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Abstract We present a fixed-parameter algorithm that constructively solves the
k-dominating set problem on any class of graphs excluding a single-crossing graph
(a graph that can be drawn in the plane with at most one crossing) as a minor in
O(49.55

√
knO(1)) time. Examples of such graph classes are theK3,3-minor-free

graphs and theK5-minor-free graphs. As a consequence, we extend our results to
several other problems such as vertex cover, edge dominating set, independent set,
clique-transversal set, kernels in digraphs, feedback vertex set, and a collection of
vertex-removal problems. Our work generalizes and extends the recent results of
exponential speedup in designing fixed-parameter algorithms on planar graphs due
to Alber et al. to other (nonplanar) classes of graphs.

Key words Subexponential algorithms, graph minors, dominating set

1 Introduction

According to a 1998 survey book [HHS98], there are more than 200 published re-
search papers on solving domination-like problems on graphs. Because this prob-
lem is very hard and NP-complete even for special kinds of graphs such as planar
graphs, much attention has focused on solving this problem on a more restricted
class of graphs. It is well known that this problem can be solved on trees [CGH75]
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001907 (DELIS) and by the Spanish CICYT project TIC-2002-04498-C05-03 (TRACER).
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or even the generalization of trees, graphs of bounded treewidth [TP93]. The ap-
proximability of the dominating set problem has received considerable attention,
but it is not known and it is not believed that this problem has constant-factor
approximation algorithms on general graphs [ACG+99].

Downey and Fellows [DF99] introduced a new concept to handle NP-hardness
called fixed-parameter tractability. Unfortunately, according to this theory, it is
very unlikely that thek-dominating set problem has an efficient fixed-parameter
algorithm for general graphs. In contrast, this problem is fixed-parameter tractable
on planar graphs. Alber et al. [ABF+02] demonstrated a solution to the planar
k-dominating set in timeO(46

√
34kn). Indeed, this result was the first nontriv-

ial result for the parameterized version of an NP-hard problem where the expo-
nent of the exponential term grows sublinearly in the parameter. Recently, the
running time of this algorithm was further improved toO(227

√
kn) [KP02] and

O(215.13
√

kk +n3 +k4) [FT03]. One of the aims of this paper is to generalize this
result to nonplanar classes of graphs.

A graphG is H-minor-freeif H cannot be obtained from any subgraph ofG
by contracting edges. A graph is called asingle-crossing graphif it can be drawn
in the plane with at most one crossing. Similar to the approach of Alber et al.,
we prove that for a single-crossing graphH, the treewidth of anyH-minor-free
graphG having ak-dominating set is bounded byO(

√
k). We note that planar

graphs are bothK3,3-minor-free andK5-minor-free, whereK3,3 andK5 are both
single-crossing graphs. As a result, we generalize current exponential speedup in
fixed-parameter algorithms on planar graphs to other kinds of graphs by showing
how we can solve thek-dominating set problem on any class of graphs excluding
a single-crossing graph as a minor in timeO(49.55

√
knO(1)). The genesis of our

results lies in a result of Hajiaghayi et al. [HNRT01,DHN+04] on obtaining the
local treewidth of the aforementioned class of graphs.

Using the solution for thek-dominating set problem on planar graphs, Kloks
et al. [CKL01,KLL02,GKL01] and Alber et al. [ABF+02,AFN04] obtained ex-
ponential speedup in solving other problems such as vertex cover, independent set,
clique-transversal set, kernels in digraph and feedback vertex set on planar graphs.
In this paper we also show how our results can be extended to these problems and
many other problems such as variants of dominating set, edge dominating set, and
a collection of vertex-removal problems.

Since the results of this paper were announced, several new papers have been
developed by using and extending the results and techniques of this paper; see,
e.g., [DHN+04,FT03,DFHT,DH04a,DFHT04b,DFHT04a,DHT04].

This paper is organized as follows. First we introduce the terminology used
throughout the paper, and formally define tree decompositions, treewidth, and
fixed-parameter tractability in Section 2. In Section 3 we introduce the concept
of clique-sum, we prove two general theorems concerning the construction of tree
decompositions of widthO(

√
k) for these graphs, and finally we consider the de-

sign of fast fixed-parameter algorithms for them. In Section 4 we apply our gen-
eral results to thek-dominating set problem, and in Section 5, we describe how
this result can be applied to derive fast fixed-parameter algorithms for many dif-
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ferent parameters. In Section 6 we prove some graph-theoretic results that provide
a framework for designing fixed-parameter algorithms for a collection of vertex-
removal problems. In Section 7 we give some further extensions of our results to
graphs with linear local treewidth. We end with some conclusions and open prob-
lems in Section 8.

2 Background

2.1 Preliminaries

We assume the reader is familiar with general concepts of graph theory such as
(un)directed graphs, trees, and planar graphs. The reader is referred to standard
references for appropriate background [BM76]. In addition, for exact definitions
of various NP-hard graph-theoretic problems in this paper, the reader is referred to
Garey and Johnson’s book on computers and intractability [GJ79].

Our graph terminology is as follows. All graphs are finite, simple, and undi-
rected, unless indicated otherwise. A graphG is represented byG = (V,E), where
V (or V (G)) is the set of vertices andE (or E(G)) is the set of edges. We denote
an edgee in a graphG betweenu andv by {u, v}. We definen to be the number
of vertices of a graph when it is clear from context. We define ther-neighborhood
of a setS ⊆ V (G), denoted byNr

G(S), to be the set of vertices at distance at most
r from at least one vertex ofS ⊆ V (G); if S = {v} we simply use the notation
Nr

G(v). Theunionof two disjoint graphsG1 andG2, G1 ∪G2, is a graph G such
thatV (G) = V (G1) ∪ V (G2) andE(G) = E(G1) ∪ E(G2).

For generalizations of algorithms on undirected graphs to directed graphs, we
consider underlying graphs of directed graphs. Theunderlying graphof a directed
graphH is the undirected graphG in which V (G) = V (H) and{u, v} ∈ E(G)
if and only if (u, v) ∈ E(H) or (v, u) ∈ E(H).

One way of describing classes of graphs is by usingminors, introduced below.

Definition 1 Contractingan edgee = {u, v} is the operation of replacing bothu
andv by a single vertexw whose neighbors are all vertices that were neighbors of
u or v, exceptu andv themselves. A graphG is aminorof a graphH if G can be
obtained from a subgraph ofH by contracting edges. A graph classC is a minor-
closedclass if any minor of any graph inC is also a member ofC. A minor-closed
graph classC is H-minor-freeif H 6∈ C.

For example, a planar graph is a graph excluding bothK3,3 andK5 as minors.

2.2 Treewidth

The notion of treewidth was introduced by Robertson and Seymour [RS86] and
plays an important role in their fundamental work on graph minors. To define this
notion, first we consider the representation of a graph as a tree, which is the basis
of our algorithms in this paper.
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Definition 2 ([RS86]) A tree decompositionof a graphG = (V,E), denoted by
TD(G), is a pair (χ, T ) in whichT = (I, F ) is a tree andχ = {χi | i ∈ I} is a
family of subsets ofV (G) such that:

1.
⋃

i∈I χi = V ;
2. for each edgee = {u, v} ∈ E there exists ani ∈ I such that bothu and v

belong toχi; and
3. for all v ∈ V , the set of nodes{i ∈ I | v ∈ χi} forms a connected subtree of

T .

