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Abstract. This paper presents two dynamic search trees attaining near-optimal performance
on any hierarchical memory. The data structures are independent of the parameters of the memory
hierarchy, e.g., the number of memory levels, the block-transfer size at each level, and the relative
speeds of memory levels. The performance is analyzed in terms of the number of memory transfers
between two memory levels with an arbitrary block-transfer size of B; this analysis can then be
applied to every adjacent pair of levels in a multilevel memory hierarchy. Both search trees match the
optimal search bound of Θ(1+logB+1 N) memory transfers. This bound is also achieved by the classic
B-tree data structure on a two-level memory hierarchy with a known block-transfer size B. The first
search tree supports insertions and deletions in Θ(1+ logB+1 N) amortized memory transfers, which
matches the B-tree’s worst-case bounds. The second search tree supports scanning S consecutive
elements optimally in Θ(1 + S/B) memory transfers and supports insertions and deletions in Θ(1 +

logB+1 N + log2 N
B

) amortized memory transfers, matching the performance of the B-tree for B =
Ω(log N log log N).
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1. Introduction. The memory hierarchies of modern computers are becoming
increasingly steep. Typically, an L1 cache access is two orders of magnitude faster
than a main memory access and six orders of magnitude faster than a disk access [27].
Thus, it is dangerously inaccurate to design algorithms assuming a flat memory with
uniform access times.

Many computational models attempt to capture the effects of the memory hier-
archy on the running times of algorithms. There is a tradeoff between the accuracy of
the model and its ease of use. One body of work explores multilevel memory hierar-
chies [2, 3, 5, 7, 43, 44, 49, 51], though the proliferation of parameters in these models
makes them cumbersome for algorithm design. A second body of work concentrates
on two-level memory hierarchies, either main memory and disk [4, 12, 32, 49, 50] or
cache and main memory [36, 45]. With these models the programmer must anticipate
which level of the memory hierarchy is the bottleneck. For example, a B-tree that has
been tuned to run on disk has poor performance in memory.

1.1. Cache-Oblivious Algorithms. The cache-oblivious model enables us to
reason about a simple two-level memory but prove results about an unknown mul-
tilevel memory. This model was introduced by Frigo et al. [31] and Prokop [40].
They show that several basic problems—namely, matrix multiplication, matrix trans-
pose, the fast Fourier transform (FFT), and sorting—have optimal algorithms that
are cache oblivious. Optimal cache-oblivious algorithms have also been found for LU
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decomposition [21, 46] and static binary search [40]. These algorithms perform an
asymptotically optimal number of memory transfers for any memory hierarchy and
at all levels of the hierarchy. More precisely, the number of memory transfers be-
tween any two levels is within a constant factor of optimal. In particular, any linear
combination of the transfer counts is optimized.

The theory of cache-oblivious algorithms is based on the ideal-cache model of
Frigo et al. [31] and Prokop [40]. In the ideal-cache model there are two levels in
the memory hierarchy, called cache and main memory, although they could represent
any pair of levels. Main memory is partitioned into memory blocks, each consisting
of a fixed number B of consecutive cells. The cache has size M , and consequently
has capacity to store M/B memory blocks.1 In this paper, we require that M/B be
greater than a sufficiently large constant. The cache is fully associative, that is, it can
contain an arbitrary set of M/B memory blocks at any time.

The parameters B and M are unknown to the cache-oblivious algorithm or data
structure. As a result, the algorithm cannot explicitly manage memory, and this
burden is taken on by the system. When the algorithm accesses a location in memory
that is not stored in cache, the system fetches the relevant memory block from main
memory in what is called a memory transfer. If the cache is full, a memory block
is elected for replacement based on an optimal offline analysis of the future memory
accesses of the algorithm.

Although this model may superficially seem unrealistic, Frigo et al. show that it
can be simulated by essentially any memory system with a small constant-factor over-
head. Thus, if we run a cache-oblivious algorithm on a multilevel memory hierarchy,
we can use the ideal-cache model to analyze the number of memory transfers between
each pair of adjacent levels. See [31, 40] for details.

The concept of algorithms that are uniformly optimal across multiple memory
models was considered previously by Aggarwal et al. [2]. These authors introduce the
Hierarchical Memory Model (HMM), in which the cost to access memory location x
is df(x)e where f(x) is monotone nondecreasing and polynomially bounded. They
give algorithms for matrix multiplication and the FFT that are optimal for any cost
function f(x). One distinction between the HMM model and the cache-oblivious
model is that, in the HMM model, memory is managed by the algorithm designer,
whereas in the cache-oblivious model, memory is managed by the existing caching and
paging mechanisms. Also, the HMM model does not include block transfers, though
Aggarwal, Chandra, and Snir [3] later extended the HMM to the Block Transfer (BT)
model to take into account block transfers. In the BT model the algorithm can choose
and vary the block size, whereas in the cache-oblivious model the block size is fixed
and unknown.

1.2. B-Trees. In this paper, we initiate the study of dynamic cache-oblivious
data structures by developing cache-oblivious search trees.

The classic I/O-efficient search tree is the B-tree [13]. The basic idea is to maintain
a balanced tree of N elements with node fanout proportional to the memory block
size B. Thus, one block read determines the next node out of Θ(B) nodes, so a search
completes in Θ(1 + logB+1 N) memory transfers.2 A simple information-theoretic
argument shows that this bound is optimal.

1Note that B and M are parameters, not constants. Consequently, they must be preserved in
asymptotic notation in order to obtain accurate running-time estimates.

2We use B + 1 as the base of the logarithm to correctly capture that the special case of B = 1
corresponds to the RAM.
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The B-tree is designed for a two-level hierarchy, and the situation becomes more
complex with more than two levels. We need a multilevel structure, with one level
per transfer block size. Suppose B1 > B2 > · · · > BL are the block sizes between the
L + 1 levels of memory. At the top level we have a B1-tree; each node of this B1-tree
is a B2-tree; etc. Even when it is possible to determine all these parameters, such a
data structure is cumbersome. Also, each level of recursion incurs a constant-factor
wastage in storage, in order to amortize dynamic changes, leading to suboptimal
memory-transfer performance for L = ω(1).

