained by repeatedly using
the Erdős-Szekeres theorem. Thus the gap in this
version is quite small.

Update to 2b. At the GWOP 2011 workshop,
E. Welzl proposed the following nice version of the
problem. Call a set of n points in the plane perfect
if it can be covered by a polygonal line (possibly
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self-intersecting) with at most dn/2e sides. For ex-
ample, a set of points in convex position is perfect.
The problem is to determine the maximum number
p(n) such that any set of n points in the plane has
a perfect subset of size p(n). By the Erdős-Szekeres
theorem, p(n) = Ω(log n). Can this bound be im-
proved?

Orthogonal layering
S. Mehdi Hashemi
Amirkabir University of Technology
hashemi@aut.ac.ir

Decompose a graph G into edge subsets
E1, E2, . . . , Ek such that each G[Ei] is planar
and maximum degree 4. What is the minimum
orthogonal thickness Θ̂(G) of G? The poser
conjectures that Θ̂(G) ≤ d∆/4e + 1, where ∆ is
the maximum degree of G. See his paper [TH10]
for more details.
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Largest independent set in rectangle-Delaunay
Sathish Govindarajan
Indian Institute of Science, Bangalore
gsat@csa.iisc.ernet.in

Define a rectangle-Delaunay graph for a set of n
points in the plane (no two on a horizontal or ver-
tical line) by connecting any two points that are
opposite corners of an empty axis-parallel rectan-
gle. This graph can have a quadratic number of
edges. What is the size of the largest independent
set in this graph, as a worst-case function of n?

This problem is related to conflict-free colorings.
Erdős-Szekeres yields a lower bound of Ω(

√
n),

which the poser improved to Ω(n0.618). For random
points in a square, Chen et al. [CPZT09] estab-
lished an upper bound of O(n(log log n)2/ log n).
(And this bound is nearly tight for random points
in a square.) The poser conjectures n/ polylog n is
the right bound.
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