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Abstract We present a fixed-parameter algorithm that constructively solves the
k-dominating set problem on any class of graphs excluding a single-crossing graph
(a graph that can be drawn in the plane with at most one crossing) as a minor in
0(49-55VEpO(M)) time. Examples of such graph classes areifhg-minor-free

graphs and thé&(s-minor-free graphs. As a consequence, we extend our results to
several other problems such as vertex cover, edge dominating set, independent set,
cligue-transversal set, kernels in digraphs, feedback vertex set, and a collection of
vertex-removal problems. Our work generalizes and extends the recent results of
exponential speedup in designing fixed-parameter algorithms on planar graphs due
to Alber et al. to other (nonplanar) classes of graphs.

Key words Subexponential algorithms, graph minors, dominating set

1 Introduction

According to a 1998 survey book [HHS98], there are more than 200 published re-
search papers on solving domination-like problems on graphs. Because this prob-
lem is very hard and NP-complete even for special kinds of graphs such as planar
graphs, much attention has focused on solving this problem on a more restricted
class of graphs. It is well known that this problem can be solved on frees [CGH75]
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International Symposium on Algorithms and Computafi®®\AC 2002). The work of the
third author was supported by the EU within the 6th Framework Programme under contract
001907 (DELIS) and by the Spanish CICYT project TIC-2002-04498-C05-03 (TRACER).
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or even the generalization of trees, graphs of bounded treewidth [TP93]. The ap-
proximability of the dominating set problem has received considerable attention,
but it is not known and it is not believed that this problem has constant-factor

approximation algorithms on general graphs [ACIS].

Downey and Fellows [DF99] introduced a new concept to handle NP-hardness
called fixed-parameter tractabilityUnfortunately, according to this theory, it is
very unlikely that thek-dominating set problem has an efficient fixed-parameter
algorithm for general graphs. In contrast, this problem is fixed-parameter tractable
on planar graphs. Alber et al. [ABP2] demonstrated a solution to the planar
k-dominating set in time9(46‘/ﬂn). Indeed, this result was the first nontriv-
ial result for the parameterized version of an NP-hard problem where the expo-
nent of the exponential term grows sublinearly in the parameter. Recently, the
running time of this algorithm was further improved @1227‘/En) [KPO2] and
O(215:13Vk L 4 3 4 |4 [ETO3]. One of the aims of this paper is to generalize this
result to nonplanar classes of graphs.

A graphG is H-minor-freeif H cannot be obtained from any subgraphtbf
by contracting edges. A graph is callediagle-crossing grapif it can be drawn
in the plane with at most one crossing. Similar to the approach of Alber et al.,
we prove that for a single-crossing graph the treewidth of any-minor-free
graphG having ak-dominating set is bounded b9 (v/k). We note that planar
graphs are botl’; 3-minor-free andi’s-minor-free, wherds; 3 and K5 are both
single-crossing graphs. As a result, we generalize current exponential speedup in
fixed-parameter algorithms on planar graphs to other kinds of graphs by showing
how we can solve thg-dominating set problem on any class of graphs excluding
a single-crossing graph as a minor in tit¢4%-55V*,0()) . The genesis of our
results lies in a result of Hajiaghayi et dl. [HNRTO01, DFBH] on obtaining the
local treewidth of the aforementioned class of graphs.

Using the solution for thé-dominating set problem on planar graphs, Kloks
et al. [CKLO1[KLLOZ[GKLO1] and Alber et al. [ABEO2]AFN04] obtained ex-
ponential speedup in solving other problems such as vertex cover, independent set,
cligue-transversal set, kernels in digraph and feedback vertex set on planar graphs.
In this paper we also show how our results can be extended to these problems and
many other problems such as variants of dominating set, edge dominating set, and
a collection of vertex-removal problems.

Since the results of this paper were announced, several new papers have been
developed by using and extending the results and techniques of this paper; see,
e.g., [DHN"04/FT03,DFHT,DHO04a, DFHT04b, DFHT04a, DHT04].

This paper is organized as follows. First we introduce the terminology used
throughout the paper, and formally define tree decompositions, treewidth, and
fixed-parameter tractability in Sectipf 2. In Sectjgn 3 we introduce the concept
of clique-sum, we prove two general theorems concerning the construction of tree
decompositions of widtld (/%) for these graphs, and finally we consider the de-
sign of fast fixed-parameter algorithms for them. In Sedfion 4 we apply our gen-
eral results to théi-dominating set problem, and in Section 5, we describe how
this result can be applied to derive fast fixed-parameter algorithms for many dif-
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ferent parameters. In Sectiph 6 we prove some graph-theoretic results that provide
a framework for designing fixed-parameter algorithms for a collection of vertex-
removal problems. In Sectignj 7 we give some further extensions of our results to
graphs with linear local treewidth. We end with some conclusions and open prob-
lems in SectionlB.

2 Background
2.1 Preliminaries

We assume the reader is familiar with general concepts of graph theory such as
(un)directed graphs, trees, and planar graphs. The reader is referred to standard
references for appropriate backgrouhd [BM76]. In addition, for exact definitions
of various NP-hard graph-theoretic problems in this paper, the reader is referred to
Garey and Johnson’s book on computers and intractability [GJ79].

Our graph terminology is as follows. All graphs are finite, simple, and undi-
rected, unless indicated otherwise. A gr&pts represented b§ = (V, E), where
V (or V(G)) is the set of vertices anBl (or E(G)) is the set of edges. We denote
an edge: in a graphG betweeru andv by {u,v}. We definen to be the number
of vertices of a graph when it is clear from context. We define-theighborhood
of asetS C V(G), denoted byV(.(.S), to be the set of vertices at distance at most
r from at least one vertex & C V(G); if S = {v} we simply use the notation
N[ (v). Theunionof two disjoint graphg7; andGs, G1 U Go, is a graph G such
thatV(G) = V(G1) UV (Gy) andE(G) = E(G1) U E(G2).

For generalizations of algorithms on undirected graphs to directed graphs, we
consider underlying graphs of directed graphs. thderlying graplof a directed
graphH is the undirected grap8y in whichV(G) = V(H) and{u,v} € E(G)
if and only if (u,v) € E(H) or (v,u) € E(H).

One way of describing classes of graphs is by usiigprs introduced below.

Definition 1 Contractingan edge: = {u, v} is the operation of replacing both
andv by a single vertexo whose neighbors are all vertices that were neighbors of
u or v, except, andv themselves. A grapfd is aminor of a graphH if G can be
obtained from a subgraph df by contracting edges. A graph class aminor-
closedclass if any minor of any graph i@l is also a member af. A minor-closed
graph clas< is H-minor-freeif H ¢ C.

For example, a planar graph is a graph excluding ol and K5 as minors.

