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Abstract

In this paper, we examine eztreme origami bases that fold the boundary of a
polygonal sheet of paper to a common plane, generalizing the Husimi and Meguro
molecules used in origami design. This also solves the folding-and-cutting problem,
where we want to make a specified polygon by one complete straight cut after ar-
bitrary folding of a square sheet of paper. We present an algorithm to construct the
crease pattern of an extreme base for paper in the shape of an arbitrary simple polygon.
It is based on the straight skeleton, a variant on the medial axis. For convex polygons,
we describe exactly how the folding process can be performed. This proves that the
folding can even be done with paper that is rigid except at the creases, and allows
animation of the folding process. Such descriptions have not been achieved before for
an infinite class of origamis.

1 Introduction

Origami mathematics is the study of the geometry and other properties of origami (paper
folding). The area of origami mathematics is still in its infancy, having only been seriously
studied for the past seventeen years [10]. Geretschlager [7] and Huzita and Scimemi [11]
examined the geometric constructions possible with origami, and compared them to a ruler
and compass. Bern and Hayes [3] showed that it is AP-hard to determine if a crease
pattern (Section 2) is flat foldable, as is computing a flat folding (overlap order) given
a suitable direction of folds (mountain and valley assignment). Hull [9] and Kawasaki [13]
focus on necessary and sufficient conditions for flat foldability of crease patterns with a single
vertex, which are also necessary conditions for general crease patterns. Justin [12] examines



necessary and sufficient conditions on overlap orders, resulting in a characterization of flat
foldability for general crease patterns.

Lang has taken the most algorithmic approach. In [14], he describes an algorithm to
construct “uniaxial” bases (see Section 2), which can then be folded into arbitrarily complex
models. This solves a major problem in origami sekkei. or technical folding.

1.1 Extreme Bases

We are interested in a special kind of uniaxial base., which we call an extreme base, that folds
the boundary of the paper onto a common plane, while the rest of the paper lies above and
1s perpendicular to this plane. This problem has been solved when the paper is a triangle
and a convex quadrilateral by Husimi and Meguro, respectively [17]; these two “molecules”
are the basis for much origami design. Our goal in this paper is to generalize these results
to any polygonal sheet of paper, that is, constructively prove the following.

Theorem 1 Any sheet of paper in the shape of a polygon P can be folded into an extreme
base.

More specifically, in this paper we present an algorithm to find the crease pattern of such
a base, given an arbitrary polygon P. For convex polygons, we describe the entire folding
process using paper that is rigid in each face outlined by creases. Such a construction for
an infinite class of origamis (parameterized by the polygon P) has not been achieved before.
For non-convex polygons, we know that rigidity is not possible, that is the paper must curve,
so a description of the folding process i1s perhaps less informative. Instead, we are currently
working on a description of the folded state, which would rigorously prove Theorem 1 in this
case.

Figure 1 shows snapshots from three of the animations resulting from our algorithm.

1.2 Folding-and-Cutting Problem

The original application for this problem is what we call the folding-and-cutting problem.
where one complete straight cut is allowed after arbitrary folding, typically starting from a
square piece of paper. Using this single cut, the unfolded pieces can have a variety of shapes.
This has been used for a magic trick by Houdini [8] before he became a famous escape artist,
and was recreationally studied in detail by magician Loe [15]. Gardner [6] wrote briefly
about this problem, posing it as an open question to cut out complex polygons.

In general, the problem is to arrange the folding so as to cut along an arbitrary arrange-
ment of line segments. and no more. In this paper, we consider a special case of the problem,
where the line segments form a polygon P. This means that we want to fold the square
paper flat so that the boundary of P maps to a common line, and nothing else maps to this
line; we can then simply cut along this line.



aa8
>
H%%

()

Figure 1: Unfolded, partially folded, and completely folded extreme bases for (a) a triangle,
(b) a convex quadrilateral, and (¢) a conver pentagon. Note that these pictures are drawn
with a perspective transformation.

By Theorem 1. we can construct an extreme base for a sheet of paper with shape P. As
we will see in Lemma 9, this can then be “flattened” to lie on a plane, where the boundary
of P is on a line. If P is convex, we can extend the creases at the vertices of P (which
are angular bisectors) until they reach the end of the square paper. No crossing will occur
since the angular bisectors all go “outward” from a convex polygon. Hence, we obtain a flat
folding that maps the boundary of P to a common line.

Theorem 2 Given any conver polygon P drawn on a sheet of paper, the paper can be folded
into a flat origami such that the boundary of P maps to a common line, and nothing else
maps to that line.

1.3 Outline

The rest of this paper is outlined as follows. Section 2 provides a background in origami
mathematics by defining crease patterns. bases, and extreme bases. In Section 3, we briefly



describe the straight skeleton, a variant on the medial axis. In Section 4, we use the straight
skeleton to define our crease pattern. Section 5 shows how the folding process can be com-
pletely described for convex polygons. Finally, we conclude in Section 6.