1.3. Results. We develop two cache-oblivious search trees. These results are the
first demonstration that even irregular and dynamic problems, such as data structures,
can be solved efficiently in the cache-oblivious model. Since the conference version [18]
of this paper appeared, many other data-structural problems have been addressed in
the cache-oblivious model; see Table 1.1.

Our results achieve the memory-transfer bounds listed below. The parameter N
denotes the number of elements stored in the tree. Updates refer to both key insertions
and deletions.

1. The first cache-oblivious search tree attains the following memory-transfer
bounds:

Search: O(1+ logB+1 N), which is optimal and matches the search bound
of B-trees.

Update: O(1 + logB+1 N) amortized, which matches the update bound of
B-trees, though the B-tree bound is worst case.

2. The second cache-oblivious search tree adds the scan operation (also called
the range search operation). Given a key x and a positive integer S, the scan
operation accesses S elements in key order, starting after x. The memory-
transfer bounds are as follows:

Search: O(1 + logB+1 N).
Scan: O(1 + S/B), which is optimal.
Update: O(1 + logB+1 N + log2 N

B ) amortized, which matches the B-tree
update bound of O(1 + logB+1 N) when B = Ω(log N log log N).

This last relation between B and N usually holds in external memory but
often does not hold in internal memory.

In the development of these data structures, we build and identify tools for cache-
oblivious manipulation of data. These tools have since been used in many of the
cache-oblivious data structures listed in Table 1.1. In Section 2.1, we show how to
linearize a tree according to what we call the van Emde Boas layout, along the lines
of Prokop’s static search tree [40]. In Section 2.2, we describe a type of strongly
weight-balanced search tree [11] useful for maintaining locality of reference. Following
the work of Itai, Konheim, and Rodeh [33] and Willard [52, 53, 54], we develop a
packed-memory array for maintaining an ordered collection of N items in an array
of size O(N) subject to insertions and deletions in O(1 + log2 N

B ) amortized memory
transfers; see Section 2.3. This structure can be thought of as a cache-oblivious linked
list that supports scanning S consecutive elements in O(1 + S/B) memory transfers
(instead of the näıve O(S)) and updates in O(1+ log2 N

B ) amortized memory transfers.

1.4. Notation. We define the hyperfloor of x, denoted bbxcc, to be 2blog xc, i.e.,
the largest power of 2 smaller than x.3 Thus, x/2 < bbxcc ≤ x. Similarly, the

3All logarithms are base 2 if not otherwise specified.
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B-tree • Simplification via packed-memory
structure/low-height trees

[20, 25]

• Simplification and persistence
via exponential structures

[42, 17]

• Implicit [29, 30]
Static search trees • Basic layout [40]

• Experiments [35]
• Optimal constant factor [14]

Linked lists supporting scans [15]
Priority queues [8, 23, 26]
Trie layout [6, 19]
Computational geometry • Distribution sweeping [22]

• Voronoi diagrams [34]
• Orthogonal range searching [1, 9]
• Rectangle stabbing [10]

Lower bounds [24]
Table 1.1

Related work in cache-oblivious data structures. These results, except the static search tree
of [40], appeared after the conference version of this paper.

hyperceiling ddxee is defined to be 2dlog xe. Analogously, we define hyperhyperfloor and
hyperhyperceiling by bbbxccc = 2bblog xcc and dddxeee = 2ddlog xee. These operators satisfy√

x < bbbxccc ≤ x and x ≤ dddxeee < x2.

2. Tools for Cache-Oblivious Data Structures.

2.1. Static Layout and Searches. We first present a cache-oblivious static
search-tree structure, which is the starting point for the dynamic structures. Consider
a O(log N)-height search tree in which every node has at least two and at most a
constant number of children and in which all leaves are on the same level. We describe
a mapping from the nodes of the tree to positions in memory. The cost of any search
in this layout is Θ(1 + logB+1 N) memory transfers, which is optimal up to constant
factors. Our layout is a modified version of Prokop’s layout for a complete binary tree
whose height is a power of 2 [40, pp. 61–62]. We call the layout the van Emde Boas
layout because it resembles the van Emde Boas data structure [47, 48].4

The van Emde Boas layout proceeds recursively. Let h be the height of the tree,
or more precisely, the number of levels of nodes in the tree. Suppose first that h is
a power of 2. Conceptually split the tree at the middle level of edges, between nodes
of height h/2 and h/2 + 1. This breaks the tree into the top recursive subtree A of
height h/2, and several bottom recursive subtrees B1, B2, . . . , B`, each of height h/2.
If all nonleaf nodes have the same number of children, then the recursive subtrees all
have size roughly

√
N , and ` is roughly

√
N . The layout of the tree is obtained by

recursively laying out each subtree and combining these layouts in the order A, B1,
B2, . . . , B`; see Figure 2.1.

If h is not a power of 2, we assign a number of levels that is a power of 2 to
the bottom recursive subtrees and assign the remaining levels to the top recursive
subtree. More precisely, the bottom subtrees have height ddh/2ee (= bbh − 1cc) and

4We do not use a van Emde Boas tree—we use a normal tree with pointers from each node to its
parent and children—but the order of the nodes in memory is reminiscent of van Emde Boas trees.
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Fig. 2.1. The van Emde Boas layout. Left: in general; right: of a tree of height 5.

the top subtree has height h − ddh/2ee. This rounding scheme is important for later
dynamic structures because the heights of the cut lines in the lower trees do not vary
with N . In contrast, this property is not shared by the simple rounding scheme of
assigning bh/2c levels to the top recursive subtree and dh/2e levels to the bottom
recursive subtrees.