2.2 Treewidth

The notion of treewidth was introduced by Robertson and Seymour [RS86] and
plays an important role in their fundamental work on graph minors. To define this
notion, first we consider the representation of a graph as a tree, which is the basis
of our algorithms in this paper.
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Definition 2 ([RS8€]) A tree decompositionf a graphG = (V, E), denoted by
TD(G), is a pair (x,T) inwhichT = (I, F)isatreeandy = {x; |t € [} isa
family of subsets df (G) such that:

LUjerxi =V,

2.for each edge = {u,v} € E there exists ani € I such that both: and v
belong toy;; and

3.forall v € V, the set of node$§i € I | v € x;} forms a connected subtree of
T.

To distinguish between vertices of the original graptand vertices ofl" in
TD(G), we call vertices ofl’ nodesand their corresponding;’s bags The max-
imum size of a bag iTD(G) minus one is called theidth of the tree decompo-
sition. Thetreewidthof a graphG, denotedw(G), is the minimum width over all
possible tree decompositions Gf

Many NP-complete problems have linear-time or polynomial-time algorithms
when they are restricted to graphs of bounded treewidth. There are a few tech-
niques for obtaining such algorithms. The main technique is calh@tputing ta-
bles of characterizations of partial solutioriEhis technique is a general dynamic
programming approach, first introduced by Arnborg and Proskurowski [AP89].
Bodlaender [Bod97] gave a better presentation of this technique. Other approaches
applicable for solving problems on graphs of bounded treewidthgeaph re-
duction [ACPS93| BdF96] andiescribing the problems in certain types of logic
[ALS88,Cou90].

2.3 Fixed-Parameter Tractability

Developing practical algorithms for NP-hard problems is an important issue. Re-
cently, Downey and Fellows [DFE99] introduced a new approach to cope with this
NP-hardness, namefixed-parameter tractabilityFor many NP-complete prob-
lems, the inherent combinatorial explosion is often due to a certain part of a prob-
lem, namely gparameter The parameter is often an integer and small in practice.
The running times of simple algorithms may be exponential in the parameter but
polynomial in the problem size. For example, it has been shownkitvatrtex
cover has an algorithm with running tini®kn + 1.271*) [CKJ01] and hence this
problem is fixed-parameter tractable.

Definition 3 ([DF99]) A parameterized probleth C X* x N is fixed-parameter
tractable (FPTJf there is an algorithm that correctly decides, for input, k) €
X* x N, whether(z, k) € L in time f(k)n®, wheren is the size of the main part
of the inputz, |x| = n, k is a parameter (usually an integer},is a constant
independent of, and f is an arbitrary function.

3 General Results on Clique-Sum Graphs

In this section we define the general framework of our results. A basic tool is
the graph summation operation, which also plays an important role in the work
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of Hajiaghayi et al.[[HNRTO/1, Haj01] to obtain the local treewidthcbfue-sum
graphs, defined formally below.

Definition 4 Suppose&~; and G5 are graphs with disjoint vertex-sets akd> 0
is an integer. Fori = 1,2, let W, C V(G;) form a clique of sizé: and letG;,
(¢ = 1,2) be obtained fronGz; by deleting some (possibly no) edges frémiv;]
with both endpoints ifV;. Consider a bijectiork : W; — W5. We define &-sum
G of G; and G5, denoted by = G @ G5 or simply byG = G1 ® G», to be the
graph obtained from the union &¥; and G5 by identifyingw with h(w) for all
w € Wy. The images of the verticesdf; and W5 in G, @ G2 form thejoin set

In the rest of this section, when we refer to a vertesf G in G; or G2, we
mean the corresponding vertex®in G, or G2 (or both). It is worth mentioning
that is not a well-defined operator and it can have a set of possible results. The
reader is referred to Figufé 1 to see an examplef$am operation.

join set

G=G @G,
Fig. 1 A k-sum of two graph&#; andGa.

The following lemma shows how the treewidth changes when we apply a graph
summation operation.

Lemma 1 [BVvLTT97] For any two graphg~ and H,
tw(G @ H) < max{tw(G), tw(H)}.

Let s be an integer where < s < 3 and letC be a finite set of graphs. We say
that a graph clasg is aclique-sum clasg any of its graphs can be constructed by
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a sequence ofsums { < s) applied to planar graphs and graph£inVe call a
graphclique-sumif it is a member of a cligue-sum class. We call the féirs) the
defining pairof G and we call the maximum treewidth of graph<Cithe baseof

G and thebaseof graphs inG. A series ofk-sums (not necessarily unique) which
generate a clique-sum graghare calleda decomposition of7 into clique-sum
operations

According to the (nonalgorithmic) result of [RS93] dfis the class of graphs
excluding a single-crossing graph (can be drawn in the plane with at most one
crossing)H theng is a clique-sum class with defining pa@, s) where the base
of G is bounded by a constani; depending only o . In particular, ifH = K3 3,
the defining pair iS{K5},2) andcy = 4 [Wag37] and if H = Kj; then the
defining pair is({Vs},3) andcy = 4 [Wag37]. Here byl we mean the graph
obtained from a cycle of length eight by joining each pair of diagonally opposite
vertices by an edge. For more results on clique-sum classes see|[Die89].

From the definition of cligue-sum graphs, one can observe that, for any clique-
sum graphGG which excludes a single-crossing grafihas a minor, any mino&’
of G is also a clique-sum graph which excludes the same gfapk a minor.

We call a cliqgue-sum graph cla§sa-recognizabléf there exists an algorithm
that for any graphG € G outputs inO(n®) time a sequence of cliqgue-sums of
graphs of total sizé&(|V (G)|) that constructgs. We call a graphw-recognizable
if it belongs in somex-recognizable cligue-sum graph class.

One of the ingredients of our results is the following constructive version of
the result in[[RS93].

Theorem 1 ([DHTO02]DHN T04]) For any graphG excluding a single-crossing
graph H as a minor, we can construct id(n*) time a series of clique-sum oper-
ationsG =G, Gy d--- DG, where eacly;, 1 < i < m, is a minor ofG and

is either a planar graph or a graph of treewidth at mesgt. Here eachd is a0-,
1-, 2- or 3-sum.

In the remainder of the paper we assume thats the smallest integer for which
Theoren{ 1L holds. Notice that, according to the terminology introduced before,
any graph class excluding a single-crossing graph as a minot-igeognizable
clique-sum graph class. As particular cases of The¢iem 1 we mentioK ghat
minor-free graphs aré-recognizable[[Asa85] an&s-minor-free graphs are-
recognizable[[KM9R]. For more examples of graph classes that can be character-
ized by clique-sum decompositions, see the work of Diestel [Die89, Die91].

