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Abstract
We present a tool for the design of curved folds of constant angle along curves composed of circular arcs. This tool
allows the user to specify the intended shape, and computes its development. In general, the crease curves fold into
helices of constant descent angle. If the crease curves are designed to remain planar (zero descent), our method
additionally supports multiple pleated creases.

Introduction

The mathematics of folding sheets along curved creases has been developed over the past two decades
[1, 2, 4]. The bulk of this work has focused on analyzing foldable crease patterns, in particular characterizing
foldability, including locally around a crease and the regions between creases. Compared to straight-crease
origami, there is relatively little work on algorithmic design of curved-crease foldings. In particular, existing
curved-crease design software [5, 6] has focused on “forward” design, where the user manipulates the paper
according to certain operations and the software models the result.

In this paper, we focus on “inverse” design, where the user specifies the paper’s desired final form, and
the software reverse-engineers the design. Unlike [7], we do so for a very special class of curved-crease
designs, whose crease patterns consist of one or more pleated curved creases formed by circular arcs with
matching tangents, and whose foldings have constant fold angle along the curve(s). Within this restriction,
the mathematics is relatively clean, making the inverse problem relatively straightforward, thereby enabling
the user to easily produce designs that fold into desired shapes. In addition to the case where the folding
keeps the creases in a single plane, we analyze the more general setting where the creases form helices with
a constant descent angle. Figure 1 shows shapes obtained by our method. The next section gives an intuitive
construction, while the following section gives a formal mathematical description.

Folding strips of paper with one or more pleated curved creases has been explored before in the artistic
setting. Notably, Josef Albers (of the Bauhaus) folded an elegant three-crease design while at BlackMountain
College in the 1940s [8]. Jun Mitani features several one-crease designs in his recent book [9, pp. 6–11],
which he calls “squiggles”; most impressive is his treble clef.

We developed an online web tool [3] implementing the basic computation of our method. The user can
click a sequence of points defining a curve composed of circular arcs and lines for the folded state, and the
software computes the unfolded development— the 2D crease that would fold into the specified planar curve.
(Currently, the fold angle is assumed to be c/3.) We use our tool to develop a curved-crease font in the last
section.

Intuitive Description of Folding with Helical Crease Curves

When deforming a sheet of paper without stretching, tearing or creasing, the resulting surface is composed
of a family of straight lines. These lines are in particular visible as contours of the paper from different
viewpoints. In the mathematical world, the surfaces that reflect this behaviour are compositions of so-called
developable surfaces, which are surfaces that can be unrolled into the plane without stretching or tearing.
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(a) Input curve composed of circular
arcs through given points and its
possible canonical development.

(b) Design with pleated planar
circular creases with constant
fold angle and its development.

(c) Design with non-planar circular
curved creases with constant
angle and its development.

Figure 1: Illustration of a design obtained by the proposed method.

Equivalently, they can be obtained by sweeping a line through space such that the tangent plane of the resulting
surface is constant along this line. This reflects the property that these generating lines, also called generators
or rule lines, are (local) contour lines of the surface. There are three types of non-planar developable surfaces:
cylinders, cones and tangent surfaces, i.e., envelopes of tangents to a space curve. The basis of our design
tool is to form circular and straight folds of constant angle.

Circles, helices and straight lines
Helices are curves that result from the combination of a translation and a rotation perpendicular to the
direction of translation. More precisely, a helix can be parametrized by

X(�) = �(cos �, sin �, ℎ�). (1)

Note, that the points on X(�) lie on a right circular cylinder with radius � whose base is obtained for ℎ = 0.
If this cylinder, including the curve, is developed into the plane, the development x(�) of X(�) is a straight
line with slope ℎ. Furthermore, the tangents and the osculating planes of X(�) enclose a constant angle with
respect to the �-axis.