The memory-transfer analysis views the van Emde Boas layout at a particular
level of detail. Each level of detail is a partition of the tree into disjoint recursive
subtrees. In the finest level of detail, 0, each node forms its own recursive subtree. In
the coarsest level of detail, dlog2 he, the entire tree forms the unique recursive subtree.
Level of detail k is derived by starting with the entire tree, recursively partitioning it
as described above, and exiting a branch of the recursion upon reaching a recursive
subtree of height ≤ 2k. The key property of the van Emde Boas layout is that, at any
level of detail, each recursive subtree is stored in a contiguous block of memory.

One useful consequence of our rounding scheme is the following.
Lemma 2.1. At level of detail k all recursive subtrees except the one containing

the root have the same height of 2k. The recursive subtree containing the root has
height between 1 and 2k inclusive.

Proof. The proof follows from a simple induction on the level of detail. Consider
a tree T of height h. At the coarsest level of detail, dlog2 he, there is a single recursive
subtree, which includes the root. In this case the lemma is trivial. Suppose by
induction that the lemma holds for level of detail k. In this level of detail the recursive
subtree containing the root of T has height h′, where 1 ≤ h′ ≤ 2k, and all other
recursive subtrees have height 2k. To progress to the next finer level of detail, k − 1,
all recursive subtrees that do not contain the root are recursively split once more so
that they have height 2k−1. If the height h′ of the top recursive subtree is at most
2k−1, then it is not split in level of detail k−1. Otherwise, the root is split into bottom
recursive subtrees of height 2k−1 and a top recursive subtree of height h′′ ≤ 2k−1. The
inductive step follows.

Lemma 2.2. Consider an N -node search tree T that is stored in a van Emde Boas
layout. Suppose that each node in T has between δ ≥ 2 and ∆ = O(1) children. Let h
be the height of T . Then a search in T uses at most 4

⌈
logδ ∆ logB+1 N + logB+1 ∆

⌉
=

O(1 + logB+1 N) memory transfers.
Proof. Let k be the coarsest level of detail such that every recursive subtree
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Fig. 2.2. The recursive subtrees visited by a root-to-leaf search path in level of detail k.

contains at most B nodes; see Figure 2.2. Thus, every recursive subtree is stored in at
most two memory blocks. Because tree T has height h, dh/2ke recursive subtrees are
traversed in each search, and thus at most 2dh/2ke memory blocks are transferred.
Because the tree has height h, δh−1 < N < ∆h, that is, log∆ N < h < logδ N + 1.
Because a tree of height 2k+1 has more than B nodes, ∆2k+1

> B so ∆2k+1 ≥ B + 1.
Thus, 2k ≥ 1

2 log∆(B + 1). Therefore, the maximum number of memory transfers is

2
⌈

h

2k

⌉
≤ 4

⌈
1 + logδ N

log∆(B + 1)

⌉
= 4

⌈(
1 +

log N

log δ

) (
log ∆

log(B + 1)

)⌉
= 4

⌈
logδ ∆ logB+1 N + logB+1 ∆

⌉
.

Because δ and ∆ are constants, this bound is O(1 + logB+1 N).

2.2. Strongly Weight-Balanced Search Trees. To convert the static lay-
out into a dynamic layout, we use a dynamic balanced search tree. We require the
following two properties of the balanced search tree.

Property 1 (descendant amortization). Suppose that whenever we rebalance a
node v (i.e., modify it to keep balance) we also touch all of v’s descendants. Then the
amortized number of elements touched per insertion is O(log N).

Property 2 (strong weight balance). For some constant d, every node v at
height h has Θ(dh) descendants.

Property 1 is normally implied by Property 2 as well as by a weaker property
called weight balance. A tree is weight balanced if, for every node v, its left subtree
(including v) and its right subtree (including v) have sizes that differ by at most a
constant factor. Weight balancedness guarantees a relative bound between subtrees
with a common root, so the size difference between subtrees of the same height may be
large. In contrast, strong weight balance requires an absolute constraint that relates
the sizes of all subtrees at the same level. For example, BB[α] trees [38] are weight-
balanced binary search trees based on rotations, but they are not strongly weight
balanced.

Search trees that satisfy Properties 1 and 2 include weight-balanced B-trees [11],
deterministic skip lists [37], and skip lists [41] in the expected sense. We choose to
use weight-balanced B-trees defined as follows.

Definition 2.3 (weight-balanced B-tree [11]). A rooted tree T is a weight-
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balanced B-tree with branching parameter d, where d > 4, if the following conditions
hold:5

1. All leaves of T have the same depth.
2. The root of T has more than one child.
3. Balance: Consider a nonroot node u at height h in the tree. (Leaves have

height 1.) The weight w(u) of u is the number of nodes in the subtree rooted
at u. This weight is bounded by

dh−1

2
≤ w(u) ≤ 2dh−1.

4. Amortization: If a nonroot node u at height h is rebalanced, then Ω(dh)
updates are necessary before u is rebalanced again. That is, w(u)− dh−1/2 =
Θ(dh) and 2dh−1 − w(u) = Θ(dh).6

Conditions 1–4 have the following consequence:
5. The root has between 2 and 4d children. All internal nodes have between d/4

and 4d children. The height of the tree is O(1 + logd N).
From the strong weight balancedness of the subtree rooted at a node, we can

conclude strong weight balancedness of the top a levels in such a subtree, as follows.
Lemma 2.4. Consider the subtree A of a weight-balanced B-tree containing a

node v, its children, its grandchildren, etc., for exactly a levels. Then |A| < 4da.
Proof. Let T denote the subtree rooted at a node of height h. Consider the

descendants of v down precisely a levels, and let B1, B2, . . . , Bk be the subtrees rooted
at those nodes. In other words, the Bi’s are the children subtrees of A. Let b = h− a
denote the height of each Bi. Because T and the Bi’s are strongly weight balanced,
|T | ≤ 2dh−1 and |Bi| ≥ 1

2db−1 for all i. Now |B1| + · · · + |Bk| < |T | ≤ 2dh−1, so
k ≤ 4dh−b = 4da. But the number of nodes in A is less than the number of children
subtrees B1, B2, . . . , Bk, so the result follows.

