
Correlation Clustering with Partial Information

Erik D. Demaine and Nicole Immorlica?

Laboratory for Computer Science, MIT, Cambridge, MA 02139, USA.
edemaine, nickle@theory.lcs.mit.edu.

Abstract. We consider the following general correlation-clustering prob-
lem [1]: given a graph with real edge weights (both positive and nega-
tive), partition the vertices into clusters to minimize the total absolute
weight of cut positive edges and uncut negative edges. Thus, large posi-
tive weights (representing strong correlations between endpoints) encour-
age those endpoints to belong to a common cluster; large negative weights
encourage the endpoints to belong to different clusters; and weights with
small absolute value represent little information. In contrast to most
clustering problems, correlation clustering specifies neither the desired
number of clusters nor a distance threshold for clustering; both of these
parameters are effectively chosen to be the best possible by the problem
definition.

Correlation clustering was introduced by Bansal, Blum, and Chawla [1],
motivated by both document clustering and agnostic learning. They
proved NP-hardness and gave constant-factor approximation algorithms
for the special case in which the graph is complete (full information) and
every edge has weight +1 or −1. We give an O(log n)-approximation
algorithm for the general case based on a linear-programming rounding
and the “region-growing” technique. We also prove that this linear pro-
gram has a gap of Ω(logn), and therefore our approximation is tight
under this approach. We also give an O(r3)-approximation algorithm for
Kr,r-minor-free graphs. On the other hand, we show that the problem is
APX-hard, and any o(logn)-approximation would require improving the
best approximation algorithms known for minimum multicut.

1 Introduction

Clustering objects into groups is a common task that arises in many applications
such as data mining, web analysis, computational biology, facility location, data
compression, marketing, machine learning, pattern recognition, and computer
vision. Clustering algorithms for these and other objectives have been heavily
investigated in the literature. For partial surveys, see e.g. [6, 11, 14–16, 18].
In a theoretical setting, the objects are usually viewed as points in either a

metric space (typically finite) or a general distance matrix, or as vertices in a
graph. Typical objectives include minimizing the maximum diameter of a clus-
ter (k-clustering) [8], minimizing the average distance between pairs of clustered

? Research was supported in part by an NSF GRF.

points (k-clustering sum) [17], minimizing the maximum distance to a “centroid
object” chosen for each cluster (k-center) [8], minimizing the average distance
to such a centroid object (k-median) [10], minimizing the average squared dis-
tance to an arbitrary centroid point (k-means) [11], and maximizing the sum
of distances between pairs of objects in different clusters (maximum k-cut) [13].
These objectives interpret the distance between points as a measure of their
dissimilarity: the larger the distance, the more dissimilar the objects. Another
line of clustering algorithms interprets the distance between points as a measure
of their similarity: the larger the distance, the more similar the objects. In this
case, the typical objective is to find a k-clustering that minimizes the sum of
distances between pairs of objects in different clusters (minimum k-cut) [13].
All of these clustering problems are parameterized by the desired number k of
clusters. Without such a restriction, these clustering objective functions would
be optimized when k = n (every object is in a separate cluster) or when k = 1
(all objects belong to a single cluster).

In the correlation-clustering problem, introduced by Bansal et al. [1], the
underlying model is that objects can be truly categorized, and we are given
probabilities about pairs of objects belonging to common categories. For exam-
ple, the multiset of objects might consist of all authors of English literature,
and two authors belong to the same category if they correspond to the same
real person. This task would be easy if authors published papers consistently
under the same name. However, some authors might publish under several dif-
ferent names such as William Shakespeare, W. Shakespeare, Bill Shakespeare,
Sir Francis Bacon, Edward de Vere, and Queen Elizabeth I. Given some confi-
dence about the similarity and dissimilarity of the names, our goal is to cluster
the objects to maximize the probability of correctness. As we consider both sim-
ilarity and dissimilarity measures, our objective is in a sense a generalization of
the typical clustering objectives mentioned above. In fact, an appropriate inter-
pretation of our problem instance suggests that our objective is a combination
of the minimum k-clustering sum and minimum k-cut clustering objectives.