To distinguish between vertices of the original graphG and vertices ofT in
TD(G), we call vertices ofT nodesand their correspondingχi’s bags. The max-
imum size of a bag inTD(G) minus one is called thewidth of the tree decompo-
sition. Thetreewidthof a graphG, denotedtw(G), is the minimum width over all
possible tree decompositions ofG.

Many NP-complete problems have linear-time or polynomial-time algorithms
when they are restricted to graphs of bounded treewidth. There are a few tech-
niques for obtaining such algorithms. The main technique is calledcomputing ta-
bles of characterizations of partial solutions. This technique is a general dynamic
programming approach, first introduced by Arnborg and Proskurowski [AP89].
Bodlaender [Bod97] gave a better presentation of this technique. Other approaches
applicable for solving problems on graphs of bounded treewidth aregraph re-
duction [ACPS93,BdF96] anddescribing the problems in certain types of logic
[ALS88,Cou90].

2.3 Fixed-Parameter Tractability

Developing practical algorithms for NP-hard problems is an important issue. Re-
cently, Downey and Fellows [DF99] introduced a new approach to cope with this
NP-hardness, namelyfixed-parameter tractability. For many NP-complete prob-
lems, the inherent combinatorial explosion is often due to a certain part of a prob-
lem, namely aparameter. The parameter is often an integer and small in practice.
The running times of simple algorithms may be exponential in the parameter but
polynomial in the problem size. For example, it has been shown thatk-vertex
cover has an algorithm with running timeO(kn+1.271k) [CKJ01] and hence this
problem is fixed-parameter tractable.

Definition 3 ([DF99]) A parameterized problemL ⊂ Σ∗ × N is fixed-parameter
tractable (FPT)if there is an algorithm that correctly decides, for input(x, k) ∈
Σ∗ × N, whether(x, k) ∈ L in timef(k)nc, wheren is the size of the main part
of the inputx, |x| = n, k is a parameter (usually an integer),c is a constant
independent ofk, andf is an arbitrary function.

3 General Results on Clique-Sum Graphs

In this section we define the general framework of our results. A basic tool is
the graph summation operation, which also plays an important role in the work
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of Hajiaghayi et al. [HNRT01,Haj01] to obtain the local treewidth ofclique-sum
graphs, defined formally below.

Definition 4 SupposeG1 andG2 are graphs with disjoint vertex-sets andk ≥ 0
is an integer. Fori = 1, 2, let Wi ⊆ V (Gi) form a clique of sizek and letG′

i

(i = 1, 2) be obtained fromGi by deleting some (possibly no) edges fromGi[Wi]
with both endpoints inWi. Consider a bijectionh : W1 → W2. We define ak-sum
G of G1 andG2, denoted byG = G1⊕k G2 or simply byG = G1⊕G2, to be the
graph obtained from the union ofG′

1 andG′
2 by identifyingw with h(w) for all

w ∈ W1. The images of the vertices ofW1 andW2 in G1 ⊕k G2 form thejoin set.

In the rest of this section, when we refer to a vertexv of G in G1 or G2, we
mean the corresponding vertex ofv in G1 or G2 (or both). It is worth mentioning
that⊕ is not a well-defined operator and it can have a set of possible results. The
reader is referred to Figure 1 to see an example of a5-sum operation.

G1 G2

join set

G = G1 ⊕G2

G2

W2

h

G1

W1

|W1| = k |W2| = k

Fig. 1 A k-sum of two graphsG1 andG2.

The following lemma shows how the treewidth changes when we apply a graph
summation operation.

Lemma 1 [BvLTT97] For any two graphsG andH,

tw(G⊕H) ≤ max{tw(G), tw(H)}.

Let s be an integer where0 ≤ s ≤ 3 and letC be a finite set of graphs. We say
that a graph classG is aclique-sum classif any of its graphs can be constructed by
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a sequence ofi-sums (i ≤ s) applied to planar graphs and graphs inC. We call a
graphclique-sumif it is a member of a clique-sum class. We call the pair(C, s) the
defining pairof G and we call the maximum treewidth of graphs inC thebaseof
G and thebaseof graphs inG. A series ofk-sums (not necessarily unique) which
generate a clique-sum graphG are calleda decomposition ofG into clique-sum
operations.

According to the (nonalgorithmic) result of [RS93], ifG is the class of graphs
excluding a single-crossing graph (can be drawn in the plane with at most one
crossing)H thenG is a clique-sum class with defining pair(C, s) where the base
of G is bounded by a constantcH depending only onH. In particular, ifH = K3,3,
the defining pair is({K5}, 2) and cH = 4 [Wag37] and ifH = K5 then the
defining pair is({V8}, 3) andcH = 4 [Wag37]. Here byV8 we mean the graph
obtained from a cycle of length eight by joining each pair of diagonally opposite
vertices by an edge. For more results on clique-sum classes see [Die89].

From the definition of clique-sum graphs, one can observe that, for any clique-
sum graphG which excludes a single-crossing graphH as a minor, any minorG′

of G is also a clique-sum graph which excludes the same graphH as a minor.
We call a clique-sum graph classG α-recognizableif there exists an algorithm

that for any graphG ∈ G outputs inO(nα) time a sequence of clique-sums of
graphs of total sizeO(|V (G)|) that constructsG. We call a graphα-recognizable
if it belongs in someα-recognizable clique-sum graph class.

One of the ingredients of our results is the following constructive version of
the result in [RS93].

Theorem 1([DHT02,DHN+04]) For any graphG excluding a single-crossing
graphH as a minor, we can construct inO(n4) time a series of clique-sum oper-
ationsG = G1⊕G2⊕ · · · ⊕Gm where eachGi, 1 ≤ i ≤ m, is a minor ofG and
is either a planar graph or a graph of treewidth at mostcH . Here each⊕ is a 0-,
1-, 2- or 3-sum.

In the remainder of the paper we assume thatcH is the smallest integer for which
Theorem 1 holds. Notice that, according to the terminology introduced before,
any graph class excluding a single-crossing graph as a minor is a4-recognizable
clique-sum graph class. As particular cases of Theorem 1 we mention thatK3,3-
minor-free graphs are1-recognizable [Asa85] andK5-minor-free graphs are2-
recognizable [KM92]. For more examples of graph classes that can be character-
ized by clique-sum decompositions, see the work of Diestel [Die89,Die91].

A parameterized graph class(or justgraph parameter) is a familyF of classes
{Fi, i ≥ 0} where

⋃
i≥0 Fi is the set of all graphs and for anyi ≥ 0 , Fi ⊆ Fi+1.

Given two parameterized graph classesF1 andF2 and a natural numberγ ≥ 1
we say thatF1 4γ F2 if for any i ≥ 0 , F1

i ⊆ F2
γ·i.