Next we show how to perform updates, making a small modification to the pre-
sentation in [11]. Specifically, [11] performs deletions using the global rebalancing
technique of [39], where deleted nodes are treated as “ghost” nodes to be removed
when the tree is periodically reassembled. In the cache-oblivious model, we need to
service deletions immediately to avoid large holes in the structure.

Insertions.. We search down the tree to find where to insert a new leaf w. After
inserting w, some ancestors of w may become unbalanced. That is, some ancestor
node u at height h may have weight greater than 2dh−1. We bring the ancestors of
w into balance starting from the ancestors closest to the leaves. If a node u at height
h is out of balance, then we split u into two nodes u1 and u2, which share the node
u’s children, v1, . . . , vk. We can divide the children fairly evenly as follows. Find the
longest sequence of v1, . . . , vk′ such that their total weight is at most dw(u)/2e, that
is,

∑k′

i=1 w(vi) ≤ dw(u)/2e. Thus, dw(u)/2e − 2dh−2 + 1 ≤ w(u1) ≤ dw(u)/2e and
bw(u)/2c ≤ w(u2) ≤ bw(u)/2c+ 2dh−2 − 1. Because d > 4, we continue to satisfy the
properties of Definition 2.3. In particular, at least Θ(dh) insertions or deletions are
needed before either u1 or u2 is split.

Deletions.. Deletions are similar to insertions. As before, we search down the
tree to find which leaf w to delete. After deleting w, some ancestors of w may become
unbalanced. That is, some ancestor node u at height h may have weight lower than

5In [11] there is also a leaf parameter k > 0, but we simply fix k = 1.
6This property is not included in the definition in [11], but it is an important invariant satisfied

by the structure.
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1
2dh−1. We merge u with one of its neighbors. After merging u, it might now have
a weight larger than its upper bound, so we immediately split it into two nodes as
described in the insertion algorithm. A slightly more subtle problem is that the
newly merged node may be just below the upper threshold and may need splitting
soon thereafter. We can handle this problem in several ways. Here, we split a merged
node v if it has weight greater than 7

4dh−1, thus producing two nodes of weight at
least 7

8dh−1 − dh−2 ≥ 5
8dh−1 and at most 9

8dh−1. Thus, condition 4 is guaranteed. As
with insertions, we handle such out-of-bound nodes u in order of increasing height.

2.3. Packed-Memory Array. A packed-memory array maintains N elements
in order in an array of size P = cN subject to element deletion and element insertion
between two existing elements. The remaining fraction 1 − c of the array is blank.
The packed-memory array must achieve two seemingly contradictory goals. On the
one hand, we should pack the nodes densely so that scanning is fast: S consecutive
elements must occupy O(S) cells in the array so that scanning those elements uses
O(1 + S/B) memory transfers. On the other hand, we should leave enough blank
space between the nodes to permit future insertions to be handled quickly. Meeting
these two goals makes packed-memory arrays useful for storing dynamic linear data
cache obliviously. We achieve the following balance.

Theorem 2.5. For any desired c > 1, the packed-memory array maintains N

elements in an array of size cN and supports insertions and deletions in O(1+ log2 N
B )

amortized memory transfers and scanning S consecutive elements in O(1 + S/B)
memory transfers.

Our data structure and analysis closely follow Itai, Konheim, and Rodeh [33].
They consider the same problem of maintaining elements in order in an array of
linear size, but in a different cost model and without the scanning requirement. Their
structure moves O(log2 N) amortized elements per insertion, but has no guarantee on
the number of memory transfers for inserting, deleting, or scanning. This structure
has been deamortized by Willard [52, 53, 54] and subsequently simplified by Bender
et al. [16].7

At a high level, the packed-memory array keeps every interval of the array of size
Ω(1) a constant fraction full, where the constant fraction depends on the interval size.
When an interval of the array becomes too full or too empty, we evenly spread out
(rebalance) the elements within a larger interval. It remains to specify the size of the
interval to rebalance and the thresholds determining when an interval is too full or
too empty.

Tree structure and thresholds.. We divide the array into segments, each of size
Θ(lg P ), so that the number of segments is a power of 2. We then implicitly build a
perfect binary tree on top of these Θ(P/ lg P ) segments, making each segment a leaf.
Each node in the tree represents the subarray containing the segments in the subtree
rooted at this node. In particular, the root node represents the entire array, and each
leaf node represents a single segment.

To define the thresholds controlling rebalance, we need additional terminology.
The capacity of a node u in the tree, denoted capacity(u), is the size of its subarray.
The density of a node u in the tree, denoted density(u), is the number of elements
stored in u’s subarray divided by capacity(u). Define the root node to have depth 0
and the leaf nodes to have depth d = lg Θ(P/ lg P ).

7This problem is closely related to, but distinct from, the problem of answering linked-list order
queries [28, 16].
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For each node, we define two density thresholds specifying the desired range on
the node’s density. Let 0 < ρd < ρ0 < τ0 < τd = 1 be arbitrary constants. For a node
u at depth k, the upper-bound density threshold τk is τ0 + τd−τ0

d k and the lower-bound
density threshold ρk is ρ0 − ρ0−ρd

d k. Thus,

0 < ρd < ρd−1 < · · · < ρ0 < τ0 < τ1 < · · · < τd = 1.