An interesting property of our problem is that the number k of clusters is no
longer a parameter of the input; there is some “ideal” k which the algorithm must
find. Another clustering problem with this property is location area design, a
problem arising in cell phone network design. As formulated by Bejerano et al. [2],
this problem attempts to minimize the sum of the sizes squared of the clusters
plus the weight of the cut induced by the clustering. The authors provide an
O(log n) approximation for this problem in general graphs using region-growing
techniques and an O(r3) approximation in Kr,r-minor-free graphs using a lemma
of Klein et al. [12]. The similarities between these two problems allow us to apply
many of the same techniques.

For our lower bounds, we exploit the similarities between the correlation-
clustering problem and the minimum-multicut problem, introduced by Hu [9].
In the minimum-multicut problem, we are given an edge-weighted graph and
a list of k pairs of vertices, and the goal is to remove edges of minimum total
weight such that the resulting graph disconnects all k input pairs. For k = 1,

this is simply the standard minimum-cut problem. For k = 2, Yannakakis et
al. [21] gave a polynomial time algorithm. For k ≥ 3, this problem was shown to
be APX-hard by Dahlhaus et al. [4]. Currently, the best known approximation
for this problem in general graphs is an O(log k) approximation algorithm by
Garg et al. [7]. For graphs excluding any Kr,r minor, Tardos and Vazirani [19]
use a lemma of Klein et al. [12] to provide an O(r3) approximation (and thus
constant approximation for planar graphs).

The only previous work on the correlation-clustering problem is that of
Bansal et al. [1]. Their paper considers correlation clustering in a complete graph
with all edges assigned weights from {+1,−1}, representing that every pair of ob-
jects has an estimate of either “similar” or “dissimilar”. They address two main
objective functions, minimizing disagreements and maximizing agreements be-
tween the input estimates and the output clustering. The decision versions of
these two optimization problems are identical and shown to be NP-complete.
For minimizing disagreements, they give a constant-factor approximation via a
combinatorial algorithm. For maximizing agreements, they give a PTAS. Both
algorithms assume the input graph is complete. However, in many applications,
estimate information is incomplete.

In this paper, we consider minimizing disagreements in general graphs and
with arbitrary weights. We give an O(log n)-approximation algorithm for general
graphs and an O(r3)-approximation algorithm for graphs excluding the complete
bipartite graph Kr,r as a minor (e.g., graphs embeddable in surfaces of genus
Θ(r2)). Our O(log n) approximation is based on linear programming, rounding,
and the “region growing” technique [13, 7]. Using ideas developed in Bejerano et
al. [2], we are able to prove that this rounding technique yields a good approx-
imation. We then use a lemma of Klein et al. [12] to extend our results to an
O(r3) approximation for Kr,r-minor-free graphs [19, 2]. We further prove that
the gap in the linear program can be Ω(log n), and therefore our bounds are
tight for any algorithm based on rounding this linear program. We also prove
that our problem is as hard as the APX-hard problem minimum multicut [4], for
which the current best approximation is O(log k) for a certain parameter k [7].
Any o(log n)-approximation algorithm for our problem would require improving
the state-of-the-art for approximating minimum multicut.

Almost simultaneously, two groups of researchers independently obtained re-
sults similar to this paper. Charikar et al. [3] and Emanuel and Fiat [5] both
give O(log n) approximations for the minimization version and approximation-
preserving reductions from minimum multicut, as we do. In addition, Charikar et
al. [3] improve the Bansal et al. [1] result for complete graphs and give a constant
factor approximation for the maximization version in general graphs. Emanuel
and Fiat [5] also prove the equivalence of this problem with the minimum-
multicut problem.

The rest of this paper is organized as follows. Section 2 formalizes the correlation-
clustering problem, the objective of minimizing disagreements, and presents the
linear-programming formulation. Section 3 demonstrates a rounding technique
that yields an O(log n) approximation for this linear program in general graphs.

Section 4 considers the special case of Kr,r-minor-free graphs and uses an al-
ternate rounding technique to get an O(r3) approximation in these graphs. In
Section 5, we prove lower bounds, establishing APX-hardness and a logarithmic
gap in the linear program. We conclude with open problems in Section 6.