In the rest of this paper, we identify a parameterized problem with theparam-
eterized graph classcorresponding to its “yes” instances.

Theorem 2LetG be anα1-recognizable clique-sum graph class with basec and
let F be a parameterized graph class. In addition, we assume that each graph in
G can be constructed usingi-sums wherei ≤ s ≤ 3. Suppose also that there exist
two positive real numbersβ1, β2 such that:
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(1) For anyk ≥ 0, planar graphs inFk have treewidth at mostβ1

√
k + β2 and

such a tree decomposition can be found inO(nα2) time.
(2) For anyk ≥ 0 and anyi ≤ s, if G1 ⊕i G2 ∈ Fk thenG1,G2 ∈ Fk

Then, for anyk ≥ 0, the graphs inG∩Fk all have treewidth≤ max{β1

√
k+β2, c}

and such a tree decomposition can be constructed inO(nmax{α1,α2} + (
√

k)
s
· n)

time.

Proof Let G ∈ G ∩ Fk and assume thatG = G1 ⊕ G2 ⊕ · · · ⊕ Gm where each
Gi, 1 ≤ i ≤ m, is either a planar graph or a graph of treewidth at mostc. We use
induction onm, the number ofGi’s. Form = 1, G = G1 is either a planar graph
that from (1) has treewidth at mostβ1

√
k + β2 or a graph of treewidth at most

c. Thus the basis of the induction is true for both cases. We assume the induction
hypothesis is true form = h, and we prove the hypothesis form = h + 1. Let
G′ = G1 ⊕G2 ⊕ · · · ⊕Gh andG′′ = Gh+1. ThusG = G′ ⊕G′′. By (2), bothG′

andG′′ belong inFk. By the induction hypothesis,tw(G′) ≤ max{β1

√
k+β2, c}

and from (1)tw(G′′) ≤ max{β1

√
k + β2, c}. The proof, form = h + 1, follows

from this fact and Lemma 1.
To construct a tree decomposition of the aforementioned width, first we con-

struct a tree decomposition of width at mostβ1

√
k + β2 for each planar graph in

O(nα2) time. We also note that using Bodlaender’s algorithm [Bod96], we can
obtain a tree decomposition of widthc for any graph of treewidth at mostc in
linear time (the hidden constant only depends onc). Then having tree decomposi-
tions ofGi’s, 1 ≤ i ≤ m, in the rest of the algorithm, we glue together the tree
decompositions ofGi’s using the construction given in the proof of Lemma 1. To
this end, we introduce an arrayNodesindexed by all subsets ofV (G) of size at
mosts. In this array, for each subset whose elements form a clique, we specify a
node of the tree decomposition which contains this subset. We note that for each
cliqueC in Gi, there exists a nodez of TD(G) such that all vertices ofC appear
in the bag ofz [BM93]. This array is initialized as part of a preprocessing stage of
the algorithm. Now, for the⊕ operation betweenG1 ⊕ · · · ⊕ Gh andGh+1 over
the join setW , using arrayNodes, we find a nodeα in the tree decomposition of
G1 ⊕ · · · ⊕ Gh whose bag containsW . Because we have the tree decomposition
of Gh+1, we can find the nodeα′ of the tree decomposition whose bag contains
W by brute force over all subsets of size at mosts of bags. Simultaneously, we
update arrayNodesby subsets ofV (G) which form a clique and appear in bags of
the tree decomposition ofGh+1. Then we add an edge betweenα andα′. As the
number of nodes in a tree decomposition ofGh+1 is in O(|V (Gh+1)|) and each
bag has size at mostO(

√
k) (and thus there are at mostO((

√
k)

s
) choices for a

subset of size at mosts), this operation takesO((
√

k)
s
|V (Gh+1)|) time forGh+1.

The claimed running time follows from the time required to determine a set of
clique-sum operations, the time required to construct tree decompositions, the time
needed for gluing tree decompositions together, and the fact that

∑m
i=1 |V (Gi)| =

O(|V (G)|). ut
Notice that Condition (2) of Theorem 2 is not necessary whenG excludes a

single-crossing graph andF is closed under taking of minors. Indeed, from Theo-
rem 1, we have that in the sequence of operationsG = G1⊕G2⊕· · ·⊕Gm, each
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Gi is a minor ofG and therefore, ifG ∈ Fk then eachGi is also a member ofFk.
We resume this observation to the following.

Theorem 3LetG be the class of graphs excluding some single-crossing graphH
as a minor and letF be any minor-closed parameterized graph class. Suppose
that there exist real numbersβ0 ≥ 4, β1 such that any planar graph inFk has
treewidth at mostmax{β1

√
k + β0, cH} and such a tree decomposition can be

found inO(nα). Then graphs inG ∩Fk all have treewidth≤ β1

√
k +β0 and such

a tree decomposition can be constructed inO(nmax{α,4}) time.

Theorem 4LetG be a graph class and letF be some parameterized graph class.
Suppose also for some positive real numbersc, α1, α2, β1, β2, δ the following hold:

(1) For anyk ≥ 0, the graphs inG ∩Fk all have treewidth≤ max{c, β1

√
k+β2}

and such a tree decomposition can be decided and constructed (if it exists) in
O(nα2) time. We also assume testing membership inG takesO(nα1) time.

(2) Given a tree decomposition of width at mostw of a graph, there exists an
algorithm deciding whether the graph belongs inFk in O(δwn) time.

Then there exists an algorithm deciding inO(δmax{c,β1
√

k+β2} + nmax{α1,α2})
time whether an input graphG belongs inG ∩ Fk.

Proof First, we can test membership inG in O(nα1) time. Then we can apply the
algorithm from (1) and (assuming success) supply the resulting tree decomposition
to the algorithm from (2). ut

4 Fixed-Parameter Algorithms for Dominating Set

In this section we describe some of the consequences of Theorems 2 and 4 on the
design of efficient fixed-parameter algorithms for a collection of parameterized
problems where their inputs are clique-sum graphs.

A dominating setof a graphG is a set of vertices ofG such that each of the
rest of vertices has at least one neighbor in the set. We represent thek-dominating
setproblem with the parameterized graph classDS whereDSk contains graphs
which have a dominating set of size≤ k. Our target is to show how we can solve
thek-dominating set problem on clique-sum graphs, whereH is a single-crossing
graph, in timeO(c

√
knO(1)) instead of the current algorithms which run in time

O(cknO(1)) for some constantc. By this result, we extend the current exponential
speedup in designing algorithms for planar graphs [AFN04] to a more generalized
class of graphs. In fact, planar graphs are bothK3,3-minor-free andK5-minor-free
graphs, where bothK3,3 andK5 are single-crossing graphs.

According to the result of [KP02] Condition (1) of Theorem 2 is satisfied for
β1 = 15.6, β2 = 50, andα2 = 1. Moreover, from [FT03], Condition (1) is also
satisfied forβ1 = 9.55, β2 = 0, andα2 = 4.

The next lemma shows that Condition (2) of Theorem 2 also holds.