A node u at depth k is within threshold if ρk ≤ density(u) ≤ τk.
The main difference between our packed-memory array and the data structure

of [33] is that we add lower-bound thresholds.
Insertion and deletion.. To insert an element x, we proceed as follows. First we

find the leaf node w where x belongs. If leaf w has free space, then we rebalance w
by evenly distributing x and the Θ(lg P ) elements in the leaf. Otherwise, we proceed
up the tree until we find the first ancestor u of w that is within threshold. Then we
rebalance node u by evenly distributing all elements in u’s subarray throughout that
subarray. Leaf w is now within threshold and we can insert x as before.

Deleting an element is similar. To delete an element x, we remove x from the leaf
node w containing x. If w is still within threshold, we are done. Otherwise, we find
the lowest ancestor u of w that is within threshold and we rebalance u. Leaf w is now
within threshold.

Although we describe these algorithms as conceptually visiting nodes in a tree,
the tree is not actually stored. The operations are implemented by two parallel scans,
one moving left and one moving right, that visit the subarrays specified implicitly by
the tree nodes along a leaf-to-root path. During these scans we count the number of
elements found and the capacity traversed, stopping when the density of a subarray
is within threshold. The memory-transfer cost of the scans is O(1 + K/B), where
K is the capacity of the subarray traversed. We then rebalance this subarray using
O(1) additional scans, so the total cost is O(1 + K/B); K is also the capacity of the
subarray rebalanced.

Whenever N changes by a constant factor, we rebuild the structure by copying
the data into another array with newly computed densities.

Analysis.. Next we bound the amortized size of a rebalance during an insertion or
deletion. Suppose that we rebalance a node u at depth k. The rebalance was triggered
by an insertion or deletion in the subarray of some child v of u. Before rebalancing,
u is within threshold, i.e., ρk ≤ density(u) ≤ τk, and v is not within threshold, i.e.,
density(v) > τk+1 or density(v) < ρk+1. After rebalancing, the density of v (and of
v’s sibling) is not only within threshold, but also within the density thresholds of its
parent u, i.e., ρk ≤ density(v) ≤ τk. Before the density of node v (or its sibling)
next exceeds its upper-bound threshold, we must have at least (τk+1− τk) capacity(v)
additional insertions within its subarray. Similarly, before the density of node v
(or its sibling) next falls below its lower-bound threshold, we must have at least
(ρk − ρk+1) capacity(v) additional deletions within its subarray.

We charge the size capacity(u) of the rebalance at u to its child v. Therefore the
amortized size of a rebalance per insertion into v’s subarray is

capacity(u)
capacity(v) (τk+1 − τk)

=
2

τk+1 − τk
=

2d

τd − τ0
= O(lg P ),

and the amortized size of a rebalance per deletion in v’s subarray is

capacity(u)
capacity(v) (ρk − ρk+1)

=
2

ρk − ρk+1
=

2d

ρ0 − ρd
= O(lg P ).
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When we insert or delete an element x, we insert or delete within d = O(lg P )
different subintervals containing x. Therefore the total amortized size of a rebalance
per insertion or deletion is O(lg2 P ) = O(lg2 N).

Because the amortized size of a rebalance per insertion or deletion is O(lg2 N),
the amortized number of memory transfers per insertion or deletion is O(1 + lg2 N

B ).
This concludes the proof of Theorem 2.5.

3. Main Structure. We begin by describing a simple approach to cache-obliv-
ious B-trees that is not efficient by itself and then describe the modifications and
improvements necessary to obtain our structure.

The simple approach uses the principle of indirection to support fast updates. We
partition the N elements into consecutive groups of Θ(log N) elements each, and store
each group in a separate array of size Θ(log N). We maintain a standard balanced
binary search tree, such as an AVL tree, on the minimum element from each group.
This top tree thus stores Θ(N/ lg N) elements. Each element in the top tree stores a
pointer to the corresponding group array, and vice versa. Most insertions and deletions
can simply rewrite one of the group arrays, which costs O(1+ lg N

B ) memory transfers.
Whenever a group grows by a constant factor (e.g., to 2 lg N) or shrinks by a constant
factor (e.g., to 1

2 lg N), we merge and/or split groups at a cost of O(1+ lg N
B ) memory

transfers and then perform the corresponding deletion and/or insertion in the top
tree at a cost of O(log N) memory transfers. The latter cost can be charged to the
Ω(log N) updates that caused the overflow or underflow, for an amortized O(1) cost.
Therefore the total amortized update cost is O(1 + lg N

B ) = O(logB+1 N) memory
transfers.

The problem with this structure is that searching in the balanced binary search
tree costs O(log N) memory transfers. The moral is that we can afford to have rel-
atively slow insertions and deletions in the upper tree, but we need to have fast
searches.

The next layer of complexity is to keep the top tree in an (approximate) van
Emde Boas layout, which brings the total search time down to O(logB+1 N) memory
transfers. (The cost to scan a group array is O(1 + log N

B ), which is negligible.) How-
ever, it is not clear how to preserve this van Emde Boas layout of a search tree under
insertions and deletions. First we show that, if we use a weight-balanced B-tree from
Section 2.2 for the top tree, there are few changes to the relative order of elements
in the van Emde Boas layout, at least in the amortized sense. Nonetheless, when we
insert into the middle of the tree, we need to have extra space for newly created nodes.
If we keep the tree layout in an array, each insertion may require shifting most of the
tree, even though the relative order of elements changes very little. Instead we use a
packed-memory array from Section 2.3 to store the van Emde Boas layout, allowing
us to make room for changes in the tree.

