
Open Problems from CCCG’99

Erik D. Demaine∗ Joseph O’Rourke†

The following is a list of the problems presented on August 16, 1999 at the open-problem
session during the 11th Canadian Conference on Computational Geometry.

Movable Square Blocks
Joseph O’Rourke, Smith College, orourke@cs.smith.edu

A robot and several movable unit-square block obstacles are confined to integral coor-
dinates in a rectangle with integral length and width. A robot starts at the lower-left
corner, and its goal is to occupy the upper-right corner. The robot may move horizon-
tally or vertically in discrete unit steps, pushing any number of blocks in front of it.
Is there a polynomial-time algorithm for deciding whether there exists a sequence of
moves that enables the robot to reach the goal position?

This problem was first posed in [DO92]. That paper establishes two results: (1) the
problem is polynomial if the path is restricted to be x- and y-monotone; and (2) the
problem is NP-complete if some blocks may be glued to the plane. Subsequently,
this second result was strengthened to PSPACE-hard by D. Bremner and T. Shermer
[BOS94]. Closely related is the result that the block-pushing game Sokoban is PSPACE-
hard [C98]; note that Sokoban also allows blocks to be glued to the plane. A recent
result on another related problem is [DDO00].

[BOS94] David Bremner, Joseph O’Rourke, and Thomas Shermer, “Motion planning
amidst movable square blocks is PSPACE complete,” Draft, June 1994.

[C98] Joseph Culberson, “Sokoban is PSPACE-complete,” in Proceedings of the In-
ternational Conference Fun with Algorithms, Isola d’Elba, Italy, June 1998, pages
65–76.

[DDO00] Erik D. Demaine and Martin L. Demaine and Joseph O’Rourke, “PushPush
is NP-hard in 2D,” Technical Report 065, Smith College, Northampton, MA,
January 2000. http://www.arXiv.org/abs/cs.CG/0001019

[DO92] Arundhati Dhagat and Joseph O’Rourke, “Motion planning amidst movable
square blocks,” in Proceedings of the 4th Canadian Conference on Computational
Geometry, 1992, pages 188–191.
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Semi-rational Rectangular Tilings
Evangelos Kranakis, Carleton University, kranakis@scs.carleton.ca

The following two problems were solved positively by Eduardo Rivera-Campo and the
solution was described during Evangelos’s talk on August 18, 1999.

A rectangle is called semi-rational if one of its sides has a rational length. Given a
simple orthogonal polygon (without holes) that can be tiled by semi-rational rectan-
gles, must there be an edge of the polygon whose length is rational? Given a simple
orthogonal polygon that can be tiled by 1× p and p× 1 rectangles, must there be an
edge of the polygon whose length is divisible by p?

Multi-label Map Labeling
Binhai Zhu, City University of Hong Kong, bhz@cs.cityu.edu.hk

Multi-label map labeling is a problem we encounter several times daily; for example,
in the weather report on T.V., we need to put two labels on each city, its name and
its temperature. Theoretically, almost nothing is known about this problem. In the
particular problem posed here, we make the following assumptions:

• each city is a point,

• each city must be labeled by a pair of axis-parallel squares,

• each label must be placed so that its corresponding city is on the square’s bound-
ary (sliding labels),

• all labels are of the same size, and

• labels cannot overlap.

The goal is to find such a label placement that maximizes the label size. What is the
complexity of this problem? In particular, is the problem NP-hard?

The only known result is a factor-4 approximation algorithm [ZP99]. Recently the
factor was improved to 3 (Binhai Zhu, personal communication). Also shown in [ZP99]
is a factor-2 approximation algorithm for labeling by pairs of disks (instead of axis-
parallel squares). The complexity of this map-labeling problem is also open.

[ZP99] Binhai Zhu and C. K. Poon, “Efficient approximation algorithms for multi-
label map labeling,” in Proceedings of the 10th Annual International Symposium
on Algorithms and Computation, Chennai, India, December 1999, pages 143–152.

Convexifying Polygons in 3-D
Godfried Toussaint, McGill University, godfried@cs.mcgill.ca

Godfried elaborated on three problems posed in his CCCG’99 paper [T99a] about
applying operations to a simple polygon in 2 or 3 dimensions to convexify it, that is,
make it convex.