A parameterized graph clager justgraph parametéris a family F of classes
{Fi,i > 0} wherelJ,., F; is the set of all graphs and for any> 0, 7; C Fi;1.
Given two parameterized graph class€sand 72 and a natural numbey > 1
we say thatF' <., F?ifforanyi >0, F C 72,

In the rest of this paper, we identify a parameterized problem witipénam-
eterized graph classorresponding to its “yes” instances.

Theorem 2Let G be ana;-recognizable clique-sum graph class with basand

let 7 be a parameterized graph class. In addition, we assume that each graph in
G can be constructed usingsums wheré < s < 3. Suppose also that there exist
two positive real numbers, , 5, such that:
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(1) For anyk > 0, planar graphs inF;, have treewidth at most; vk + (. and
such a tree decomposition can be foundim®2) time.

(2) Foranyk > 0 and any: < s, if G; ®; G2 € Fi, thenG1,Gy € Fi,

Then, for any: > 0, the graphs irGNF, all have treewidth< max{ﬂlerﬂg,c}

and such a tree decomposition can be constructed(im™»{e.2} 1 (\/E) “n)
time.

Proof Let G € G N F;, and assume thdt = G; & G2 @ - - - @ G,,, where each

G, 1 < i < m,is either a planar graph or a graph of treewidth at mo¥te use
induction onm, the number of7;’s. Form = 1, G = G, is either a planar graph

that from (1) has treewidth at mogiv/k + 3, or a graph of treewidth at most

c. Thus the basis of the induction is true for both cases. We assume the induction
hypothesis is true fom = h, and we prove the hypothesis for = h + 1. Let
G=G10G®---®G,andG"” = Gp41. ThusG = G' ® G”. By (2), bothG’
andG" belong inF;.. By the induction hypothesisw (G’) < max{3;Vk+ (2, ¢}

and from (tw(G”) < max{B,Vk + B2, c}. The proof, form = h + 1, follows

from this fact and Lemmig 1.

To construct a tree decomposition of the aforementioned width, first we con-
struct a tree decomposition of width at mgst/k + 3 for each planar graph in
O(n*2) time. We also note that using Bodlaender’s algorithm [Bod96], we can
obtain a tree decomposition of widthfor any graph of treewidth at mostin
linear time (the hidden constant only depends:pimhen having tree decomposi-
tions of G;’'s, 1 < i < m, in the rest of the algorithm, we glue together the tree
decompositions of7;’s using the construction given in the proof of Lempja 1. To
this end, we introduce an arrdjyodesindexed by all subsets df (G) of size at
mosts. In this array, for each subset whose elements form a clique, we specify a
node of the tree decomposition which contains this subset. We note that for each
cligueC in G;, there exists a nodeof TD(G) such that all vertices of’ appear
in the bag of: [BM93]. This array is initialized as part of a preprocessing stage of
the algorithm. Now, for theb operation betweety; & - -- & G, andGj, 1 over
the join setl, using arrayNodes we find a nodex in the tree decomposition of
G @ --- ® Gy, whose bag containd’. Because we have the tree decomposition
of G141, we can find the node’ of the tree decomposition whose bag contains
W by brute force over all subsets of size at mesif bags. Simultaneously, we
update arrajNodeshy subsets o¥/ (G) which form a clique and appear in bags of
the tree decomposition @, 1. Then we add an edge betweeranda’. As the
number of nodes in a tree decomposition®f,; is in O(|V(Gr+1)|) and each
bag has size at mos}(v/k) (and thus there are at mad{(v/k)") choices for a
subset of size at mos}, this operation take® ((vk)"|V (Gh1)|) time for G+

The claimed running time follows from the time required to determine a set of
cligue-sum operations, the time required to construct tree decompositions, the time
needed for gluing tree decompositions together, and the facktHat |V (G;)| =

o(v(a)). o

Notice that Condition (2) of Theorefj 2 is not necessary wfiexcludes a
single-crossing graph an@l is closed under taking of minors. Indeed, from Theo-
rem[], we have that in the sequence of operat@ns G; & G2 @ - - - ® G, each
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G; is a minor of G and therefore, it € F}, then eaclty; is also a member af},.
We resume this observation to the following.

Theorem 3LetG be the class of graphs excluding some single-crossing giaph
as a minor and letF be any minor-closed parameterized graph class. Suppose
that there exist real number, > 4,5, such that any planar graph itF. has
treewidth at mostnax{ﬁl\/E + Bo,cr} and such a tree decomposition can be
found inO(n®). Then graphs ig N F;, all have treewidth< 8,k + 3, and such

a tree decomposition can be constructedim™*{*:4}) time.

Theorem 4 LetG be a graph class and |ef be some parameterized graph class.
Suppose also for some positive real numbets , as, 51, B2, ¢ the following hold:

(1) For anyk > 0, the graphs irg N F, all have treewidth< max{c, ﬂl\/EJrﬁg}
and such a tree decomposition can be decided and constructed (if it exists) in
O(n*?) time. We also assume testing membershi iakesO(n*) time.

(2) Given a tree decomposition of width at mastof a graph, there exists an
algorithm deciding whether the graph belongsAp in O(6*n) time.

Then there exists an algorithm deciding @r(gmax{e.f1Vk+62} 4 pmax{araa))
time whether an input grapy’ belongs inG N F.

Proof First, we can test membershipdhin O(n“*) time. Then we can apply the
algorithm from (1) and (assuming success) supply the resulting tree decomposition
to the algorithm from (2). O

4 Fixed-Parameter Algorithms for Dominating Set

In this section we describe some of the consequences of Thepprem$ 2 and 4 on the
design of efficient fixed-parameter algorithms for a collection of parameterized
problems where their inputs are clique-sum graphs.

A dominating sebf a graphG is a set of vertices off such that each of the
rest of vertices has at least one neighbor in the set. We represédntitirainating
setproblem with the parameterized graph cld&S whereDS,, contains graphs
which have a dominating set of size k. Our target is to show how we can solve
the k-dominating set problem on clique-sum graphs, whérns a single-crossing
graph, in timeO(c\/EnO“)) instead of the current algorithms which run in time
O(cFn®M)) for some constant. By this result, we extend the current exponential
speedup in designing algorithms for planar graphs [AENO4] to a more generalized
class of graphs. In fact, planar graphs are bgth-minor-free and<’s-minor-free
graphs, where botk’; 5 and K5 are single-crossing graphs.

According to the result of [KP02] Condition (1) of Theor@in 2 is satisfied for
B = 15.6, B2 = 50, anday = 1. Moreover, from[[ETOB], Condition (1) is also
satisfied for3; = 9.55, B2 = 0, anday = 4.

The next lemma shows that Condition (2) of Theofém 2 also holds.