An additional technical complication arises in maintaining pointers to nodes that
move during an update. We search in the top tree by following pointers from nodes
to their children, represented by indices into the packed-memory array. When we
insert or delete an element in the packed-memory array, an amortized O(log2 N) ele-
ments move. Any element that is moved must let its parent know where it has gone.
Thus, each node must have a pointer to its parent, and so each node must also let
its children know where it has moved. The O(log2 N) nodes that move can have
O(log2 N) children scattered throughout the packed-memory array, each in separate
memory blocks. Thus an insertion or deletion can potentially induce O(log2 N) mem-
ory transfers to update these disparately located pointers. We can afford this large
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cost in an amortized sense by adding another level of Θ(log N) indirection.
The overall structure of our cache-oblivious B-tree therefore has three levels. The

top level is a weight-balanced B-tree on Θ(N/ log2 N) elements stored according to a
van Emde Boas layout in a packed-memory array. The middle level is a collection of
Θ(N/ log2 N) groups of Θ(log N) elements each. The bottom level is a collection of
Θ(N/ log N) groups of Θ(log N) elements each.

In the next section, we turn to the details of the top tree. In Section 3.2, we
specify exactly how we store the collections of group arrays in the middle and bottom
levels, which depends on exactly which bounds we desire. In Section 3.3, we put the
pieces together to obtain the final algorithms and analysis.

3.1. Splits and Merges. At a high level, our algorithms for searching, inserting,
and deleting in the top tree follow the corresponding algorithms for a weight-balanced
B-tree from Section 2.2. The search algorithm is identical, and costs O(logB+1 N)
memory transfers because of Lemma 2.2 bounding the cost in a van Emde Boas
layout, and because replacing an array with a packed-memory array does not increase
the number of memory transfers by more than a constant factor. The insertion and
deletion algorithms must pay careful attention to maintain the van Emde Boas order,
which sometimes changes drastically as the result of a split or merge.

An insertion or deletion in a weight-balanced B-tree consists of splits and merges
along a leaf-to-root path, starting at a leaf and ending at a node at some height. We
show how to split or merge a node at height h in the top tree using O(1+dh/B) mem-
ory transfers (which we call the split-merge cost), plus the memory transfers incurred
by a single packed-memory insertion or deletion (including updating pointers). By
the amortization property of weight-balanced B-trees (condition 4 of Definition 2.3),
it follows that the amortized split-merge cost of rebalancing a node v is O(1/B) mem-
ory transfers per insertion or deletion into the subtree rooted at v. When we insert
or delete an element, this element is added or removed in O(log N) such subtrees.
Hence, the split-merge cost of an update is O(1 + log N

B ) amortized memory transfers.
Next we describe the algorithm to split a node v. First, we insert a new node v′

into the packed-memory array immediately after v. Then we redistribute the children
pointers among v and v′ according to the split algorithm of weight-balanced B-trees,
using O(1) memory transfers. If v is the root of the tree, we also insert a new root node
at the beginning of the packed-memory array and add parent-child pointers connecting
this node to v and v′. Because of the rounding scheme in the van Emde Boas layout,
this change in the height of the tree does not change the layout. However, adding v′

and redistributing v’s children change the van Emde Boas layout significantly.
To see how to repair the van Emde Boas layout, consider the coarsest level of

detail in which v is the root of a recursive subtree S. Suppose S has height h′, which
can be only smaller than the height h of node v. Let S be composed of top recursive
subtree A of height h′ − bbh′/2cc and bottom recursive subtrees B1, B2, . . . , Bk each
of height bbh′/2cc; refer to Figure 3.1. The split algorithm recursively splits A into A′

and A′′. (In the base case, A is the singleton tree {v}, which we have already split
into {v} and {v′}.)

At this point, A′ and A′′ are next to each other. Now we must move them to
the appropriate locations in the van Emde Boas layout. Let B1, B2, . . . , Bi be the
children recursive subtrees of A′, and let Bi+1, Bi+2, . . . , Bk be the children recursive
subtrees of A′′. We need to move B1, B2, . . . , Bi in between A′ and A′′. This move
is accomplished by three linear scans. Specifically, we scan to copy A′′ to some
temporary space, then scan to copy B1, B2, . . . , Bi immediately after A′, overwriting
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v

vA

A

A′ A′′

A′′A′

v′ v′′

v′′v′

BkBiB1

B1 Bi BkBkBiB1

B1 Bi BkBi+1

Bi+1

Bi+1

Bi+1

Fig. 3.1. Splitting a node. The top shows the modification in the recursive subtree S, and the
bottom shows the modification in the van Emde Boas layout.

A′′, and then scan to copy the temporary space containing A′′ to immediately after Bi.
Now that A′′ and B1, B2, . . . , Bi have been moved, we need to update the pointers

to the nodes in these blocks. First, we scan through the nodes in A′ and update the
children pointers of the leaves to point to the new locations of B1, B2, . . . , Bi. That
is, we increase the pointers by ‖A′′‖, the amount of space occupied in the packed-
memory array by A′′, including unused nodes. Second, we update the parent pointers
of Bi+1, Bi+2, . . . , Bk to A′′, decreasing them by ‖B1‖ + ‖B2‖ + · · · + ‖Bk‖. Finally,
we scan the recursive subtrees of height h′ that are children of B1, B2, . . . , Bi and
update the parent pointers of the roots, decreasing them by ‖A′′‖. This update can
be done in a single scan because the children recursive subtrees of B1, B2, . . . , Bi are
stored contiguously.

Finally, we analyze the number of memory transfers made by moving blocks at
all levels of detail. At each level h′ of the recursion, we perform a scan of all the
nodes at most six times (three for the move, and three for the pointer updates). By
strong weight balance (Property 2 and condition 3 of Definition 2.3), these scans cost
at most O(1 + dh′

/B) memory transfers. The total split-merge cost is given by the
cost of recursing on the top recursive subtree of at most half the height and by the
cost of the six scans. This recurrence is dominated by the top level:

T (h′) ≤ T
(

h′

2

)
+ c

(
1 + dh′

B

)
≤ c

(
1 + dh′

B

)
+ O

(
dh′/2

B

)
.