Begin with a simple polygon in the plane. A flip takes a pocket of the convex hull
(i.e., a connected region interior to the convex hull and exterior to the polygon) and
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rotates it 180◦ through 3-D about the incident convex-hull edge. It is known that a
finite number of flips suffice to convexify a polygon, although the number cannot be
bounded as a function of the number of vertices [G95, T99a].

1. A flipturn takes a pocket of the convex hull, detaches it from the rest of the poly-
gon, rotates it 180◦ around the midpoint of the convex-hull edge, and re-attaches
it to the polygon. How many flipturns are required to convexify a polygon? Joss
and Shannon [G95] proved that at most (n − 1)! flipturns can be made before
a polygon with n vertices becomes convex. They conjecture that n2/4 flipturns
always suffice.

Recently, Ahn et al. [ABC+99] proved that at most n(n − 3)/2 flipturns can be
made before the polygon becomes convex. Biedl [B00] proved that a particular
family of polygons has a (bad) sequence of at least (n − 2)2/4 flipturns before
convexity is reached. Remaining open problems include closing the gap between
∼ n2/4 and ∼ n2/2 for a poor sequence of flipturns, and whether there are
polygons whose shortest flipturn sequence has length ω(n).

2. A deflation is the reverse of a flip operation, that is, a rotation of a subchain of
the polygon through 3-D that keeps the polygon simple and causes the subchain
to become a pocket of the convex hull. Can a polygon be deflated more than a
finite number of times?

Godfried updated us that this problem was solved by Dı́az-Bañez, Gomez, and
Toussaint (1999): only a finite number of deflations can be made.

The third problem is about polygons in 3-D:

3. There are five known classes of unknotted hexagons in 3-D that are locked in the
sense that it cannot be reconfigured into a convex polygon while preserving the
link lengths and without crossing the links [CJ98, T99b]. Prove that this exhausts
all cases, i.e., that the configuration space of every unknotted hexagon has at most
five connected components, or find another one.

[ABC+99] Hee-Kap Ahn, Prosenjit Bose, Jurek Czyzowicz, Nicholas Hanusse, Evan-
gelos Kranakis, and Pat Morin, “Flipping your Lid,” Manuscript, December 1999.

[B00] Therese Biedl, Technical Report CS-2000-04, Department of Computer Science,
University of Waterloo, January 2000.

[CJ98] Jason Cantarella and Heather Johnston, “Nontrivial embeddings of polygonal
intervals and unknots in 3-space,” Journal of Knot Theory and Its Ramifications,
volume 7, number 8, 1998, pages 1027–1039.

[G95] Branko Grünbaum, “How to convexify a polygon,” Geombinatorics, volume 5,
1995, pages 24–30.

[T99a] Godfried Toussaint, “The Erdős-Nagy Theorem and its ramifications,” in Pro-
ceedings of the 11th Canadian Conference on Computational Geometry, Vancou-
ver, Canada, August 1999. http://www.cs.ubc.ca/conferences/CCCG/elec_

proc/fp19.ps.gz
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[T99b] Godfried Toussaint, “A new class of stuck unknots in Pol6,” Technical Re-
port SOCS-99.1, School of Computer Science, McGill University, April 10, 1999.
http://cgm.cs.mcgill.ca/~godfried/publications/unknot.ps.gz

Large Independent Sets in Delaunay Triangulations
Therese Biedl, University of Waterloo, biedl@uwaterloo.ca

An independent set in a graph is a set of vertices no two of which are adjacent to each
other. The problem is to find a “big” independent set in a Delaunay triangulation
“quickly.” This is motivated by some work by Snoeyink and van Kreveld [SvK97].

To be more precise: It is known that, in any planar graph with n vertices, there exists
an independent set I with |I| ≥ n/4. This result follows from the 4-color theorem.
However, while such a set can be found in O(n2) time, the algorithm is not very
practical because of a large asymptotic constant. Despite many attempts, there is no
linear-time algorithm to find n/4 independent vertices in a planar graph. Baker [B94]
gave an approximation algorithm for independent sets that achieves 1−1/(k+1) times
the optimal solution in O(k8kn) time. Thus we can get arbitrarily close to n/4 in linear
time, but at the price of a high constant. The question is now whether the problem
becomes any easier if we are looking at Delaunay triangulations rather than arbitrary
planar graphs.