Lemma 2If G = G1 ®,, G> has ak-dominating set, then botf¥; and G2 have
dominating sets of size at mdst
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Proof Let thek-dominating set of¥ be S and letiV be the join set of7; & G.
Without loss of generality we show thét; has a dominating set of size If
S1 = SNV(G,) is a dominating set fofr; then the result immediately follows,
otherwise there exists vertex € V(G;) which is dominated by a vertex €
V(G2) — V(G1). One can observe that all such vertieesare inTW. Because
v e S, butv ¢ S, setS] = S; + {w} has at mosk vertices and becaus# is a
clique inGy, S} is a dominating set of size at mdstn G;. O

Let G be anya-recognizable clique-sum class. Now by applying Thedrém 2
for 5, = 9.55, B> = 0, a1 = «, anda = 4 we have the following.

Theorem 51If G is an a-recognizable clique-sum class of bas¢hen any mem-
ber G of G with a dominating set of size at most k& has treewidth at most
max{c, 9.55vk} and the corresponding tree decomposition(éfcan be con-
structed inO(n™>{*4}) time.

From Theorem |5, we get that Condition (1) of Theofém 4 is satisfiedfer
9.55, B2 = 0, as = max{w,4}, andas = 4. The main result in[ANO2] shows
that for the graph paramet@sS Condition (2) of Theorerp]4 is also satisfied for
0 = 4. We conclude with the following.

Theorem 6 There is an algorithm that i) (49-55V*y, + pmax{4}) time solves
thek-dominating set problem for any-recognizable clique-sum graph of baﬂ

Corollary 1 There is an algorithm that solves tikedominating set problem for
any graph class excluding some single-crossing graph as a mir@4f35v%p, 4
n*) time.

For the special cases df;-minor-free graphs ands s-minor-free graphs,
we may apply Theorefn| 2 foB, = 15.6, 32 = 50, andas = 1 and derive the
following.

Corollary 2 There is an algorithm that solves tikedominating set problem for
any Ks-minor-free graph inD(415-6Vk+50p, 4 2} time and for anyKs 3-minor-
free graph inO(415-6VE+50p) time.

5 Algorithms for Parameters Bounded by the Dominating-Set Number

We provide a general methodology for deriving fast fixed-parameter algorithms
in this section. First, we consider the following theorem which is an immediate
consequence of Theorgr 4.

Theorem 7Let G be a graph class and leF!, 72 be two parameterized graph
classes wheré! <., F?2 for some natural numbey > 1. Suppose also that there
exist positive real numbers;, as, (1, 82, 6 such that;

L In the rest of this paper we assume that constants, €.gre small and they do not
appear in the powers, because they are absorbed int® tiegation.
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(1) Foranyk > 0, the graphs irg N 77 all have treewidth< B1Vk+ B2 and such
a tree decomposition can be decided and constructed (if it exist9)iri2)
time. We also assume testing membership iakesO(n*1) time.

(2) There exists an algorithm deciding whether a graph of treewidth belongs
in 7l in O(6“n) time.

Then:

(1) For anyk > 0, the graphs ing N F} all have treewidth at most; /7% + 32
and such a tree decomposition can be constructed(in®2) time.

(2) There exists an algorithm deciding@( 5% V75452 4 pymax{e.e2}) time whether
an input graphG belongs ing N 7.

Proof Consequence (1) follows immediately from the definition<of. Conse-
quence (2) follows from Theorepj 4.0

The idea of our general technique is given by the following theorem that is a
direct consequence of Theorejms 5 ghd 7.

Theorem 8Let F be a parameterized graph class satisfying the following two
properties:

(1) It is possible to check membershipAi of a graphG of treewidth at mosty
in O(6“n) time for some positive real numbér
(2) F =, DS.

Then:

(1) Any clique-sum grapt¥ of basec in F;, has treewidth at moshax{9.55v/vk+
8, c}.

(2) We can check whether an input gra@hs in 7, in O(692-55V7Fp 4 pmax{a.4})
on ana-recognizable clique-sum graph of base

In what follows we explain how Theordn 8 applies for a series of graph param-
eters. In particular, we explain why Conditions (1) and (2) are satisfied for each
problem.

5.1 Variants of the Dominating Set Problem

A k-dominating set with property/ on an undirected grapfd is ak-dominating
setD of G which has the additional property and thek-dominating set with
property I problemis the task to decide, given a gragh= (V, E), a propertyll,

and a positive integek, whether or not there is &=dominating set with property
II. Some examples of this type of problems, which are mentioned in {ARE
TP93. TP9IV], are thé-independent dominating sptoblem, thet-total dominat-
ing setproblem, thek-perfect dominating sgiroblem, thek-perfect independent
dominating sefproblem, also known as-perfect codeand thek-total perfect
dominating seproblem. For eacli/, we denote the corresponding dominating set
problem byDS™.
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Another variant ighe weighted dominating set probldmwhich we have a
graphG = (V, E) together with an integer weight functian : V' — N with
w(v) > 0 for all v € V. The weight of a vertex seb C V is defined as
w(D) = >, cpw(v). A k-weighted dominating seb of an undirected grapty
is a dominating seb of G with w(D) < k. Thek-weighted dominating setrob-
lem is the task of deciding whether or not there exiks\aeighted dominating set.
We use the parameterized clad&DS to denote the:-weighted dominating set
problem.

Condition (1) of Theorerp|8 holds far= 4 because of the following.

Theorem 9 (JABET02]) If a tree decomposition of widtlr of a graph is known,
then a solution tdS™ or to WDS can be determined in at moS{(4® - n) time.

Clearly,DS" <1 DS andWDS <, DS and Condition (2) also holds. There-
fore Theorenh |8 holds foy = 1 ands = 4 for DS andWDS.

Another related problem is thg-domination problem®S?Y) introduced in
[BBHS9¢€].

Definition 5 LetY be a finite set of integers. B-dominationis an assignmenf :

V' — Y such that for each vertex, f(N[z]) = >,y f(z) > 1 whereN|z]
stands for the neighborhood ofincluding z itself. AnefficientY -dominationis

an assignmeny with f(N[z]) = 1 for all verticesz € V. Thevalueof aY-
dominationf is [{z | f(x) > 0}|. The weight of & -domination isy }__, f(x).
TwoY -dominations arequivalenif they have the same closed neighborhood sum
at every vertex. Th&-domination problenasks whether the input graph has

an efficienty’-domination of value at mogt

Using the generalized dynamic programming approach, Kloks and Cai [KCO00]
presents an algorithm which runs in tirt|Y | n) to decide whether a grapgh
of treewidth at mosty has an efficient’-domination of value at mogt. It is worth
mentioning that, according to Bange et al. [BBH596], a gi@ptas an efficient -
domination if and only if all equivalerit -dominations have the same weight, and
thus there is no need to worry about the actual weight of an effitiestmination.
Therefore, we have that Condition (1) of Theoigm 8 holdsifer |Y'|.