2 Background

A crease pattern is a division of the paper P, a (simple) polygon in the plane, into a finite
number of sub-polygons, called faces. Each edge corresponds to a crease. Given a crease
pattern, a base [3, 9, 14] is a folded version of the paper. That is, a base is a continuous
piecewise-isometric function b from P to 3-space. Here “piecewise isometric” means that b
is an isometry when restricted to any face of the crease pattern.

We are also interested in the process f of folding the flat paper into a base b. To do
this, we introduce the notion of a time ¢ in the interval [0, 1]. A folding is then a continuous
function f from P x [0, 1] to 3-space. The initial time ¢ = 0 represents the initial flat sheet
of paper (that is, the unfolded state), and the final time ¢ = 1 represents the final folded
base (that is, the folded state). Formally, for any p € P, f(p,0) = (p,0)* and f(p,1) = b(p).

In between the endpoints in time, we must enforce some properties to ensure that the
folding 1s valid. First, f cannot stretch the paper. For our purposes, we do not allow
curving, so this is equivalent to forcing that f must be piecewise isometric for every fixed
time; that is, f restricted to any face and time 0 < ¢ < 1 must be an isometry. Second, f
cannot force the paper to cross through itself, an event called ripping. We will use a stronger
property that once two “molecules” of paper touch, they are permanently joined. Formally,
if f(p,t) = f(q.t) then f(p.s) = f(q.s) for all t < s < 1. Note that this is satisfied if f is
one-to-one for every fixed ¢t < 1.

Conceptually, one could discretize f slightly and use this as “instructions” on how to fold
the base. In particular, we can animate the folding process.

Our target area of origami is flat origami. We are implicitly dealing with such origamis.
for example in the folding-and-cutting problem. A base b is flat if the image b(P) lies on a
plane. A flat folding is a folding into a flat base.

Lang [14] defines a uniazial base b as follows. First, b*(p) must be non-negative for all
points p € P. Second, the projection of the base onto the zy (z = 0) plane must equal the
intersection of the base with the zy plane, that is, we must have

{b(p) | p € P,b*(p) = 0} = {(b™(p),0) | p € P}

Furthermore, this set must form a tree, so we call it the shadow tree. Hence, b maps each
face of the crease pattern so that it is perpendicular to the zy plane. Finally. each face must
belong to a unique flap, a maximal set F' of faces that project to a common edge of the
shadow tree, with the added property that the boundary of each f € F projects to one or
both of the endpoints of this edge.

(p, 0) is shorthand for the point (p®,pY, 0) in 3-space, where p is the point (p®,pY) in 2-space.
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Figure 2: (a) Two shrunken polygons of the original. The second, drawn in bold, is degener-
ate. Trajectories of the vertices are dashed. (b) Complete straight skeleton.

We believe a more useful definition of uniaxial, which we use in this paper, i1s a general-
ization to arbitrary planes parallel to the zy plane. We enforce that, for any ¢ > 0.

1b(p) | p € P,b*(p) = c} = {(b™(p).c) | p € P.b*(p) > c}-

This means that if we cut the base parallel to the zy plane (removing the portion below the
cut plane), then the result is also uniaxial by Lang’s definition [14] described above.

We call a base b extreme if it is uniaxial and b(p) = 0 if and only if p is on the boundary
of P. The goal of this paper is to present an algorithm to compute an extreme base for
paper in the shape of an arbitrary polygon P, and hence constructively prove Theorem 1.

3 Straight Skeleton

In this section, we briefly look at a structure called the straight skeleton, which consists of
the main folds for our extreme bases.

For convex polygons P, the straight skeleton is equivalent to the medial axis [4, 18].
Conceptually, if we light a prairie fire along the boundary of the polygon. then the medial
axis 1s where the fire meets and burns itself out. With the straight skeleton, fire does not
spread in a circular (Euclidean) way. Instead, we uniformly shrink the polygon until it
becomes non-simple; we then recursively shrink each sub-polygon, unless it has zero area.
The straight skeleton consists of the trajectories of the vertices of the polygon and sub-
polygons during this process.

An example of the shrinking process is given in Figure 2(a). The polygon becomes non-
simple when it shrinks down to two triangles. Continuing the shrinking in each triangle
generates the angular bisectors until they meet (Figure 2(b)).

Figure 3 shows both the straight skeleton and the medial axis for a hexagon. This proves
that the straight skeleton is not just a local “straightening out” of the medial axis; they can
be topologically different. Aichholzer et al. [2] prove that the straight skeleton can in fact
be described using asymptotically fewer bits than the medial axis.

Lord and Wilson [16. pp. 98-101] are the first we know of to examine the straight skeleton,
and consider it for curved shapes. Aichholzer et al. [2], who coined the term straight skeleton,
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Figure 3: (a) Straight skeleton and (b) medial azis of the same polygon, illustrating that they
may be topologically different.

are the first to publish an algorithm to calculate the straight skeleton of a polygon, running
in O(n?logn) time. Aichholzer and Aurenhammer [1] generalized this result to general
polygonal subdivisions of the plane. Eppstein and Erickson recently achieved an O(n!7/11+¢)
algorithm [5].