Lemma 2 If G = G1 ⊕m G2 has ak-dominating set, then bothG1 andG2 have
dominating sets of size at mostk.
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Proof Let thek-dominating set ofG beS and letW be the join set ofG1 ⊕k G2.
Without loss of generality we show thatG1 has a dominating set of sizek. If
S1 = S ∩ V (G1) is a dominating set forG1 then the result immediately follows,
otherwise there exists vertexw ∈ V (G1) which is dominated by a vertexv ∈
V (G2) − V (G1). One can observe that all such verticesw are inW . Because
v ∈ S, butv 6∈ S1, setS′1 = S1 + {w} has at mostk vertices and becauseW is a
clique inG1, S′1 is a dominating set of size at mostk in G1. ut

Let G be anyα-recognizable clique-sum class. Now by applying Theorem 2
for β1 = 9.55, β2 = 0, α1 = α, andα2 = 4 we have the following.

Theorem 5 If G is anα-recognizable clique-sum class of basec, then any mem-
ber G of G with a dominating set of size at most≤ k has treewidth at most
max{c, 9.55

√
k} and the corresponding tree decomposition ofG can be con-

structed inO(nmax{α,4}) time.

From Theorem 5, we get that Condition (1) of Theorem 4 is satisfied forβ1 =
9.55, β2 = 0, α2 = max{α, 4}, andα2 = 4. The main result in [AN02] shows
that for the graph parameterDS Condition (2) of Theorem 4 is also satisfied for
δ = 4. We conclude with the following.

Theorem 6There is an algorithm that inO(49.55
√

kn + nmax{α,4}) time solves
thek-dominating set problem for anyα-recognizable clique-sum graph of basec.1

Corollary 1 There is an algorithm that solves thek-dominating set problem for
any graph class excluding some single-crossing graph as a minor inO(49.55

√
kn+

n4) time.

For the special cases ofK5-minor-free graphs andK3,3-minor-free graphs,
we may apply Theorem 2 forβ1 = 15.6, β2 = 50, andα2 = 1 and derive the
following.

Corollary 2 There is an algorithm that solves thek-dominating set problem for
anyK5-minor-free graph inO(415.6

√
k+50n + n2) time and for anyK3,3-minor-

free graph inO(415.6
√

k+50n) time.

5 Algorithms for Parameters Bounded by the Dominating-Set Number

We provide a general methodology for deriving fast fixed-parameter algorithms
in this section. First, we consider the following theorem which is an immediate
consequence of Theorem 4.

Theorem 7Let G be a graph class and letF1, F2 be two parameterized graph
classes whereF1 4γ F2 for some natural numberγ ≥ 1. Suppose also that there
exist positive real numbersα1, α2, β1, β2, δ such that:

1 In the rest of this paper we assume that constants, e.g.,c, are small and they do not
appear in the powers, because they are absorbed into theO notation.
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(1) For anyk ≥ 0, the graphs inG∩F2
k all have treewidth≤ β1

√
k+β2 and such

a tree decomposition can be decided and constructed (if it exists) inO(nα2)
time. We also assume testing membership inG takesO(nα1) time.

(2) There exists an algorithm deciding whether a graph of treewidth≤ w belongs
in F1

k in O(δwn) time.

Then:

(1) For anyk ≥ 0, the graphs inG ∩ F1
k all have treewidth at mostβ1

√
γk + β2

and such a tree decomposition can be constructed inO(nα2) time.
(2) There exists an algorithm deciding inO(δβ1

√
γk+β2+nmax{α1,α2}) time whether

an input graphG belongs inG ∩ F1
k .

Proof Consequence (1) follows immediately from the definition of4γ . Conse-
quence (2) follows from Theorem 4.ut

The idea of our general technique is given by the following theorem that is a
direct consequence of Theorems 5 and 7.

Theorem 8Let F be a parameterized graph class satisfying the following two
properties:

(1) It is possible to check membership inFk of a graphG of treewidth at mostw
in O(δwn) time for some positive real numberδ.

(2) F 4γ DS.

Then:

(1) Any clique-sum graphG of basec inFk has treewidth at mostmax{9.55
√

γk+
8, c}.

(2) We can check whether an input graphG is inFk in O(δ9.55
√

γkn+nmax{α,4})
on anα-recognizable clique-sum graph of basec.

In what follows we explain how Theorem 8 applies for a series of graph param-
eters. In particular, we explain why Conditions (1) and (2) are satisfied for each
problem.

5.1 Variants of the Dominating Set Problem

A k-dominating set with propertyΠ on an undirected graphG is ak-dominating
setD of G which has the additional propertyΠ and thek-dominating set with
propertyΠ problemis the task to decide, given a graphG = (V,E), a propertyΠ,
and a positive integerk, whether or not there is ak-dominating set with property
Π. Some examples of this type of problems, which are mentioned in [ABF+02,
TP93,TP97], are thek-independent dominating setproblem, thek-total dominat-
ing setproblem, thek-perfect dominating setproblem, thek-perfect independent
dominating setproblem, also known ask-perfect code, and thek-total perfect
dominating setproblem. For eachΠ, we denote the corresponding dominating set
problem byDSΠ .
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Another variant isthe weighted dominating set problemin which we have a
graphG = (V,E) together with an integer weight functionw : V → N with
w(v) > 0 for all v ∈ V . The weight of a vertex setD ⊆ V is defined as
w(D) =

∑
v∈D w(v). A k-weighted dominating setD of an undirected graphG

is a dominating setD of G with w(D) ≤ k. Thek-weighted dominating setprob-
lem is the task of deciding whether or not there exits ak-weighted dominating set.
We use the parameterized classWDS to denote thek-weighted dominating set
problem.

Condition (1) of Theorem 8 holds forδ = 4 because of the following.

Theorem 9([ABF+02]) If a tree decomposition of widthw of a graph is known,
then a solution toDSΠ or toWDS can be determined in at mostO(4w · n) time.

Clearly,DSΠ 41 DS andWDS 41 DS and Condition (2) also holds. There-
fore Theorem 8 holds forγ = 1 andδ = 4 for DSΠ andWDS.

Another related problem is theY -domination problem (DSY ) introduced in
[BBHS96].

Definition 5 LetY be a finite set of integers. AY -dominationis an assignmentf :
V → Y such that for each vertexx, f(N [x]) =

∑
v∈N [x] f(x) ≥ 1 whereN [x]

stands for the neighborhood ofx includingx itself. AnefficientY -dominationis
an assignmentf with f(N [x]) = 1 for all verticesx ∈ V . Thevalueof a Y -
dominationf is |{x | f(x) > 0}|. The weight of aY -domination is

∑
x∈V f(x).

TwoY -dominations areequivalentif they have the same closed neighborhood sum
at every vertex. TheY -domination problemasks whether the input graphG has
an efficientY -domination of value at mostk.