2 Problem Definition and Linear-Programming

Formulation

An instance of the correlation-clustering problem is an undirected graph G =
(V,E) with edge weights ce ∈ (−∞,+∞) for each e ∈ E. Each edge weight can
be interpreted as a confidence measure of the similarity or dissimilarity of the
edge’s endpoints. For example, if there is a function f(u, v) that outputs the
probability of u and v being similar, then a natural assignment of weight to edge

e = (u, v) is ce = log
f(u,v)

1−f(u,v) [1]. Hence, an edge e = (u, v) of weight ce > 0

corresponds to a belief that nodes u and v are similar. Larger ce indicate higher
confidence in this belief. Similarly, an edge weight of ce < 0 suggests that u and
v are dissimilar. An edge weight of ce = 0 (or, equivalently, the lack of an edge
between u and v), indicates no belief about the similarity of u and v.
In this paper, our goal is to output a partition or clustering S = {S1, . . . , Sk}

of the vertices that minimizes disagreements. The disagreements or cost of a
partition is the total weight of the “mistakes”, that is, the weight of positive
edges between clusters and the absolute value of the weight of negative edges
within clusters. In the case ce ∈ {−1, 0,+1}, the cost of a partition is simply the
number of cut positive edges plus uncut negative edges. Intuitively, this objec-
tive penalizes the clustering whenever presumed similar objects are in different
clusters and presumed dissimilar objects are in the same cluster. For the pur-
poses of approximation algorithms, minimizing disagreements is different from
maximizing agreements (the weight of cut negative edges plus uncut positive
edges).
We introduce the following notation for the cost of a clustering:

cost(S) = costp(S) + costm(S),

costp(S) =
∑
{

|ce| : e = (u, v) ∈ E; ce > 0; and ∀i, |{u, v} ∩ Si| ≤ 1
}

,

costm(S) =
∑
{

|ce| : e = (u, v) ∈ E; ce < 0; and ∃i, |{u, v} ∩ Si| = 2
}

.

We will refer to the optimal clustering as OPT and its cost as cost(OPT).

Previous approximation algorithms. Bansal et al. [1] give a constant factor ap-
proximation for this problem in the special case of complete graphs with edge
weights in {−1,+1}. Their algorithm is combinatorial. It iteratively “cleans”
clusters until every cluster C is δ-clean (i.e. for every vertex v ∈ C, v has at
least (1− δ)|C| plus neighbors in C and at most δ|C| plus neighbors outside C).
They bound the approximation factor of their algorithm by counting the number
of “bad” triangles (triangles with two +1 edges and one −1 edge) in a δ-clean
clustering and use the existence of these bad triangles to lower bound OPT.

Complete graphs have many triangles, and the counting arguments for count-
ing bad triangles rely heavily on this fact. When we generalize the problem to
graphs that are not necessarily complete, bad triangles no longer form a good
lower bound on OPT. It may be possible to find a combinatorial algorithm for
this problem that bounds the approximation factor by counting bad cycles (cy-
cles with exactly one minus edge). However, in this paper, we formulate the
problem as a linear program, round it, and use its optimal solution to bound our
approximation factor.

Linear-programming formulation. Consider assigning a zero-one variable xuv to
each pair of vertices (hence xuv = xvu). When (u, v) ∈ E, we will sometimes
write xuv as xe where it is understood that e = (u, v). Given a clustering, set
xuv = 0 if u and v are in a common cluster, and xuv = 1 otherwise. To express
cost(S) in this notation, notice that 1− xe is 1 if edge e is within a cluster and
0 if edge e is between clusters. Define constants

me =

{

|ce| if ce < 0,
0 if ce ≥ 0,

and

pe =

{

|ce| if ce > 0,
0 if ce ≤ 0.

Then

cost(S) =
∑

e∈E

me(1− xe) +
∑

e∈E

pexe.

Our goal is to find a valid assignment of xuv’s to minimize this cost. An assign-
ment of xuv’s is valid (corresponds to a clustering) if xuv ∈ {0, 1} and the xuv’s
satisfy the triangle inequality.
We relax this integer program to the following linear program:

minimize
∑

e∈E

me(1− xe) +
∑

e∈E

pexe

subject to xuv ∈ [0, 1]
xuv + xvw ≥ xuw

xuv = xvu

Because the solution set to this linear program contains the solution set to the
integer program, the optimal solution to the linear program is a lower bound on
the cost of the optimal clustering.

3 Approximation in General Graphs

We use the linear-programming formulation of this problem to design an approx-
imation algorithm. The algorithm first solves the linear program. The resulting

fractional values are interpreted as distances between vertices; close vertices are
most likely similar, far vertices are most likely different. The algorithm then uses
region-growing techniques to group close vertices and thus round the fractional
variables. Using ideas from Bejerano et al. [2], we are able to show that this
approach yields an O(log n) approximation. A modification to this approach,
outlined in Section 4, will yield an O(r3) approximation for Kr,r-minor-free
graphs.