One can easily see that faf-dominationf of a graphG = (V,E), D =
{z|f(x) > 0} is a dominating set, because each ventehas at least one vertex
with a positive number assigned to it §[z]. Thus if f is a Y-domination of
G with value at most, thenG also has a dominating set of size Therefore,
DSY <, DS and Condition (2) holds as well. Theorém 8 appliesfor 1 and
=Y.

5.2 Vertex Cover

The k-vertex cover problemYC) asks whether there exists a subSedf at most
k vertices such that every edge@fhas at least one endpoint@ This problem
is one of the most popular problems in combinatorial optimization.
A great number of researchers believe that there is no polynomial-time approx-
imation algorithm achieving an approximation factor strictly smaller thane,
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for a positive constant, unlessP = N P. Currently, the best known lower bound
for this factor is1.36 [DS02] and the best upper boundisvhich can be obtained
easily. The best current fixed-parameter tractable algorithm hasQihe71* +
k|V]) [CKJO1]. In this section we present an exponentially faster algorithm for
this problem on cliqgue-sum graphs.

Without loss of generality, we can restrict our attention to graphs with no ver-
tex of degred). One can observe that if a graghhas a vertex cover of size
then it has also &-dominating set. ThereforeC =<; DS and Condition (1) of
Theorenj B holds. Moreover, Condition (2) holds because we can solve the vertex
cover problem in timeD(2™) if we know the tree decomposition of width of
a graphG [AENO4]. Therefore, Theorein 8 applies for= 1 andé = 2 for the
k-vertex problem.

A simple standard reduction to the problem kernel due to Buss and Goldsmith
[BG93] is as follows: Each vertex of degree greater thanust be in the vertex
cover of sizek, because otherwise, not all edges can be covered. Thus we can
obtain a subgrapt’ of G which has at most? edges and at most + k vertices
andk’ is obtained fronk reduced by the number of vertices of degree more than
Chen et al.[[CKJ01] showed that in Buss and Goldsmith’s approach one can even
obtain a problem kernel with at ma&t vertices inO(nk + k) time. Thus, using
this result with the consequence (2) of Theofém 8461 we obtain the following
result.

Theorem 10There exists an algorithm which decides fhgertex cover problem
in 0(2955Vkk + kn + k3 4+ nmax{>4}) time on ana-recognizable clique-sum
graph.

5.3 Edge Dominating Set

Another related problem is the edge dominating set prolf@ps that given a
graphG asks for a sek’ C F of k or fewer edges such that every edgéishares
at least one endpoint with some edgefih Again without loss of generality we
can assume that grajghhas no vertex of degree

One can observe that if a grapgh has ak-edge dominating set’, we can
obtain a vertex cover of siz8: by including both endpoints of each edge E’.
This means thaf DS <, VC. In the previous section we showed thit <, DS
therefore, Condition (2) of Theorem 8 holds #PS when~y = 2. Condition (1)
holds because the edge dominating set problem can be solvéinn[Bod8§,
Bak94] (whereceys is a small constant) on a tree decomposition of widtfor a
graphG. We conclude that Theorem 8 applies fo= 2 andd = ceqs.

Theorem 11We can find &-edge dominating set i) (ceqs®->>Y2Fn 4 pmax{e4})
time on ana-recognizable clique-sum graph.

5.4 Clique-Transversal Set

A clique-transversal setf a connected grap8y' is a subset of vertices intersect-
ing all the maximal cliques ofr [BNR96/CCCY96,ASTI1, GR00]. Because the
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vertex cover problem is NP-complete even restricted to triangle-free planar graphs
[CKLO1[Ueh96], the clique-transversal problem remains NP-complete on clique-
sum graphs. Thé-clique transversaproblemC7 asks whether the input graph
has a clique-transversal set of sizek.

If a graphG has ak-clique-transversal, then it has a dominating set of size
at mostk, because every vertex 6f is contained in at least one maximal clique.
This implies thatC7 <, DS and Condition (2) of Theorefn 8 holds for= 1.
Using the general dynamic programming technique, we can solve-ttigue-
transversal problem on a gragh of treewidth at mostv in O(c¢¥%n) for some
constantc.;. (The approach is very similar to Chang et al. [CKI.01].) Therefore,
Theorenj B applies foy = 1 andd = c.

Theorem 12We can find a-clique-transversal set if)(c ;255 k p 4 pmax{ed})
time on am-recognizable clique-sum graph.

5.5 Maximal Matching

A matchingin a graphG is a setE’ of edges without common endpoints. A match-
ing in G is maximalif there is no other matching i containing it. Thek-maximal
matching problem\ M asks whether an input gragh has a maximal matching
of size< k.

Let £’ be the edges of a maximal matching®f Notice that the set of end-
points of the edges i’ is a dominating set ofi. ThereforeM M =<, DS and
the Condition (2) of Theorei 8 holds. Condition (1) holds because the problem
can be solved ia,,n [Bod8E] on a tree decomposition of widthfor a graphG.
Hence Theorern|8 gives the following result.

Theorem 13 (1) Any clique-sum graph of basevith a minimum maximal march-
ing of sizek has treewidth< 9.55v/2k + max{8, c}.

(2) One can decide whether anrecognizable cligue-sum grapi has a mini-
mum maximal matching of size at mésh O(c%:55V2kp, 4 pmax{e.4}) time,

5.6 Kernels in Digraphs

A setS of vertices in a digraptD = (V, A) is a kernel ifS is independent and ev-
ery vertex int’ — .S has an out-neighbor ii. It has been shown that the problem of
deciding whether a digraph has a kernel is NP-complete [GJ79]. Fragnkell[Fra81]
showed that the kernel problem remains NP-complete even for planar digtaphs
with indegree and outdegree at most 2 and total degree at most 3:-Rémmel
problem/CER asks whether a graph has a kernel of giz&loreover, we define
the co/CER problem as the one asking whetheramertex graph has a kernel of
sizen — k.

Here, we again observe that if a digraphhas a kernel of size at most
then its underlying grapliy has a dominating set of cardinality at mdstAlso
for a connected digrap = (V, A) and kernelK, V — K is a dominating set
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in the underlying graph ob. Resuming these two facts we hal€R <, DS

and coKER =<1 DS and Condition (2) of Theoreir| 8 holds for both problems.
We note that a slight variation of Condition (1) also holds because Gutin et al.
[GKLO1] give anO(3™ kn)-time algorithm solving thé-kernel problem on graphs

of treewidth at mostv using the general dynamic programming approach. The
straightforward adaptation of Theorér 8 to this variation of Condition (1) gives
the following.