Gluing circular strips to helices
Suppose we are given a circular strip of paper bounded by concentric circles x1(�) and x2(�) with radii �1 and
�2 with � < �1 < �2, then there are two options to glue this strip to the helix X(�) along the curve x1, both
resulting in a developable surface. See Figure 2a. Due to the rotational nature of the curve, the developable
surface’s rulings will again enclose a constant angle with the base plane. There are two cases:

• If X(�) is a circle, these rulings will meet in a point, the tip of a right circular cone. The space curve
corresponding to x2(�) remains a circle.

• If X(�) is not a circle, these rulings compose a tangent surface whose edge of regression is a helix with
same slope but smaller radius. The space curve corresponding to x2(�) becomes another helix of same
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(a) Two circular strips
of paper glued to a

helix.

(b) Construction of pleated folds along helices by reassembling equidistantly cut surfaces
and their developments.

Figure 2: Construction of pleated helical folds of constant angle.

Figure 3: Folding motion with rulings perpendicular to the crease curve.

slope but greater radius.

Pleated circular and helical folds
From the two options of positions of a circular strip to a helix or a cone, we can construct pleated folds by
cutting the surface at helices that share the same distance in the upper and lower surface. As depicted in
Figure 2b, the hereby obtained thinner strips can be rearranged to construct pleated folds of constant fold
angle. Note that in the case of circles these pleated cones are reflection on planes. Furthermore, this method
does not impose any restrictions on the number of folds or the distance between the creases.

Combinations of circular strips glued to helices
Suppose that we arranged two circular strips along two helical curves. We show in the following section that
we can join these strips if and only if the slope of the curves is the same and the ratios between the curvature of
the spatial curve and developed curvature are equal. In addition, we can also combine the hereby constructed
creases with straight segments whose direction corresponds to the tangent direction of the endpoints of the
crease. See Figure 4 for an illustration.

Combinations of pleated folds
The above proposed construction of pleated folds of constant angle cannot be generalized to combinations of
proper helices because of the transition area between the two segments. However, if the ruling directions are
perpendicular as in the case of planar folds, we can construct pleated folds by reflections on planes.
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Figure 4: Illustration of a combination of two helices joined such that tangent and osculating plane
coincide (left). We show the development of the curved crease (right).

Folding motion
As the described shapes have constant fold angle, we can construct a family of intermediate shapes by folding
partially while fixing the rule lines on the surface. In the literature, this is also referred to as rigid ruling
folding. See Figure 3 for an illustration.

Mathematical Description of Folding with Helical Crease Curves

In the following discussion, we follow the notation of [2]. We consider arc length parametrized helices

X(�) = �

(
cos

�
√

1 + ℎ2�
, � sin

�
√

1 + ℎ2�
,

ℎ�
√

1 + ℎ2�

)
,

that are twisted to the left if � = 1 and to the right if � = −1. The accompanying Frenet frame of X(�) reads
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1

√
1 + ℎ2
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We conclude that two helices with vertical axes can only share an osculating plane, if they have the same
slope. As the normal and bi-normal vectors change their direction with changing signs of �, we define the
left normal and left bi-normal as N̂(�) = �N(�) and B̂(�) = �B(�). The signed curvature and torsion of the
space curve are

�̂ =
�

��
T(�) = �

�(1 + ℎ2)
and � = − �

��
B̂(�) · N̂(�) = ℎ�

�(1 + ℎ2)
.

Intuitively, the curvature is positive when the curve turns to the left and negative when it turns right.
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We do a similar setup for the developed curve, which we would like to be an arc length parametrized
circular arc with radius A , i.e.,

x(B) = A
(
cos

B

A
, X sin

B

A

)
,

with the accompanying Frenet frame composed of the tangent vector t(B) = 3
3B

x(B) and normal vector
n(B) = − 1

A
x(B). The left normal and signed developed curvature read n̂(B) = Xn(B) and :̂ = X

A
.