Region growing. We iteratively grow balls of at most some fixed radius (com-
puted according to the fractional xuv values) around nodes of the graph until
all nodes are included in some ball. These balls define the clusters in the final
approximate solution. As high xuv values hint that u and v should be in sep-
arate clusters, this approach seems plausible. The fixed radius guarantees an
approximation ratio on disagreements within clusters while the region-growing
technique itself guarantees an approximation ratio on disagreements between
clusters.
First we present some notation that we need to define the algorithm. A ball

B(u, r) of radius r around node u consists of all nodes v such that xuv ≤ r, the
subgraph induced by these nodes, and the fraction (r−xuv)/xvw of edges (v, w)
with only endpoint v ∈ B(u, r). The cut cut(S) of a set S of nodes is the cost of
the positive edges with exactly one endpoint in S, i.e.,

cut(S) =
∑

|{v,w}∩S|=1, (v,w)∈E

pvw.

The cut of a ball is the cut induced by the set of vertices included in the ball.
The volume vol(S) of a set S of nodes is the weighted distance of the edges with
both endpoints in S, i.e.,

vol(S) =
∑

{v,w}⊂S, (v,w)∈E

pvwxvw.

Finally, the volume of a ball is the volume of B(u, r) including the fractional
weighted distance of edges leaving B(u, r). In other words, if (v, w) ∈ E is a cut
edge of ball B(u, r) with v ∈ B(u, r) and w /∈ B(u, r), then (v, w) contributes
pvw · xvw · (r − xuv) weight to the volume of ball B(u, r). For technical reasons,
we also include an initial volume I to the volume of every ball (i.e., ball B(u, 0)
has volume I).

Algorithm. We can now present the algorithm for rounding a fractional solution
FRAC to an integral solution SOL. Suppose the volume of the entire graph is
F , and thus costp(FRAC) = F . Let the initial volume I of the balls defined in
the algorithm be F/n.

Algorithm Round

1. Pick any node u in G.

2. Initialize r to 0.
3. Grow r by min{(duv − r) > 0 : v /∈ B(u, r)} so that B(u, r) includes another
entire edge, and repeat until cut(B(u, r)) ≤ c ln(n+ 1)× vol(B(u, r)).

4. Output the vertices in B(u, r) as one of the clusters in S.
5. Remove vertices in B(u, r) (and incident edges) from G.
6. Repeat Steps 1–5 until G is empty.

In this algorithm, c is some constant which we will determine later. This
algorithm is clearly polynomial and terminates with a solution that satisfies
the constraints. We must show that the resulting cost is not much more than
the original fractional cost. Throughout the analysis section, we will refer to
the optimal fractional solution as FRAC, the solution our algorithm returns as
SOL, and the optimal integral solution as OPT. We also use FRAC(xuv) and
SOL(xuv) to denote the fractional and rounded solution to the linear program.

Positive edges. The termination condition on the region-growing procedure guar-
antees an O(log n) approximation to the cost of positive edges (between clusters):

costp(SOL) =
∑

(u,v)∈E

puv SOL(xuv)

= 1
2

∑

ball B

cut(B)

≤ c
2 ln(n+ 1)×

∑

ball B

vol(B)

≤ c
2 ln(n+ 1)×

∑

(u,v)∈E

puv FRAC(xuv) +
∑

ball B

F

n

≤ c
2 ln(n+ 1)×

(

costp(FRAC) + F
)

≤ c ln(n+ 1)× costp(OPT)

where the fourth line follows from the fact that the balls found by the algorithm
are disjoint.
The rest of our analysis hinges on the fact that the balls returned by this

algorithm have radius at most 1/c. This fact follows from the following known
lemma [20]:

Lemma 1. For any vertex u and family of balls B(u, r), the condition cut(B(u, r)) ≤
c ln(n+ 1)× vol(B(u, r)) is achieved for some r ≤ 1/c.

Negative edges. As in Bejerano et al. [2], we can use this radius guarantee to
bound the remaining component of our objective function. We see that our
solution gives a c

c−2 -approximation to the cost of negative edges (within clusters):

costm(FRAC) =
∑

(u,v)∈E

muv(1− FRAC(xuv))

≥
∑

balls B

∑

(u,v)∈B∩E

muv(1− FRAC(xuv))

≥
∑

balls B

∑

(u,v)∈B∩E

muv(1− 2/c)

≥ (1− 2/c)
∑

balls B

∑

(u,v)∈B∩E

muv

= c−2
c
costm(SOL)

where the third line follows from the triangle inequality and the 1/c bound on
the radius of the balls. The approximation ratio c

c−2 is O(1) provided c > 2.