Theorem 14 (1) Any clique-sum graph of basethat has a kernel of siz& or
n — k has treewidth< 9.55v/k 4 max{8, c}.

(2) One can decide whether arrecognizable clique-sum gragh of basec has
a kernel of sizé in O(3%-55VEpj; 4 pmax{e:4}) time,

(3) One can decide whether anrecognizable clique-sum gragh of basec has
akernel of sizev — k in O(3%-55VEn(n — k) + nmax{e4}) time.

6 Fixed-Parameter Algorithms for Vertex-Removal Problems

In this section we present general results allowing the constructi@(@(gn)-
time algorithms for a collection of vertex-removal problems. To this end, we start
with some definitions. For any graph clagsand any nonnegative integérthe
graph clas&-almostG) contains any grap& = (V, E') where there exists a subset
S C V(G) of size at most such thatG[V — S| € G. We note that using this
notation if G contains all the edgeless graphs or forests thatmost() is the
class of graphs with vertex cover k or feedback vertex set k.

We defineZ.. to be the class of graphs with treewidthr. It is known that, for
1 <4 < 2,7; is exactly the class oK;o-minor-free graphs (see, e.d., [Bod98]).
We now present a series of consequences of Theorem 3 for solving a collection of
vertex-removal problems on classes of graphs excluding a single-crossing graph
as a minor. First, we need the following combinatorial lemma.

Lemma 3 Planar graphs ink-almos{7;) have treewidth< 9.55v/k. Moreover,
such a tree decomposition can be foundim?) time.

Proof Our target is to prove that planar graphskialmost(/) are subgraphs of
planar graphs iDS;, and the result will follow from the fact that from [FTD3],
Condition (1) of Theorer|2 is also satisfied for = 9.55, 5> = 0, anda, = 4.

Let G be a planar graph and I§tbe a set oK & vertices inG whereG[V — S]
is K4-minor-free. Using Lemmig| 1, we can assume thas a biconnected graph.
In addition, becausg&-almost(;) is a minor closed class, we can assume that
does not have 2-cut (a cut of size). In fact, if G has a2-cut {u, v}, each of the
connected components 6f — {u, v} plus edge{u, v} is a minor ofG and thus
by induction, we can assume that they satisfy the conditions of the theorem. Then
using Lemma 1, we can glue the corresponding tree-decompositions together and
obtain the desired result fa¥. All these operations take at mas{n?) time.

Therefore, in the rest of the proof we assume tAadoes not have 1- or 2-
cuts. A consequence of this is that all the verticeszofave degree at least
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Another consequence is that two facegsbtan have in common either a vertex
or an edge (otherwise, a 2-cut appears). Consider any planar embeddingvef
call a face of this embeddirexteriorif it contains a vertex ob, otherwise we call

it interior. For each exterior face choose a verteiand connect it with the rest
of its vertices. We call the resulting grah and we note that (&) is a subgraph
of H, (b) H[V — S] = G[V — §], and (c) all the vertices of the exterior faces of
H are dominated by some vertex.$h We claim thatS is a dominating set off .
Suppose, towards a contradiction, that there is a vertlat is not dominated by
S. From (c) we can assume that all of the faces containiage interior. LetH’ be
the graph induced by the vertices of these faces. As they are all intéfishould
be a subgraph [V — S]. Let(x1, ..., x4, x1) be a cyclic order of the neighbors
of v and notice thaty > 3. Let alsoF; be the face off containing the vertices
Ti, U, Tnexe(i), 1 < @ < g, wherenext(i) = (i+1) mod ¢+ 1. We note that all these
faces are pairwise distinct otherwiseavill be a 1-cut forH andG. Let P; be the
path connecting; andz,(;) in A’ avoidingv and containing only vertices ;.
Recall now that two faces dff have eithew or an edge containingin common.
Therefore, it is impossible for two patld3, P;,7 # j, to share an internal vertex.
This implies that the contraction of all the edges but one of each of these paths
transformsH’ to a wheellV, that, asg > 3, can be further contracted tofy (a
wheel W, is the graph constructed taking a cycle of lengtand connecting all
its vertices with a new vertex). As H' is a subgraph of the grapti[V' — 5] (b)
implies thatG[V — S] contains ak4, and this is a contradiction. AS is how a
dominating set fotH, the treewidth ofH is at most9.55v/%. From (a) we have
thatG is a subgraph of a planar graphZir§;, and this completes the proof of the
theorem. O

As mentioned beforé;-almost(s ) is a minor closed graph class. Moreover, if
O C T, then for anyk, k-almost(D) C k-almost(z). Using Theorerf|3 we now
conclude the following general result.

Theorem 15LetO be any class of graphs with treewidth2 and letG be the class
of graphs excluding some single-crossing grdptas a minor. Then the following
hold:

(1) For anyk > 0, all graphs ink-almos{©) that also belong t@; have treewidth
< max{9.55v/k, c; }. Moreover, the corresponding tree decomposition can be
found inO(n?) time.

(2) Suppose also that there exists @é*n) algorithm that decides whether a
given graph belongs ik-almosfO) for graphs of treewidth at most. Then
one can decide whether a graphgrbelongs ink-almos{®) in O(§%-55VFn 4
n*) time.

If {O4,...,0O,}is afinite set of graphs, we denote by minor-¢&xl, . . ., O,.)
the class of graphs that afg-minor-free foralli =1, ..., r.

As examples of problems for which Theorgnj 15 can be applied, we mention
the problems of checking whether a graph, after remo¥ingrtices, isedgeless
(G = Ty), or hasmaximum degreec 2 (G = minor-excl kK 3)), or becomes a
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a star forest(G = minor-excl{ K3, Ps)), or acaterpillar (G = minor-excl K3,
subdivision of K 3)), or aforest(G = 7;), or outerplanar(G = minor-excl K4,
K> 3)), or series-parallel or has treewidti< 2 (G = 75).

We consider the cases whe&fe= 7T, andG = 7; in the next two subsections.

6.1 Feedback Vertex Set

A feedback vertex set (FV8J a graphG is a setU of vertices such that every
cycle of G passes through at least one vertexofThe previous known fixed-
parameter algorithms for solving thefeedback vertex set problem had running
time O((2k+1)*n?) [DF99] and alternatively im&((917k*)! (n+m)) [Bod9Z]

(m is the number of edges.) Also there exists a randomized algorithm which needs
O(c4¥kn) time with probability at least — (1 — 1/4’“)0“ [BBYGOQ]. The k-
feedback vertex s@roblem (FVS) asks whether an input graph has a feedback
vertex set of size< k.