Using the generalized dynamic programming approach, Kloks and Cai [KC00]
presents an algorithm which runs in timeO(|Y |wn) to decide whether a graphG
of treewidth at mostw has an efficientY -domination of value at mostk. It is worth
mentioning that, according to Bange et al. [BBHS96], a graphG has an efficientY -
domination if and only if all equivalentY -dominations have the same weight, and
thus there is no need to worry about the actual weight of an efficientY -domination.
Therefore, we have that Condition (1) of Theorem 8 holds forδ = |Y |.

One can easily see that forY -dominationf of a graphG = (V,E), D =
{x|f(x) > 0} is a dominating set, because each vertexx has at least one vertex
with a positive number assigned to it inN [x]. Thus if f is a Y -domination of
G with value at mostk, thenG also has a dominating set of sizek. Therefore,
DSY 41 DS and Condition (2) holds as well. Theorem 8 applies forγ = 1 and
δ = |Y |.

5.2 Vertex Cover

Thek-vertex cover problem (VC) asks whether there exists a subsetC of at most
k vertices such that every edge ofG has at least one endpoint inC. This problem
is one of the most popular problems in combinatorial optimization.

A great number of researchers believe that there is no polynomial-time approx-
imation algorithm achieving an approximation factor strictly smaller than2 − ε,
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for a positive constantε, unlessP = NP . Currently, the best known lower bound
for this factor is1.36 [DS02] and the best upper bound is2 which can be obtained
easily. The best current fixed-parameter tractable algorithm has timeO(1.271k +
k|V |) [CKJ01]. In this section we present an exponentially faster algorithm for
this problem on clique-sum graphs.

Without loss of generality, we can restrict our attention to graphs with no ver-
tex of degree0. One can observe that if a graphG has a vertex cover of sizek,
then it has also ak-dominating set. ThereforeVC 41 DS and Condition (1) of
Theorem 8 holds. Moreover, Condition (2) holds because we can solve the vertex
cover problem in timeO(2w) if we know the tree decomposition of widthw of
a graphG [AFN04]. Therefore, Theorem 8 applies forγ = 1 andδ = 2 for the
k-vertex problem.

A simple standard reduction to the problem kernel due to Buss and Goldsmith
[BG93] is as follows: Each vertex of degree greater thank must be in the vertex
cover of sizek, because otherwise, not all edges can be covered. Thus we can
obtain a subgraphG′ of G which has at mostk2 edges and at mostk2 + k vertices
andk′ is obtained fromk reduced by the number of vertices of degree more thank.
Chen et al. [CKJ01] showed that in Buss and Goldsmith’s approach one can even
obtain a problem kernel with at most2k vertices inO(nk + k3) time. Thus, using
this result with the consequence (2) of Theorem 8 forVC, we obtain the following
result.

Theorem 10There exists an algorithm which decides thek-vertex cover problem
in O(29.55

√
kk + kn + k3 + nmax{α,4}) time on anα-recognizable clique-sum

graph.

5.3 Edge Dominating Set

Another related problem is the edge dominating set problemEDS that given a
graphG asks for a setE′ ⊆ E of k or fewer edges such that every edge inE shares
at least one endpoint with some edge inE′. Again without loss of generality we
can assume that graphG has no vertex of degree0.

One can observe that if a graphG has ak-edge dominating setE′, we can
obtain a vertex cover of size2k by including both endpoints of each edgee ∈ E′.
This means thatEDS 42 VC. In the previous section we showed thatVC 41 DS
therefore, Condition (2) of Theorem 8 holds forEDS whenγ = 2. Condition (1)
holds because the edge dominating set problem can be solved incw

edsn [Bod88,
Bak94] (whereceds is a small constant) on a tree decomposition of widthw for a
graphG. We conclude that Theorem 8 applies forγ = 2 andδ = ceds.

Theorem 11We can find ak-edge dominating set inO(ceds
9.55

√
2kn+nmax{α,4})

time on anα-recognizable clique-sum graph.

5.4 Clique-Transversal Set

A clique-transversal setof a connected graphG is a subset of vertices intersect-
ing all the maximal cliques ofG [BNR96,CCCY96,AST91,GR00]. Because the
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vertex cover problem is NP-complete even restricted to triangle-free planar graphs
[CKL01,Ueh96], the clique-transversal problem remains NP-complete on clique-
sum graphs. Thek-clique transversalproblemCT asks whether the input graph
has a clique-transversal set of size≤ k.

If a graphG has ak-clique-transversal, then it has a dominating set of size
at mostk, because every vertex ofG is contained in at least one maximal clique.
This implies thatCT 41 DS and Condition (2) of Theorem 8 holds forγ = 1.
Using the general dynamic programming technique, we can solve thek-clique-
transversal problem on a graphG of treewidth at mostw in O(cw

ctn) for some
constantcct. (The approach is very similar to Chang et al. [CKL01].) Therefore,
Theorem 8 applies forγ = 1 andδ = cct.

Theorem 12We can find ak-clique-transversal set inO(cct
9.55

√
kn+nmax{α,4})

time on anα-recognizable clique-sum graph.

5.5 Maximal Matching

A matchingin a graphG is a setE′ of edges without common endpoints. A match-
ing inG is maximalif there is no other matching inG containing it. Thek-maximal
matching problemMM asks whether an input graphG has a maximal matching
of size≤ k.

Let E′ be the edges of a maximal matching ofG. Notice that the set of end-
points of the edges inE′ is a dominating set ofG. ThereforeMM 42 DS and
the Condition (2) of Theorem 8 holds. Condition (1) holds because the problem
can be solved incw

mmn [Bod88] on a tree decomposition of widthw for a graphG.
Hence Theorem 8 gives the following result.

Theorem 13 (1) Any clique-sum graph of basec with a minimum maximal march-
ing of sizek has treewidth≤ 9.55

√
2k + max{8, c}.

(2) One can decide whether anα-recognizable clique-sum graphG has a mini-
mum maximal matching of size at mostk in O(c9.55

√
2k

mm n + nmax{α,4}) time.

5.6 Kernels in Digraphs

A setS of vertices in a digraphD = (V,A) is a kernel ifS is independent and ev-
ery vertex inV −S has an out-neighbor inS. It has been shown that the problem of
deciding whether a digraph has a kernel is NP-complete [GJ79]. Fraenkel [Fra81]
showed that the kernel problem remains NP-complete even for planar digraphsD
with indegree and outdegree at most 2 and total degree at most 3. Thek-kernel
problemKER asks whether a graph has a kernel of sizek. Moreover, we define
the co-KER problem as the one asking whether ann-vertex graph has a kernel of
sizen− k.

Here, we again observe that if a digraphD has a kernel of size at mostk,
then its underlying graphG has a dominating set of cardinality at mostk. Also
for a connected digraphD = (V,A) and kernelK, V − K is a dominating set
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in the underlying graph ofD. Resuming these two facts we haveKER 41 DS
and co-KER 41 DS and Condition (2) of Theorem 8 holds for both problems.
We note that a slight variation of Condition (1) also holds because Gutin et al.
[GKL01] give anO(3wkn)-time algorithm solving thek-kernel problem on graphs
of treewidth at mostw using the general dynamic programming approach. The
straightforward adaptation of Theorem 8 to this variation of Condition (1) gives
the following.