Overall approximation. Combining these results, we pay a total of

cost(SOL) = costp(SOL) + costm(SOL)

≤ c

2
ln(n+ 1)× costp(OPT) +

c− 2
c
costm(OPT)

≤ max
{

c

2
ln(n+ 1),

c− 2
c

}

cost(OPT)

and thus we have an O(lnn) approximation, where the lead constant, c/2, is just
slightly larger than 1.

4 Approximation in Kr,r-Minor-Free Graphs

In Kr,r-minor-free graphs, we can use a theorem of Klein et al. [12] to round
our linear program in a way that guarantees an O(r3) approximation to the cost
of disagreements between clusters. The clusters produced by this rounding have
radius at most 1/c, and thus the rest of the results from the previous section
follow trivially. The theorem states that, in graphs with unit-length edges, there
is an algorithm to find a “small” cut such that the remaining graph has “small”
connected components:

Theorem 1. [12] In a graph G with weight u on the edges which satisfy the

triangle inequality, one can find in polynomial time either a Kr,r minor or an

edge cut of weight O(rU/δ) whose removal yields connected components of weak

diameter1 O(r2δ) where U is the total weight of all edges in G.

As in the case of the region-growing technique, this theorem allows us to
cluster the graph cheaply subject to some radius guarantee. As this clustering
cost is independent of n, this technique is typically applied in place of the region-
growing technique to get better approximations for Kr,r-minor-free graphs (see,
for example, Tardos and Vazirani [19] or Bejerano et al. [2]). In particular, this
implies constant factor approximations for planar graphs.

1 The weak diameter of a connected component in a modified graph is the maximum
distance between two vertices in that connected component as measured in the
original graph. For our purposes, distances are computed according to the xu,v which
satisfy the triangle inequality and are defined on all pairs of vertices, so the weak
diameter equals the diameter.

The idea is as follows. Given a Kr,r-minor-free graph G with weights pe

and edge lengths xe as defined by the linear program, we subdivide each edge
e into a chain of dkxee edges of the same weight pe for some appropriate k,
yielding a new graph G′. We apply Theorem 1 to G′, getting an edge cut F ′

which maps to an edge cut F in G of at most the same weight. This creates the
natural correspondence between the resulting components of G′ and G. Note
two nodes at distance d in G are at distance kd in G′. Hence, if we take δ such
that O(r2δ) < 2k/c, the components in G will have diameter at most 2/c. It is
sufficient to take δ = O(k/r2). To bound the weight of the cut F , we just need
to bound the total weight U ′ of the graph G′. Let U =

∑

e∈G pe be the total
weight of edges in G and recall vol(G) =

∑

e∈G pexe. Then

U ′ =
∑

e∈G′

pe

=
∑

e∈G

dkxeepe

≤
∑

e∈G

(kxe + 1)pe

= k vol(G) + U.

By Theorem 1, the weight of F is O(rU ′/δ) = O(r3(k vol(G) + U)/k). Taking
k = U/ vol(G), this becomes O(r3 vol(G)) and is thus an O(r3) approximation
of the cost of disagreements between clusters, as desired. The size of G′ may be
pseudopolynomial in the size of G. However, the algorithm of Klein et al. [12]
consists of r breath-first searches of G′, and these can be implemented without
explicitly subdividing G. Thus, the algorithm is polynomial.

5 Lower Bounds

We prove that it is APX-hard to minimize disagreements in correlation clus-
tering. We use a reduction from the APX-hard problem minimum multicut [4]:
given a graph G and k pairs of nodes P = {(u1, v1), . . . , (uk, vk)}, find a set
of edges of minimum weight that, when removed, separate each pair of nodes
p ∈ P .

Theorem 2. An r-approximation for minimizing disagreements in correlation

clustering implies an r-approximation for the minimum-multicut problem.