Kloks et al. [KLLOZ] proved that the feedback vertex set problem on planar
graphs of treewidth at most can be solved irD(cg;n) time for some constant
cis. The complexity of their algorithm is based on the fact that the number of
edges of a planar graph is bounded by a simple linear function of its vertices (i.e.,
3n — 6). As we have a similar boun8n — 5 for K3 3(K5)-minor-free graphs
[Asa85.KM92], one can easily observe that the algorithm_of [KL/L02] works also
for the more general case. Therefore, Thedrefn 15 can be appligd=fo¥; and
0 = cs and we have the following.

Theorem 161f G is a graph class excluding some single-crossing graplas a
minor then:

(1) If G has a feedback vertex set of size at niotenG has treewidth at most
max{9.55Vk, cy }.
(2) We can check whether somevertex graph inG has a feedback vertex set of

size< kin O(c2:55V n + n4) time.

Theorenj Ip generalizes the results/of [KLL02] to any class of graphs exclud-
ing some single-crossing gragh as a minor.

6.2 Improving Bounds for Vertex Cover

Alber et al. [AENO4] proved that planar graphs Wt , have treewidth at most
4v/3Vk + 5 < 6.93VE + 5. An easy improvement of this result is the following:

Lemma 4 If a planar graph has a vertex cover of size k then its treewidth is
bounded by.52vk

Proof Again using Lemmé]l, we may assume thais a biconnected graph. Let
S be a vertex cover iG’ where|S| < k. Consider a planar embeddingGf
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Construct a triangulatiot/ of G as follows: for any face” we add edges
connecting only vertices aof' N S. This operation constructs a triangulation as
there is no pair of vertices il — .S that are consecutive iR'. Moreover, as all
the added edges have endpoint$'irt is a vertex cover of. We will prove that
tw(H) < 5.52Vk.

We may assume thdf is a triangulation without double edges. To see this,
consider two edges; ande, connecting vertices: andy and apply Lemmé]1
on the graph&7;,, andG., induced by the vertices included in each of the closed
disks bounded by the cycle where the two edges of this cycle are identified.

Notice now that for each vertaxe V(H) — S, all its neighbors are members
of S. This means tha¥V (H)— S| < r wherer is the number of faces of = H[S].
As H has no double edges, neither ddesnd thereforé¢E (J)| < 3|V (J)|—6. Itis
known that- < |E(J)|—|V(J)|+2 and we get that < 2|V (.J)|—4. We conclude
that|V (H)| < |V(J)|+2|V(J)|—4 = 3|S|—4 = 3k—4. From [ET02], we know
that anyn-vertex planar graph has treewidth at mg%\/ﬁ. This means that

tw(H) < 555V3k —4 < %\/3\/%. As G is a subgraph off and Z‘L’%\/g <
5.52, the result follows. O

Applying Theorenj 15, we have that Condition (1) of Theof¢m 4 holdsSi$
the class of graphs with vertex coverk andg is any graph class excluding some
single-crossing grap/ as a minor wher = cy, a1 = 4, as = 4, 1 = 5.52,
and 8, = 0. Also, as we mentioned in Sectipn 5.2 it is possible to decide in
O(2¥n) time if a graph has a vertex cover of size at mastherefore, Condition
(2) holds foré = 2. Concluding, we have the following improvement of the results
of Sectior] 5. for any graph class excluding some single-crossing diagé a
minor.

Theorem 171f G is some graph class excluding some single-crossing gfaats
a minor then the following hold:

(1) If G € G has a vertex cover of size at mdsthenG has treewidth at most
max{5.52\/E, CH}.

(2) There is an algorithm which checks whether some gr@ph G has a vertex
cover of size< k in O(2552VF + kn + k3 + n?) time.

Becaus€DS < VC, we can also obtain al(cegs®>2Y 2 n +n4)-time algorithm
for the edge dominating set problem on graphs excluding some single-crossing
graph as a minor.

7 Further Extensions

In this section we obtain fixed-parameter algorithms with exponential speedup for
k-vertex cover and-edge dominating set on classes of graphs that are not neces-
sarily classifiable as single-crossing minor-free graphs. Our approach, similar to
the Alber et al.'s approach [AENO4], is a general one that can be applied to other
problems.
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Baker [Bak94] developed several approximation algorithms to solve NP-complete
problems for planar graphs. To extend these algorithms to other graph families,
Eppstein|[[Epp00] introduced the notion of bounded local treewidth, defined for-
mally below, which is a generalization of the notion of treewidth. Intuitively, a
graph has bounded local treewidth (or locally bounded treewidth) if the treewidth
of anr-neighborhood of each vertexc V(G) is a function ofr, » € N, and not

V(G-

Definition 6 The local treewidthof a graph@ is the functionltw® : N — N
that associates with every € N the maximum treewidth of anneighborhood
in G. We sefitw®(r) = max,cv () {tw(G[NE(v)])}, and we say that a graph
classC hasbounded local treewidth (or locally bounded treewidilijen there is
afunctionf : N — N such that for allG € C andr € N, ltw" (1) < f(r).

A graph is called aapex graphf deleting one vertex produces a planar graph.
Eppstein [[Epp00] showed that a minor-closed graph cfasss bounded local
treewidth if and only if€ is H-minor-free for some apex gragf.

So far, the only graph classes studied with small local treewidth are the class
of planar graphs and more generally bounded genus graphs [Epp00], the class
of almost-embeddable graphs [Gro03], and finally the class of clique-sum graphs
[HNRTOI, DHN™04]. All such graph classes have linear local treewidth with small
hidden constants. For example, for any planar ng]lan(k) < 3k—1[Epp00],
and for anyKs 3-minor-free orKs-minor-free graplt, lth(k) < 3k+4 [HNRTOZ,
DHNT04]. For these classes of graphs, there are efficient algorithms for construct-
ing tree decompositions.

Eppstein [[Epp00] showed how the concept of #ih outer face in planar
graphs can be replaced by the concept of ktte layer (or level) in graphs of
locally bounded treewidth. Thieth layer (L) of a graphG consists of all vertices
at distancet from an arbitrary fixed vertex of V(G). We denoteconsecutive
layers from: to j by L[s, j] = Uz‘<k<j L.

Here we generalize the conceptlaferwise separatiarintroduced by Alber
et al. [AENQ4] for planar graphs, to general graphs.

Definition 7 Let G be a graph layered from a vertex and letr be the num-

ber of layers. Alayerwise separation of widtly and sizes for G is a sequence
(S1,52,...,S5,) of subsets o/, with the property thatS; C U;J;g“”l) L;; S,
separates layeré,; 1 and L;,,; and Z;Zl |Sj| < s. Here we letS; = () for all

1< landi>r.

Now we relate the concept of layerwise separation to parameterized problems.

Definition 8 A parameterized probler®? has theLayerwise Separation Property
(LSP) of widthw and size-factod, if for each instancéG, k) of the problemP,
graph G admits a layerwise separation of widthand sizedk.