Theorem 14 (1) Any clique-sum graph of basec that has a kernel of sizek or
n− k has treewidth≤ 9.55

√
k + max{8, c}.

(2) One can decide whether anα-recognizable clique-sum graphG of basec has
a kernel of sizek in O(39.55

√
knk + nmax{α,4}) time.

(3) One can decide whether anα-recognizable clique-sum graphG of basec has
a kernel of sizen− k in O(39.55

√
kn(n− k) + nmax{α,4}) time.

6 Fixed-Parameter Algorithms for Vertex-Removal Problems

In this section we present general results allowing the construction ofO(c
√

kn)-
time algorithms for a collection of vertex-removal problems. To this end, we start
with some definitions. For any graph classG and any nonnegative integerk the
graph classk-almost(G) contains any graphG = (V,E) where there exists a subset
S ⊆ V (G) of size at mostk such thatG[V − S] ∈ G. We note that using this
notation if G contains all the edgeless graphs or forests thenk-almost(G) is the
class of graphs with vertex cover≤ k or feedback vertex set≤ k.

We defineTr to be the class of graphs with treewidth≤ r. It is known that, for
1 ≤ i ≤ 2, Ti is exactly the class ofKi+2-minor-free graphs (see, e.g., [Bod98]).
We now present a series of consequences of Theorem 3 for solving a collection of
vertex-removal problems on classes of graphs excluding a single-crossing graph
as a minor. First, we need the following combinatorial lemma.

Lemma 3 Planar graphs ink-almost(T2) have treewidth≤ 9.55
√

k. Moreover,
such a tree decomposition can be found inO(n4) time.

Proof Our target is to prove that planar graphs ink-almost(T2) are subgraphs of
planar graphs inDSk and the result will follow from the fact that from [FT03],
Condition (1) of Theorem 2 is also satisfied forβ1 = 9.55, β2 = 0, andα2 = 4.

Let G be a planar graph and letS be a set of≤ k vertices inG whereG[V −S]
is K4-minor-free. Using Lemma 1, we can assume thatG is a biconnected graph.
In addition, becausek-almost(T2) is a minor closed class, we can assume thatG
does not have a2-cut (a cut of size2). In fact, if G has a2-cut {u, v}, each of the
connected components ofG − {u, v} plus edge{u, v} is a minor ofG and thus
by induction, we can assume that they satisfy the conditions of the theorem. Then
using Lemma 1, we can glue the corresponding tree-decompositions together and
obtain the desired result forG. All these operations take at mostO(n3) time.

Therefore, in the rest of the proof we assume thatG does not have 1- or 2-
cuts. A consequence of this is that all the vertices ofG have degree at least3.
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Another consequence is that two faces ofG can have in common either a vertex
or an edge (otherwise, a 2-cut appears). Consider any planar embedding ofG. We
call a face of this embeddingexteriorif it contains a vertex ofS, otherwise we call
it interior. For each exterior face choose a vertex inS and connect it with the rest
of its vertices. We call the resulting graphH and we note that (a)G is a subgraph
of H, (b) H[V − S] = G[V − S], and (c) all the vertices of the exterior faces of
H are dominated by some vertex inS. We claim thatS is a dominating set ofH.
Suppose, towards a contradiction, that there is a vertexv that is not dominated by
S. From (c) we can assume that all of the faces containingv are interior. LetH ′ be
the graph induced by the vertices of these faces. As they are all interior,H ′ should
be a subgraph ofH[V −S]. Let (x1, . . . , xq, x1) be a cyclic order of the neighbors
of v and notice thatq ≥ 3. Let alsoFi be the face ofH containing the vertices
xi, v, xnext(i), 1 ≤ i ≤ q, wherenext(i) = (i+1) mod q+1. We note that all these
faces are pairwise distinct otherwisev will be a 1-cut forH andG. Let Pi be the
path connectingxi andxnext(i) in H ′ avoidingv and containing only vertices ofFi.
Recall now that two faces ofH have eitherv or an edge containingv in common.
Therefore, it is impossible for two pathsPi, Pj , i 6= j, to share an internal vertex.
This implies that the contraction of all the edges but one of each of these paths
transformsH ′ to a wheelWq that, asq ≥ 3, can be further contracted to aK4 (a
wheelWq is the graph constructed taking a cycle of lengthq and connecting all
its vertices with a new vertexv). As H ′ is a subgraph of the graphH[V − S] (b)
implies thatG[V − S] contains aK4, and this is a contradiction. AsS is now a
dominating set forH, the treewidth ofH is at most9.55

√
k. From (a) we have

thatG is a subgraph of a planar graph inDSk and this completes the proof of the
theorem. ut

As mentioned before,k-almost(T2) is a minor closed graph class. Moreover, if
O ⊆ T2, then for anyk, k-almost(O) ⊆ k-almost(T2). Using Theorem 3 we now
conclude the following general result.

Theorem 15LetO be any class of graphs with treewidth≤ 2 and letG be the class
of graphs excluding some single-crossing graphH as a minor. Then the following
hold:

(1) For anyk ≥ 0, all graphs ink-almost(O) that also belong toG have treewidth
≤ max{9.55

√
k, cH}. Moreover, the corresponding tree decomposition can be

found inO(n4) time.
(2) Suppose also that there exists anO(δwn) algorithm that decides whether a

given graph belongs ink-almost(O) for graphs of treewidth at mostw. Then

one can decide whether a graph inG belongs ink-almost(O) in O(δ9.55
√

kn+
n4) time.

If {O1, . . . , Or} is a finite set of graphs, we denote by minor-excl(O1, . . . , Or)
the class of graphs that areOi-minor-free for alli = 1, . . . , r.

As examples of problems for which Theorem 15 can be applied, we mention
the problems of checking whether a graph, after removingk vertices, isedgeless
(G = T0), or hasmaximum degree≤ 2 (G = minor-excl(K1,3)), or becomes a
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a star forest(G = minor-excl(K3, P3)), or a caterpillar (G = minor-excl(K3,
subdivision of K1,3)), or aforest(G = T1), or outerplanar(G = minor-excl(K4,
K2,3)), or series-parallel, or has treewidth≤ 2 (G = T2).

We consider the cases whereG = T0 andG = T1 in the next two subsections.

6.1 Feedback Vertex Set

A feedback vertex set (FVS)of a graphG is a setU of vertices such that every
cycle of G passes through at least one vertex ofU . The previous known fixed-
parameter algorithms for solving thek-feedback vertex set problem had running
timeO((2k+1)kn2) [DF99] and alternatively timeO((917k4)! (n+m)) [Bod92]
(m is the number of edges.) Also there exists a randomized algorithm which needs
O(c4kkn) time with probability at least1 − (1 − 1/4k)c4k

[BBYG00]. The k-
feedback vertex setproblem (FVS) asks whether an input graph has a feedback
vertex set of size≤ k.