Proof. Given a multicut instance G′, construct graph G as follows. For every
edge in G′ of weight c′e, add an edge to G of weight ce = c′e. Note all these
ce are positive. Let M be the maximum ce. For each pair p = (ui, vi), add an
edge e between ui and vi of weight ce = −(M + 1)n2. Note we have added at
most n2 edges and increased the maximum weight by factor at most n2 so G is
polynomial in the size of G′.
We claim that the cost of the optimal multicut in G′ equals the cost of the

optimal clustering in G. A correlation clustering of G that puts every vertex

in its own component costs at most Mn2. However, any solution that does not
separate all pairs costs at least (M + 1)n2, and so the optimum solution must
separate all pairs. As the only negative edges in G are those between these pairs,
the optimum solution only makes mistakes on positive edges (disagreements
between clusters). Therefore the optimum clustering in G induces a multicut of
the same cost in G′. In fact, any clustering which only makes positive mistakes
induces a multicut of the same cost in G′. Furthermore, any multicut in G′ cuts
all negative edges in G and thus induces a clustering in G of the same cost. In
particular, the optimum multicut in G′ induces a clustering in G of the same
cost, and the claim follows.
Now suppose we have an r-approximation algorithm for the correlation-

clustering problem. Consider the output of this algorithm on graph G. If the
outputted clustering only makes mistakes on positive edges (and so separates all
pairs), then the above arguments show that this clustering induces a multicut
which is an r-approximation to the optimal multicut in G′. If the output clus-
tering does not cut some negative edge, then the cost is at least (M + 1)n2. In
this case, the clustering which places every node in a separate cluster costs at
mostMn2 and is an r-approximation. Therefore, cutting every edge in G′ is an r-
approximation to the optimal multicut in G′. Thus, given an r-approximation al-
gorithm for the correlation-clustering problem, we can design an r-approximation
algorithm for the minimum-multicut problem. ut

Because the minimum-multicut problem is APX-hard, this theorem shows
that there is no PTAS for minimizing disagreements in correlation clustering
unless P = NP . Furthermore, it shows that this problem is as hard as minimum
multicut. The current best approximation for minimum multicut is O(log k) [7].
Because k can be Ω(n2) in the worst case, an o(log n) approximation for our
problem would require improving the O(log k) approximation for minimum mul-
ticut, which a long-standing open problem.
The above reduction is also useful in leading us to find difficult instances for

the correlation-clustering problem. Garg, Vazirani, and Yannakakis [7] construct
an example that shows that the ratio between the value of the minimum multicut
and maximummulticommodity flow (i.e., optimal multicut linear-program value)
can be as large as Ω(log k). The example uses a bounded-degree expander.

Definition 1. A graph G is a bounded-degree expander if there is some con-

stant d such that all nodes have degree at most d and for any set S of vertices,

|S| < n/2, the number of edges that cross S is at least c|S| for some constant c.

We can use the same example to prove that the gap of our linear program (the
ratio between OPT and FRAC) can be Ω(log n), suggesting that it is probably
not possible to obtain a o(log n) approximation by rounding this linear program.

Theorem 3. The gap of the linear program presented in Section 2 is Ω(log n)
in the worst case.

Proof. Consider a bounded-degree expander G′. Note since the degree of each
node is at most d, there are at least n − √n vertices at a distance of at least

logd n/2 from any vertex v. Construct O(n2) pairs of vertices as follows: for
each vertex v, add the O(n) pairs (v, u) where u is a vertex of distance at least
(logd n)/2 from v. Assign all edges in the graph weight ce = 1. Perform the above
reduction to get graph G. As discussed, the optimal integral solution separates
all the O(n2) pairs of vertices. Hence, the diameters of the resulting clusters
must be o(logd n). Because the vertices have bounded degree, the size of the
clusters is bounded by n/2. By the expansion property of G′, we must cut at
least c

∑

S∈S
|S| = cn positive edges, and so cost(OPT) = Ω(n).

On the other hand, assigning xe = 2/ logd n for positive edges and xe = 1
for negative edges is a feasible fractional solution of value at most (dn/2) ×
(2/ logd n), and so cost(FRAC) = O(n/ log n). The theorem follows. ut