For example, we can obtain constants= 2 andd = 2 for the vertex cover
problem. In fact, consider &-vertex coverC on a graphG and setS; = (L; U
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L;11) N C. TheS,’s form a layerwise separation. Similarly, we can get constants
w = 2 andd = 4 for the edge dominating set problem (see [AENO04] for further
examples).

Lemma5Let P be a parameterized problem on instan@&, k) that admits a
problem kernel of sizék. Then the parameterized problef on the problem
kernel has the LSP of widthand size-factori.

Proof Consider the problem kernélz’, k) for an instancéG, k) and obtain lay-
ering L’ for G’ from arbitrary vertexo. Then clearly the sequenc = L for

i1 =1,...,r" (v is the number of layers) is a layerwise separation of widémd
sizek’ < dkforG'. O

In fact, using Lemmp]5 and the problem kernel of siz€see Sectiop 5]2) for
the vertex cover problem, this problem has the LSP of widtind size-facto®.
Now we are ready to present the main theorem of this section.

Theorem 18 Suppose for a grap& from a minor-closed class of graphsw (G) <
cr + ¢ and a tree decomposition of widith + ¢’ can be constructed in time
f(n, ) for any h consecutive layers. Also assuieadmits a layerwise separa-
tion of widthw and sizedk. Then we havew(G) < 2v/2cdk + cw + ¢/. Such a
tree decomposition can be computed in tithg: f (n, V&)).

Proof The proof is very similar to the proof of Theorem 15 of Alber et al.'s work
[AENO4] and for the sake of brevity we only mention the differences and omit the
lengthy details. In the proof the concept of ttth outer face in planar graphs will

be replaced by the concept of thth layer (or level) in graphs of locally bounded
treewidth. More precisely, Alber et al. [AFND4] use the fact that the treewidth of an
h-outerplanar graph ih—1, but in our proof we use the fact that, for any graph

the treewidth of any: consecutive layers is at mast + ¢’ [Gro03| DHN"04]. In
addition, as mentioned before, Eppstéein [Egp00] showed that a minor-closed graph
class& has bounded local treewidth if and only&fis H-minor-free for some
apex graphi. (A simpler proof of this theorem can be found [in [DH04b].) From
Thomason[[ThoQ1], we know that any graghexcluding anr--clique as a minor
cannot have more thg0.319+0(1))(rv/log )|V (G)| edges. This implies that for
graphG mentioned in the statement of the theoréB\,G)| = O(|V (G)|), similar

to the corresponding relation for planar graphs. This fact is used for analyzing the
running time. O

Corollary 3 For any H-minor-free graphGG, whereH is a single-crossing graph,
that admits a layerwise separation of widih and sizedk, we havetw(G) <
2v/6dk + 3w+ cg. Such a tree decomposition can be computed in €ie/%n +
kn*). Furthermore, for anys 3(K)-minor-free graph that admits a layerwise
separation of widthy and sizedk, we havetw(G) < 2v/6dk + 3w + 4. Such a
tree decomposition can be computed in tithg:>/?n) (O (k>/?n + kn?)).

Proof The proof follows directly from Theorem [L8 and the fact that for any single-
crossing-minor-free grapfi, we can construct a tree decomposition of wigitht-
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cp, for anyh consecutive layers i@ (h?-n+n*) time; for aK; 3-minor-free orks-
minor-free graplt@, the running time can be reduced®h3n) or O(h3n + n?),
respectively[[HajOlL, DHNO4] (cx = 4 for these graphs.) O

Finally, we have this general theorem.

Theorem 19 Suppose for a grap&y' from a minor-closed class of graphsw (G) <
cr+c. LetP be a parameterized problem ¢hsuch thatP has the LSP of width
and size-factor! and there exists a®(5"“'n)-time algorithm, given a tree decom-
position of widthw for G, which decides whether problefhas a solution of size

k onG. Then there exists an algorithm which decides whethéas a solution of
sizek on @G in time0(2(11/3)(2\/25dk:+cw+c')n3.()1 + 53.698(2\/20dk+cw+c')n)_

Proof The proof follows from Theorefn 18, the fact that for gragfthe treewidth
of any h consecutive layers is at most + ¢’ [Gro03| DHN"04], and finally the
result of Amir [AmiO1], which says for any grapfi of treewidthw, we can con-
struct a tree decomposition of width at md@st /3)w in time O(23-698wnp3-01),
O

For example, Theore 9 gives an exponential speed up, i.e., an algorithm
with running timeO (20 (VIR £3-01 4k + k3 +n*) (because = O(g) [Epp00]),
for solving vertex cover on graphs of bounded genus.

Recently, it was established that all minor-closed classes of graphs with bounded
local treewidth, i.e., all minor-closed graph classes excluding an apex graph, in fact
have linear local treewidth [DHO4a]. Therefore Theofern 19 applies generally to
any such class of graphs.

8 Conclusions and Future Work

In this paper we considereH-minor-free graphs, wher# is a single-crossing
graph, and proved that if these graphs haiedmminating set then their treewidth

is at mostey/k for a small constant. As a consequence, we obtained exponen-

tial speedup in designing FPT algorithms for several NP-hard problems on these
graphs, especialliX’s 5-minor-free orKs-minor-free graphs. In fact, our approach

is a general one that can be applied to several problems which can be reduced to the
dominating set problem as discussed in Segtjon 5 or to problems that themselves
can be solved exponentially faster on planar graphs [AFNO4]. Here, we present
several open problems that are possible extensions of this paper.

One topic of interest is finding other problems to which the technique of this
paper can be applied. Moreover, it would be interesting to find other classes of
graphs thard-minor-free graphs, wher# is a single-crossing graph, on which
the problems can be solved exponentially faster for paramket®ipartial answer
to this question is the class of map graphs [DFHT].

For several problems in this paper, Kloks etlal. [CKI.01,KL1[02, GKIL01,KIC00]
introduced a reduction to the problem kernel on planar graphs. Because graphs ex-
cluding a single-crossing graph are similar to planar graphs, in the sense of having
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a linear number of edges and not having a clique of more than a constant size, we
believe that one might obtain similar results for these graphs.

As mentioned before, Theorg¢m|15 holds for any class of graphs with treewidth
< 2. Itis an open problem whether it is possible to generalize it to apply to any
class of graphs of treewidtd A for arbitrary fixedh. Moreover, there exists no
general method for designin@(6*n)-time algorithms for vertex-removal prob-
lems in graphs with treewidtkt w. If this becomes possible, then Theorgnm 17
will have considerable algorithmic applications.

Finally, as a matter of practical importance, it would be interesting to obtain
a constant coefficient better thars5 for the treewidth of planar graphs having a
k-dominating set, which would lead to a direct improvement on our results.
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