Kloks et al. [KLL02] proved that the feedback vertex set problem on planar
graphs of treewidth at mostw can be solved inO(cw

fvsn) time for some constant
cfbs. The complexity of their algorithm is based on the fact that the number of
edges of a planar graph is bounded by a simple linear function of its vertices (i.e.,
3n − 6). As we have a similar bound3n − 5 for K3,3(K5)-minor-free graphs
[Asa85,KM92], one can easily observe that the algorithm of [KLL02] works also
for the more general case. Therefore, Theorem 15 can be applied forG = T1 and
δ = cfvs and we have the following.

Theorem 16If G is a graph class excluding some single-crossing graphH as a
minor then:

(1) If G has a feedback vertex set of size at mostk thenG has treewidth at most
max{9.55

√
k, cH}.

(2) We can check whether somen-vertex graph inG has a feedback vertex set of

size≤ k in O(c9.55
√

k
fvs n + n4) time.

Theorem 16 generalizes the results of [KLL02] to any class of graphs exclud-
ing some single-crossing graphH as a minor.

6.2 Improving Bounds for Vertex Cover

Alber et al. [AFN04] proved that planar graphs inVCk have treewidth at most
4
√

3
√

k + 5 < 6.93
√

k + 5. An easy improvement of this result is the following:

Lemma 4 If a planar graph has a vertex cover of size≤ k then its treewidth is
bounded by5.52

√
k

Proof Again using Lemma 1, we may assume thatG is a biconnected graph. Let
S be a vertex cover inG where|S| ≤ k. Consider a planar embedding ofG.
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Construct a triangulationH of G as follows: for any faceF we add edges
connecting only vertices ofF ∩ S. This operation constructs a triangulation as
there is no pair of vertices inF − S that are consecutive inF . Moreover, as all
the added edges have endpoints inS, S is a vertex cover ofH. We will prove that
tw(H) ≤ 5.52

√
k.

We may assume thatH is a triangulation without double edges. To see this,
consider two edgese1 ande2 connecting verticesx andy and apply Lemma 1
on the graphsGin andGex induced by the vertices included in each of the closed
disks bounded by the cycle where the two edges of this cycle are identified.

Notice now that for each vertexv ∈ V (H)− S, all its neighbors are members
of S. This means that|V (H)−S| ≤ r wherer is the number of faces ofJ = H[S].
AsH has no double edges, neither doesJ and therefore|E(J)| ≤ 3|V (J)|−6. It is
known thatr ≤ |E(J)|−|V (J)|+2 and we get thatr ≤ 2|V (J)|−4. We conclude
that|V (H)| ≤ |V (J)|+2|V (J)|−4 = 3|S|−4 = 3k−4. From [FT02], we know
that anyn-vertex planar graph has treewidth at most9

2
√

2

√
n. This means that

tw(H) ≤ 9
2
√

2

√
3k − 4 ≤ 9

2
√

2

√
3
√

k. As G is a subgraph ofH and 9
2
√

2

√
3 <

5.52, the result follows. ut

Applying Theorem 15, we have that Condition (1) of Theorem 4 holds ifF is
the class of graphs with vertex cover≤ k andG is any graph class excluding some
single-crossing graphH as a minor whenc = cH , α1 = 4, α2 = 4, β1 = 5.52,
and β2 = 0. Also, as we mentioned in Section 5.2 it is possible to decide in
O(2wn) time if a graph has a vertex cover of size at mostk. Therefore, Condition
(2) holds forδ = 2. Concluding, we have the following improvement of the results
of Section 5.2 for any graph class excluding some single-crossing graphH as a
minor.

Theorem 17If G is some graph class excluding some single-crossing graphH as
a minor then the following hold:

(1) If G ∈ G has a vertex cover of size at mostk thenG has treewidth at most
max{5.52

√
k, cH}.

(2) There is an algorithm which checks whether some graphG ∈ G has a vertex
cover of size≤ k in O(25.52

√
kk + kn + k3 + n4) time.

BecauseEDS 42 VC, we can also obtain anO(ceds
5.52

√
2kn+n4)-time algorithm

for the edge dominating set problem on graphs excluding some single-crossing
graph as a minor.

7 Further Extensions

In this section we obtain fixed-parameter algorithms with exponential speedup for
k-vertex cover andk-edge dominating set on classes of graphs that are not neces-
sarily classifiable as single-crossing minor-free graphs. Our approach, similar to
the Alber et al.’s approach [AFN04], is a general one that can be applied to other
problems.
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Baker [Bak94] developed several approximation algorithms to solve NP-complete
problems for planar graphs. To extend these algorithms to other graph families,
Eppstein [Epp00] introduced the notion of bounded local treewidth, defined for-
mally below, which is a generalization of the notion of treewidth. Intuitively, a
graph has bounded local treewidth (or locally bounded treewidth) if the treewidth
of anr-neighborhood of each vertexv ∈ V (G) is a function ofr, r ∈ N, and not
|V (G)|.

Definition 6 The local treewidthof a graphG is the functionltwG : N → N
that associates with everyr ∈ N the maximum treewidth of anr-neighborhood
in G. We setltwG(r) = maxv∈V (G){tw(G[Nr

G(v)])}, and we say that a graph
classC hasbounded local treewidth (or locally bounded treewidth)when there is
a functionf : N → N such that for allG ∈ C andr ∈ N, ltwG(r) ≤ f(r).

A graph is called anapex graphif deleting one vertex produces a planar graph.
Eppstein [Epp00] showed that a minor-closed graph classE has bounded local
treewidth if and only ifE is H-minor-free for some apex graphH.

So far, the only graph classes studied with small local treewidth are the class
of planar graphs and more generally bounded genus graphs [Epp00], the class
of almost-embeddable graphs [Gro03], and finally the class of clique-sum graphs
[HNRT01,DHN+04]. All such graph classes have linear local treewidth with small
hidden constants. For example, for any planar graphG, ltwG(k) ≤ 3k−1 [Epp00],
and for anyK3,3-minor-free orK5-minor-free graphG, ltwG(k) ≤ 3k+4 [HNRT01,
DHN+04]. For these classes of graphs, there are efficient algorithms for construct-
ing tree decompositions.

Eppstein [Epp00] showed how the concept of thekth outer face in planar
graphs can be replaced by the concept of thekth layer (or level) in graphs of
locally bounded treewidth. Thekth layer (Lk) of a graphG consists of all vertices
at distancek from an arbitrary fixed vertexv of V (G). We denoteconsecutive
layers fromi to j by L[i, j] =

⋃
i≤k≤j Lk.

Here we generalize the concept oflayerwise separation, introduced by Alber
et al. [AFN04] for planar graphs, to general graphs.

Definition 7 Let G be a graph layered from a vertexv, and let r be the num-
ber of layers. Alayerwise separation of widthw and sizes for G is a sequence
(S1, S2, . . . , Sr) of subsets ofV , with the property thatSi ⊆

⋃i+(w−1)
j=i Lj ; Si

separates layersLi−1 andLi+w; and
∑r

j=1 |Sj | ≤ s. Here we letSi = ∅ for all
i < 1 andi > r.

Now we relate the concept of layerwise separation to parameterized problems.