6 Conclusion

In this paper, we have investigated the problem of minimizing disagreements
in the correlation-clustering problem. We gave an O(log n) approximation for
general graphs, and an O(r3) approximation for Kr,r-minor-free graphs. We also
showed that this problem is as hard as minimum multicut, and that the natural
linear-programming formulation has a gap of Ω(log n).
A natural extension of this work would be to improve the approximation

factor for minimizing disagreements. Given our hardness result and the history
of the minimum-multicut problem, this goal is probably very difficult. Another
option is to improve the lower bound, but for the same reason, this goal is
probably very difficult. On the other hand, one might try to design an alternate
O(log n)-approximation algorithm that is combinatorial, perhaps by counting
“bad” cycles in a cycle cover of the graph.
Another interesting direction is to explore other objective functions of the

correlation-clustering problem. Bansal et al. [1] give a PTAS for maximizing
agreements in complete graphs with edge weights in {−1,+1}. In maximizing

agreements, the cost of a solution is the weight of positive agreements (uncut
positive edges) plus negative agreements (cut negative edges). They also mention
the objective of maximizing agreements minus disagreements. This objective
is of particular practical interest. However, there are no known approximation
algorithms for this objective, even for complete graphs.
Finally, it would be interesting to apply the techniques presented here to

other problems. The region-growing technique and Klein et al. [12] rounding
technique both provide a radius guarantee on the outputted clusters. Many pa-
pers have used this radius guarantee to demonstrate that the solution is feasible,
i.e. satisfies the constraints. Inspired by Bejerano et al. [2], we also use the radius
guarantee to bound the approximation factor. This idea might be applicable to
other problems.

Acknowledgements. Many thanks go to Shuchi Chawla, Avrim Blum, Moham-
mad Mahdian, David Liben-Nowell, and Grant Wang. Many results in this paper
were inspired by conversations with Seffi Naor.

References

1. Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. IEEE
Symp. on Foundations of Computer Science, 2002.

2. Y. Bejerano, N. Immorlica, S. Naor, and M. Smith. Location area design in cellular
networks. International Conference on Mobile Computing and Networking, 2003.

3. Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with
qualitative information. Unpublished Manuscript.

4. E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yan-
nakakis. The complexity of multiway cuts. ACM Symp. on Theory of Comp.,
1992.

5. Dotan Emanuel and Amos Fiat. Correlation clustering — minimizing disagree-
ments on arbitrary weighted graphs. European Symp. on Algorithms, 2003.

6. Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. Clustering for
mining in large spatial databases. KI-Journal, 1, 1998. Special Issue on Data
Mining. ScienTec Publishing.

7. N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications. SIAM J. Comp., 25, 1996.

8. D. S. Hochbaum and D. B. Shmoys. A unified approach to approximation algo-
rithms for bottleneck problems. Journal of the ACM, 33, 1986.

9. T. C. Hu. Multicommodity network flows. Operations Research, 1963.
10. Kamal Jain and Vijay V. Vazirani. Primal-dual approximation algorithms for

metric facility location and k-median problems. IEEE Symp. on Foundations of
Computer Science, 1999.

11. Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth
Silverman, and Angela Y. Wu. An efficient k-means clustering algorithm: Anal-
ysis and implementation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(7), 2002.

12. Philip N. Klein, Serge A. Plotkin, and Satish Rao. Excluded minors, network
decomposition, and multicommodity flow. ACM Symp. on Theory of Comp., 1993.

13. Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms. Journal of the ACM, 46(6), 1999.

14. Marina Meila and David Heckerman. An experimental comparison of several clus-
tering and initialization methods. Conference on Uncertainty in Artificial Intelli-
gence, 1998.

15. F. Murtagh. A survey of recent advances in hierarchical clustering algorithms. The
Computer Journal, 26(4), 1983.

16. Cecilia M. Procopiuc. Clustering problems and their appli-
cations. Department of Computer Science, Duke University.
http://www.cs.duke.edu/~magda/clustering-survey.ps.gz.

17. Leonard J. Schulman. Clustering for edge-cost minimization. Electronic Colloquium
on Computational Complexity (ECCC), 6(035), 1999.

18. Michael Steinbach, George Karypis, and Vipin Kumar. A comparison of document
clustering techniques. KDD-2000 Workshop on TextMining Workshop, 2000.

19. Eva Tardos and Vijay V. Vazirani. Improved bounds for the max-flow min-multicut
ratio for planar and Kr,r-free graphs. Information Processing Letters, 47(2):77–80,
1993.

20. V. V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin, 2001.
21. M. Yannakakis, P. C. Kanellakis, S. C. Cosmadakis, and C. H. Papadimitriou. Cut-

ting and partitioning a graph after a fixed pattern. 10th Intl. Coll. on Automata,
Languages, and Programming, 1983.