Hence, the split cost is O(1 + dh′
/B) ≤ O(1 + dh/B) memory transfers (not counting

the cost of a packed-memory insertion).
A merge can be performed within the same memory-transfer bound by using the

same overall algorithm. To begin, we merge two nodes v and v′ and apply a packed-
memory deletion. In each step of the recursion, we perform the above algorithm in
reverse, i.e., the opposite transformation from Figure 3.1. Therefore, the split-merge
cost in either case is O(1 + dh/B) worst-case memory transfers per split or merge,
which amortizes to O(1 + log N

B ) memory transfers per insertion or deletion.
The remaining cost per insertion and deletion is the cost to insert or delete an

element from the packed-memory array, including the cost of updating pointers. By
Theorem 2.5, the cost to rearrange the array itself is O(1+ log2 N

B ) amortized memory
transfers. Unfortunately, as mentioned above, the cost to update the pointers to the
amortized O(log2 N) elements moved can cost O(log2 N) memory transfers. Therefore
the total cost per insertion or deletion is O(log2 N) amortized memory transfers,
proving the following intermediate result.

Lemma 3.1. The top tree maintains an ordered set subject to searches in O(1 +
logB+1 N) memory transfers and to insertions and deletions in O(log2 N) amortized
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memory transfers.

3.2. Using Indirection. We use two levels of indirection to reduce the cost of
updating pointers in the top tree of the previous section. The resulting data structure
has three layers.

The bottom layer stores all N elements, clustered into Θ(N/ log N) groups of
Θ(log N) consecutive elements each. Associated with each of these bottom groups is
a representative element, the minimum element in the group. A representative element
may in fact be a ghost element which has been deleted but cannot be removed from
the structure because it is used in higher layers.

The middle layer stores the Θ(N/ log N) representative elements from the bottom
layer (some of which may be ghost elements). The middle layer may also store ghost
elements which have been deleted from the bottom layer but are still representatives
in the middle layer. The middle elements are clustered into Θ(N/ log2 N) groups of
Θ(log N) consecutive elements each. Again, we elect the minimum element of each
middle group as a representative element.

The top layer stores the Θ(N/ log2 N) representative elements from the middle
layer (some of which may be ghost elements).

The layers are stored according to the following data structures. The top layer
is implemented by the top tree from the previous section. The middle layer is imple-
mented by a single packed-memory structure, where the representative elements serve
as markers between groups. The bottom layer is implemented by a packed-memory ar-
ray if we require optimal scan operations. Otherwise, the bottom layer is implemented
by an unordered collection of groups, where the elements in each group are stored in
an arbitrary order within a contiguous region of memory. These memory regions are
all of the same size and are allowed to be a constant fraction empty. Elements are
inserted into or deleted from a group simply by rewriting the entire group.

Elements appearing on multiple layers have “down” pointers from each instanti-
ation to the instantiation at the next lower layer. Elements appearing on both the
top and middle layers have “up” pointers from the middle instantiation to the top
instantiation. However, elements appearing on both the middle and bottom layers do
not have up pointers from the bottom layer to the middle layer.

To search for an element in this data structure, we search in the top layer for
the query element or, failing that, its predecessor. Then we follow the pointer to the
corresponding group in the middle layer and scan through this middle group to find
the query element or its predecessor. If the found element is a ghost element of the
middle layer that has been deleted from the bottom layer, we move to the previous
element in the middle layer. Finally, we follow the pointer to the corresponding
group in the bottom layer and scan through this bottom group in search of the query
element.

When an element is inserted, it is added to a bottom group according to order;
if the inserted element could fit in two bottom groups, we favor the smaller of the
two groups. Thus, a freshly inserted element never becomes the new representative
element of its group. A group in the bottom or middle layer may become too full,
in which case we split the group evenly into two groups, create a new representative
element for the second group, and insert this representative element into the next
level up. Similarly, a group in the bottom or middle layer may become too empty
(by a fixed constant fraction less than 1

2 ), in which case we merge the group with an
adjacent group and delete the larger representative element from the next level up.
A merge may cause an immediate split.
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3.3. Analysis. We detail the search, insert, and delete algorithms and analyze
their performance in two versions of the data structure. The ordered B-tree stores the
bottom layer as a packed-memory structure, and therefore supports scans optimally.
The unordered B-tree stores the bottom layer as an unordered collection of groups.

Lemma 3.2. In both B-tree structures, a search uses O(1 + logB+1 N) memory
transfers.

Proof. A search examines each layer once from the top down. Searching through
the tree in the top layer costs O(1 + logB+1 N) memory transfers by Lemma 3.1.
Scanning through a group in the middle or bottom layer costs O(1 + log N

B ) memory
transfers because each group contains O(log N) elements and is stored in a contiguous
array of O(log N) elements. The cost at the top layer dominates.

Lemma 3.3. In the ordered B-tree, an update uses O(1 + logB+1 N + log2 N
B )

memory transfers.

Proof. An update (insertion or deletion) examines each layer once from the bottom
up. At the bottom layer, we pay O(1+ log2 N

B ) amortized memory transfers according
to Theorem 2.5 to rebalance the packed-memory array and preserve constant-size gaps.
Of the O(log2 N) amortized nodes that move during this rebalance on the bottom
layer, O(log N) amortized nodes are also present on the middle layer, and we must
update the down pointers from these nodes on the middle layer to the moved nodes
on the bottom layer. To update these pointers, we scan the bottom and middle layers
in parallel, with the middle-layer scan advancing at a relative speed of Θ(1/ log N).
These pointer updates cost O(1 + log2 N

B ) amortized memory transfers.