Definition 8 A parameterized problemP has theLayerwise Separation Property
(LSP)of widthw and size-factord, if for each instance(G, k) of the problemP ,
graphG admits a layerwise separation of widthw and sizedk.

For example, we can obtain constantsw = 2 andd = 2 for the vertex cover
problem. In fact, consider ak-vertex coverC on a graphG and setSi = (Li ∪
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Li+1) ∩ C. TheSi’s form a layerwise separation. Similarly, we can get constants
w = 2 andd = 4 for the edge dominating set problem (see [AFN04] for further
examples).

Lemma 5 Let P be a parameterized problem on instance(G, k) that admits a
problem kernel of sizedk. Then the parameterized problemP on the problem
kernel has the LSP of width1 and size-factord.

Proof Consider the problem kernel(G′, k′) for an instance(G, k) and obtain lay-
ering L′ for G′ from arbitrary vertexv. Then clearly the sequenceSi = L′

i for
i = 1, . . . , r′ (r′ is the number of layers) is a layerwise separation of width1 and
sizek′ ≤ dk for G′. ut

In fact, using Lemma 5 and the problem kernel of size2k (see Section 5.2) for
the vertex cover problem, this problem has the LSP of width1 and size-factor2.

Now we are ready to present the main theorem of this section.

Theorem 18Suppose for a graphG from a minor-closed class of graphs,ltw(G) ≤
cr + c′ and a tree decomposition of widthch + c′ can be constructed in time
f(n, h) for anyh consecutive layers. Also assumeG admits a layerwise separa-
tion of widthw and sizedk. Then we havetw(G) ≤ 2

√
2cdk + cw + c′. Such a

tree decomposition can be computed in timeO(kf(n,
√

k)).

Proof The proof is very similar to the proof of Theorem 15 of Alber et al.’s work
[AFN04] and for the sake of brevity we only mention the differences and omit the
lengthy details. In the proof the concept of thekth outer face in planar graphs will
be replaced by the concept of thekth layer (or level) in graphs of locally bounded
treewidth. More precisely, Alber et al. [AFN04] use the fact that the treewidth of an
h-outerplanar graph is3h−1, but in our proof we use the fact that, for any graphG,
the treewidth of anyh consecutive layers is at mostch + c′ [Gro03,DHN+04]. In
addition, as mentioned before, Eppstein [Epp00] showed that a minor-closed graph
classE has bounded local treewidth if and only ifE is H-minor-free for some
apex graphH. (A simpler proof of this theorem can be found in [DH04b].) From
Thomason [Tho01], we know that any graphG excluding anr-clique as a minor
cannot have more than(0.319+o(1))(r

√
log r)|V (G)| edges. This implies that for

graphG mentioned in the statement of the theorem,|E(G)| = O(|V (G)|), similar
to the corresponding relation for planar graphs. This fact is used for analyzing the
running time. ut

Corollary 3 For anyH-minor-free graphG, whereH is a single-crossing graph,
that admits a layerwise separation of widthw and sizedk, we havetw(G) ≤
2
√

6dk+3w+cH . Such a tree decomposition can be computed in timeO(k5/2n+
kn4). Furthermore, for anyK3,3(K5)-minor-free graphG that admits a layerwise
separation of widthw and sizedk, we havetw(G) ≤ 2

√
6dk + 3w + 4. Such a

tree decomposition can be computed in timeO(k5/2n) (O(k5/2n + kn2)).

Proof The proof follows directly from Theorem 18 and the fact that for any single-
crossing-minor-free graphG, we can construct a tree decomposition of width3h+
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ch for anyh consecutive layers inO(h3 ·n+n4) time; for aK3,3-minor-free orK5-
minor-free graphG, the running time can be reduced toO(h3n) or O(h3n + n2),
respectively [Haj01,DHN+04] (cH = 4 for these graphs.)ut

Finally, we have this general theorem.

Theorem 19Suppose for a graphG from a minor-closed class of graphs,ltw(G) ≤
cr+c′. LetP be a parameterized problem onG such thatP has the LSP of widthw
and size-factord and there exists anO(δwn)-time algorithm, given a tree decom-
position of widthw for G, which decides whether problemP has a solution of size
k onG. Then there exists an algorithm which decides whetherP has a solution of
sizek onG in timeO(2(11/3)(2

√
2cdk+cw+c′)n3.01 + δ3.698(2

√
2cdk+cw+c′)n).

Proof The proof follows from Theorem 18, the fact that for graphG, the treewidth
of anyh consecutive layers is at mostch + c′ [Gro03,DHN+04], and finally the
result of Amir [Ami01], which says for any graphG of treewidthw, we can con-
struct a tree decomposition of width at most(11/3)w in time O(23.698wn3.01).
ut

For example, Theorem 19 gives an exponential speed up, i.e., an algorithm
with running timeO(2O(

√
gk)k3.01 + kn+ k3 +n4) (becausec = O(g) [Epp00]),

for solving vertex cover on graphs of bounded genus.
Recently, it was established that all minor-closed classes of graphs with bounded

local treewidth, i.e., all minor-closed graph classes excluding an apex graph, in fact
have linear local treewidth [DH04a]. Therefore Theorem 19 applies generally to
any such class of graphs.

8 Conclusions and Future Work

In this paper we consideredH-minor-free graphs, whereH is a single-crossing
graph, and proved that if these graphs have ak-dominating set then their treewidth
is at mostc

√
k for a small constantc. As a consequence, we obtained exponen-

tial speedup in designing FPT algorithms for several NP-hard problems on these
graphs, especiallyK3,3-minor-free orK5-minor-free graphs. In fact, our approach
is a general one that can be applied to several problems which can be reduced to the
dominating set problem as discussed in Section 5 or to problems that themselves
can be solved exponentially faster on planar graphs [AFN04]. Here, we present
several open problems that are possible extensions of this paper.

One topic of interest is finding other problems to which the technique of this
paper can be applied. Moreover, it would be interesting to find other classes of
graphs thanH-minor-free graphs, whereH is a single-crossing graph, on which
the problems can be solved exponentially faster for parameterk. A partial answer
to this question is the class of map graphs [DFHT].

For several problems in this paper, Kloks et al. [CKL01,KLL02,GKL01,KC00]
introduced a reduction to the problem kernel on planar graphs. Because graphs ex-
cluding a single-crossing graph are similar to planar graphs, in the sense of having
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a linear number of edges and not having a clique of more than a constant size, we
believe that one might obtain similar results for these graphs.

As mentioned before, Theorem 15 holds for any class of graphs with treewidth
≤ 2. It is an open problem whether it is possible to generalize it to apply to any
class of graphs of treewidth≤ h for arbitrary fixedh. Moreover, there exists no
general method for designingO(δwn)-time algorithms for vertex-removal prob-
lems in graphs with treewidth≤ w. If this becomes possible, then Theorem 17
will have considerable algorithmic applications.

Finally, as a matter of practical importance, it would be interesting to obtain
a constant coefficient better than9.55 for the treewidth of planar graphs having a
k-dominating set, which would lead to a direct improvement on our results.
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