[B94] Brenda S. Baker, “Approximation algorithms for NP-complete problems on
planar graphs,” Journal of the Association for Computing Machinery, volume 41,
number 1, 1994, pages 153–180.

[SvK97] Jack Snoeyink and Marc van Kreveld, “Linear-time reconstruction of Delau-
nay triangulations with applications,” in Proceedings of the 5th European Sympo-
sium on Algorithms, LNCS 1284, Graz, Austria, September 1997, pages 459-471.

Cutting 3-D Linkages
Anna Lubiw, University of Waterloo, alubiw@uwaterloo.ca

The 5-link chain linkage shown below [CJ98, BDD+99] is known to be locked in the
sense that it cannot be reconfigured into a straight line while preserving the link lengths
and without crossing the links (provided the two end links are sufficiently long). How-
ever, if we cut any joint and disconnect the linkage into two pieces, the pieces can be
straightened and rejoined at their “loose ends,” thereby straightening the linkage.

This idea gives rise to the following problem. Let f(n) denote the number of joints
required to be cut in order to straighten the “worst” n-link chain in 3-D. Certainly,
f(n) < n. Tying together several copies of the linkage above shows that f(n) > n/4.
The problem is to close this gap by proving tighter upper or lower bounds on f(n).
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This problem is motivated by protein folding in molecular biology (Ming Li, personal
communication). Proteins can be roughly modeled by chain linkages which are re-
quired to reconfigure into various positions. However, it seems that nature “cheats”
by allowing joints of the chain to be cut temporarily during the motion.

[BDD+99] T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O’Rourke, M.
Overmars, S. Robbins, I. Streinu, G. Toussaint, and S. Whitesides, “Locked and
Unlocked Polygonal Chains in 3D,” Technical report 060, Smith College, October
1999. http://www.arXiv.org/abs/cs.CG/9910009

[CJ98] Jason Cantarella and Heather Johnston, “Nontrivial embeddings of polygonal
intervals and unknots in 3-space,” Journal of Knot Theory and Its Ramifications,
7(8):1027–1039, 1998.

HeapHull?
Jack Snoeyink, University of North Carolina, snoeyink@cs.ubc.ca

Is there a 2-dimensional convex-hull algorithm that operates on the same fundamental
principle as Heapsort, and runs in O(n log n) time?

All of the notable sorting algorithms have their 2-D convex hull relatives, except for
Heapsort. (Quicksort /quickhull, mergesort /divide and conquer, insertion sort / incre-
mental construction, selection sort / Jarvis march; bubble sort isn’t notable). Andrea
Mantler has implemented one possibility based on a kinetic heap, but its time bound
is O(n log2 n). See http://www.cs.ubc.ca/spider/mantler.

Long Paths in Segment Endpoint Visibility Graphs
Prosenjit Bose, Carleton University, jit@scs.carleton.ca

Given a set of disjoint line segments in the plane, the segment endpoint visibility graph
(see, e.g., [OR94]) has a vertex for each endpoint of a segment, and connects two
vertices by an edge precisely if either

1. the corresponding endpoints are visible from each other in the sense that the open
line segment connecting them is disjoint from the segments (a proper visibility
edge), or

2. the endpoints are connected by a segment (a segment edge).

Mirzaian conjectured in 1992 that segment endpoint visibility graphs are Hamiltonian,
and subsequently this has been established for a few classes of segments [M92, OR94].
More generally, how short can the longest cycle be in a segment endpoint visibility
graph? How tight can we bound this length? One can prove using triangulation that
there is always a cycle of length Ω(

√
n) where n is the number of vertices (endpoints).

Is there always a cycle of length Ω(n)? Mirzaian’s conjecture is that there is always a
cycle of length exactly n.

An alternating path is a path in which every even-numbered edge is a segment and
every odd-numbered edge is a visibility edge (or vice versa). How short can the longest
alternating path be? Conjecture: There is always a path of length Ω(log n).
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[M92] Andranik Mirzaian, “Hamiltonian triangulations and circumscribing polygons
of disjoint line segments,” Computational Geometry: Theory and Applications,
volume 2, number 1, 1992, pages 15–30.

[OR94] Joseph O’Rourke and Jennifer Rippel, “Two segment classes with Hamilto-
nian visibility graphs,” Computational Geometry: Theory and Applications, vol-
ume 4, 1994, pages 209–218.
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