As our goal is to glue a surface with a circular opening to a helix, we need to ensure that the geodesic
curvature of the curve with respect to the glued surface equals the developed curvature. Following the
notation of [2], let d ∈ [0, c] be two times the angle between the adjacent developable surface normal P8 (B),
which is constant along a ruling, and B̂(B). Then, the geodesic curvature of the Darboux frame of X(B)
with normal vector P8 (B) reads ^6 =  ̂ cos d

2 . Setting ^6 to be equal to the developed curvature :̂ yields the
relationship

cos
d

2
=
:̂

 ̂
=
'

A
(1 + ℎ2). (2)

This confirms that d is constant. Furthermore, for d = c, i.e., the complete fold, the crease curve becomes a
straight line.

The two admissible normal vectors that correspond to the surfaces to the left and right of the crease read

P8 (B) = cos
d

2
B̂(B) + f8 sin

d

2
N̂(B) where 8 ∈ {!, '}, f' = 1 and f! = −1.

We make the assumption that the ruling direction can be written as

R8 (B) = cos \̂8T(B) + sin \̂8 (cos
d

2
N̂(B) + f8 sin

d

2
B̂(B)),

where \̂8 denotes the ruling angle. This angle is determined by the developability condition of the adjacent
surfaces and reads

− cot \̂! = cot \̂' =
ℎ

sin d

2
.

This confirms that two helices with the same slope and fold angle can be joined. In particular, this also holds
for straight segments that are equipped with the same fold angle and the same “ruling angle".

The oriented distance E to the edge of regression X(B) + ER8 (B) of developable surfaces is characterized
by the linear dependence of the direction vector R8 and tangent of the edge of regression, 3

3B
(X(B) + ER8 (B)).

For helical developables, this distance reads

E =
2(1 + ℎ2)' tan d

2√
2(1 − cos d) + 4ℎ2

.

As long d > 0 and (' > 0), we can attach surfaces of non-zero width. If we take the offset in direction the
rulings, it will in general not be tangent continuous for not perpendicular rulings, see Figure 4. In our design,
we therefore make sufficiently small orthogonal offsets.

Implementation

We now briefly discuss the main ideas behind the implementation.
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Step 1: Define a curve
Firstly, the user is requested to design the initial shape for the central curve of the design. As our method
requires a curve that is composed of tangent continuously joined circular arcs and straight line segments, this
can be done by interpolating user-specified points: The first three points P0,P1,P2 define the first arc or line
X1. Having constructed the curve for the points %1, . . . , %8 , the next segment is the uniquely determined line
or circular arc that shares the tangent direction with the previous segment at %8 and passes through %8+1.

Step 2: Define the parameters
In the next step, the user can adjust the fold angle and slope of the helix. This defines the maximal possible
thickness of the strip along the central curve before the boundary curve hits a singular curve on a surface. If
the user chooses to remain with ℎ = 0, the piece-wise conical surfaces can be pleated.

Step 3: Compute the development
The inserted parameters define the curvatures and thus radii of the developed circles by Equation (2). By
tangent continuous combination and appropriate offsets, this then fully defines the development. We do not
detect whether collisions occur in the developed curve.

Examples and Font

Figure 5 shows the folded curves that we designed by hand for the font. In addition, the computed unfolded
(developed) curves, according to a constant fold angle of c/3, are displayed. The latter makes a challenging
puzzle font: folding along the specified crease produces the letter, but in most cases, that letter is not obvious.

Figure 6 shows a real-world construction of “Bridges” in the proposed font, folded from four strips of
polypropylene. We taped a wire to the back side of the crease line to hold the folding in place.
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(a) Design of the folded state of font by tangent continuously joined arcs and lines.

(b) Developments of the above crease curves according to the fold angle d = c
3 .

Figure 5: Upper- and lower-case fonts.
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(a) Unfolded text.

(b) Folded text.

Figure 6: Application of the proposed font to the text “Bridges”.
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