A bottom group causes a split or merge after Ω(log N) updates to that group
since the last split or merge. When such a split or merge occurs, we pay O(1+ log2 N

B )
amortized memory transfers to rebalance the packed-memory array on the middle
layer. This split-merge cost can be charged to the Ω(log N) updates that caused it,
reducing the amortized cost by a factor of Ω(log N). Thus, we pay only O(1 + log N

B )
amortized memory transfers per update. Of the O(log2 N) amortized nodes that move
during this rebalance on the middle layer, O(log N) amortized nodes are also present
on the top layer, and we must update the down pointers from these nodes on the top
layer to the moved nodes on the middle layer. To update these pointers, we scan the
moved nodes on the middle layer, follow each node’s up pointer if it is present, and
update the down pointer of each node reached. These pointer updates cost at most
O(log N + log2 N

B ) amortized memory transfers per split or merge, or O(1 + log N
B ) per

update. (At this point we could also afford to update up pointers from the bottom
layer to the middle layer at an amortized cost of Θ(1 + log3 N

B ) per split or merge, or
Θ(1 + log2 N

B ) per update, but we do not need these pointers and, furthermore, the
unordered B-tree cannot afford to maintain them.)

A middle group causes a split or merge after Ω(log N) updates to that group,
which correspond to Ω(log2 N) updates to the data structure. When such a split or
merge occurs, we pay O(log2 N) amortized memory transfers to update the top layer,
which is only O(1) amortized memory transfers per update to the data structure.
Furthermore, the number of nodes moved in the top layer is also O(log2 N) amortized,
so O(log2 N) amortized up pointers from the middle layer to the top layer need to be
updated. Thus the pointer-update cost is O(log2 N) amortized memory transfers per
split or merge, or O(1) per update to the data structure.
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Summing all costs, an update costs O(1 + log2 N
B ) amortized memory transfers

plus the cost of searching.
Lemma 3.4. In the unordered B-tree, an update uses O(1 + logB+1 N) amortized

memory transfers.
Proof. The analysis is nearly identical. The only difference is that we no longer

rebalance a packed-memory array on the bottom layer, but instead maintain an un-
ordered collection of contiguous groups. As a result, we do not pay O(1 + log2 N

B )
amortized memory transfers per update, neither for the packed-memory update nor
for updating down pointers from the middle layer to the bottom layer. The additional
cost of rewriting a bottom group during each update is O(1 + log N

B ) memory trans-
fers. The cost of splitting and/or merging a bottom group is the same. Therefore,
the total cost of an update is O(1 + log N

B ) amortized memory transfers plus the cost
of searching.

Combining Lemmas 3.2–3.4, we obtain the following main results.
Theorem 3.5. The ordered B-tree maintains an ordered set subject to searches

in O(1 + logB+1 N) memory transfers, insertions and deletions in O(1 + logB+1 N +
log2 N

B ) amortized memory transfers, and scanning S consecutive elements in O(1 +
S/B) memory transfers.

Theorem 3.6. The unordered B-tree maintains an ordered set subject to searches
in O(1 + logB+1 N) memory transfers and to insertions and deletions in O(1 +
logB+1 N) amortized memory transfers.

4. Extensions and Alternative Approaches. A previous version [18] of this
paper presents a different cache-oblivious B-tree based on buffer nodes. One distin-
guishing aspect of this approach is that it uses no indirection, storing the tree in one
packed-memory array. This B-tree achieves an update bound of O(1 + logB+1 N +
log B√

B
log2 N) amortized memory transfers. With one level of indirection, the B-tree’s

update bound reduces to O(1+ logB+1 N + log2 N
B ) amortized memory transfers while

supporting optimal scans, or O(1 + logB+1 N) amortized memory transfers without
optimal scans. Thus, we ultimately obtain the same bounds as the simpler B-trees
presented above, though with one fewer level of indirection.

The basic idea of buffer nodes is to enable storing data of different “fluidity” in
a single packed array, ranging from rapidly changing data that is cheap to update
to slowly changing data that is expensive to update. In the context of trees, leaves
are frequently updated but their pointers are to relatively nearby nodes, so updating
these pointers is usually cheap, whereas nodes in, e.g., the middle level, are updated
infrequently but their pointers are to disparate regions of memory. The buffer-node
solution is to add a large number of extra (dataless) nodes in between data of different
fluidity to “protect” the low-fluidity data from the frequent updates of high-fluidity
data. In the context of trees, we add O(N/ log N) buffer nodes in between the top
recursive subtree A and bottom recursive subtrees B1, B2, . . . , B`. These buffers pre-
vent the rebalance intervals in the packed-memory array from touching the nodes in
A for a long time, leading to an O( log B√

B
log2 N) term in the update bound.

For any of the cache-oblivious B-tree structures, a natural question is whether
the O( log2 N

B ) term in the update bound can be removed while still supporting scans
optimally. Effectively, in addition to a search-tree structure, we need a linked-list data
structure for supporting fast scans. Recently, Bender et al. [15] developed a cache-
oblivious linked list that supports insertions and deletions in O(1) memory transfers
and scans of S consecutive elements in O(1+S/B) amortized memory transfers. Using
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this linked list, they obtain the following optimal bounds for cache-oblivious B-trees.
Theorem 4.1 (Bender et al. [15, Corollary 1]). There is a cache-oblivious data

structure that maintains an ordered set subject to searches in O(logB+1 N) memory
transfers, insertions and deletions in O(logB+1 N) amortized memory transfers, and
scanning S consecutive elements in O(1 + S/B) amortized memory transfers.

It remains open whether these bounds can be achieved in the worst case. See [15,
17] for cache-oblivious B-trees achieving some worst-case bounds.

5. Conclusion. We have presented cache-oblivious B-tree data structures that
perform searches optimally. The first data structure maintains the data in sorted order
in an array with gaps, and it stores an auxiliary structure for searching within this
array. The second data structure attains the O(logB+1 N) update bounds of B-trees
but breaks the sorted order of elements, thus slowing sequential scans of consecutive
elements. These cache-oblivious B-trees represent the first dynamic cache-oblivious
data structures. The cache-oblivious tools presented in this paper play an important
role in the dynamic cache-oblivious data structures that have followed.
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