We will denote the straight skeleton of P by SS(P) or simply SS. Let V(SS), L(SS).
I(SS), E(SS) denote the set of vertices, leaf (degree-1) vertices, internal (non-leaf) vertices,
and edges of SS, respectively. We now state some properties of the straight skeleton that we
will use later in the paper.

Lemma 1 [2] Each edge e € E(SS(P)) is a line segment; unlike the medial axis, the straight
skeleton does not curve). Furthermore, SS forms a tree, that is, |E(SS)| = |V(SS)| — 1.
Every v € L(SS) is a vertex of P, and every vertex of P is € L(SS). SS divides P into
|E(SS)| regions, each incident to a different edge of P.

We choose to root the straight-skeleton tree at the vertex r = root(SS) € I(SS) formed
from the last shrinking of a sub-polygon of P down to a point. (Note that we often assume
that root(SS) is unique; otherwise, P is degenerate in that two shrinking events occurred
simultaneously.) Rooting at r defines a parent map in the obvious way.

A bisector graph [2] of P is a union of pieces of edge bisectors that is “similar” to the
straight skeleton of P. Suppose that partial bisectors b;. ..., b, meet and end at a vertex v.

Let e; and f; denote the edges that b; bisects, ordered to indicate their positions relative to
b;. Then a bisector graph must satisfy that » > 3. f; = e;4; for each 1 <17 < n, and f,, = e;.

4 Crease Pattern

In addition to the straight skeleton, the crease pattern contains perpendicular folds, described
in this section. Let us assume that P is non-degenerate in that every internal vertex of the
straight skeleton has degree three. Then there are three regions and three edges of the
polygon associated with each v € I(SS).

Let us first consider the perpendicular folds for convex P. For each v € I(SS), we form
a crease emanating from v towards and perpendicular to (the line extension of) each of the
three polygon edges corresponding to v.



Figure 4: (a—c) Straight skeleton of polygons and (d—f) crease patterns used to generate the
extreme bases in Figure 1. Dashed [dot-dashed] segments denote valley [mountain] folds.

Lemma 2 If P is convex, perpendiculars intersect with the polygon boundary before inter-
secting with any other edges of the crease pattern.

Examples of the straight skeleton and crease pattern for convex P are given in Figure 4.

For non-convex P, we use the same construction for most v € I(SS). For v adjacent to
a reflex vertex r of P, however, we only draw one crease, to the edge that does not have r
as an endpoint. Finally, there are two more creases that emanate from each reflex vertex r,
perpendicular to the two edges that have r as an endpoint.

For non-convex P, a crease may not reach the edge that it is aimed for (and perpendicular
to). Instead, a crease ¢ may hit another edge e of the straight skeleton (Figure 5). In this
case, we stop ¢ at the intersection point z. and start a new crease emanating from = in
the direction obtained by reflecting ¢ about e. The straight skeleton causes these bouncing
creases (called perpendiculars) to have the following property:

Lemma 3 A perpendicular will eventually reach an edge of P, and it will be perpendicular
to it. For conver P, perpendiculars do not bounce, that is, they reach the edge they originally
aim for.

An example of the crease pattern and resulting extreme base for a non-convex quadrilat-
eral P is given in Figure 5.
Note that perpendiculars cannot bounce off each other, since

Lemma 4 A perpendicular crease meets a polygon edge perpendicular to it. Hence, the
perpendicular creases are parallel in any region of SS.

Two perpendiculars may hit each other dead on, but we consider this case a degeneracy and
ignore it for the purposes of this paper.
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Figure 5: (a) Straight skeleton, (b) crease pattern, and (c) completely folded extreme base
for a non-convexr quadrilateral.

We shall now briefly note which creases are valleys and which are mountains, that is,
whether a crease folds lower or higher. in the z direction, than its two incident faces. An
edge {r. s} € E(SS) incident to a reflex vertex r of P is assigned to be a valley, and all other
e € E(SS) are mountains. Perpendiculars switch their “direction” each time they bounce.
Perpendiculars from reflex vertices r of P or vertices s € V(SS) adjacent to reflex vertices
are initially mountains, and all other perpendiculars are initially valleys.

This completes what we call the creasing algorithm. that is, the algorithm that computes
the crease pattern of an extreme base.

4.1 Notation for Convex Polygons

In the next section, we will see how to compute the entire extreme base according to the
definition in Section 2, that is, determine how the paper actually folds, if P is convex. To
aid in this construction, we define some notation for the crease pattern for convex P, where
perpendiculars are single segments (that is, they do not bounce). In this case, we usually
associate perpendiculars with their “ends.” that is, the points on the polygon boundary that
they reach.

We will use perps(v) to denote the set of perpendiculars that are incident to v € V/(SS).
Note that |perps(v)| = 3 if v € I(SS) and perps(v) = 0 otherwise. We denote the edge of P
that vy € perps(v) is on by edge(v1).

One useful property is that distinct v;, v2 € perps(v) determine a neighbor w € V(SS),
denoted by neigh(vi,vs). If w € I(SS), then there are w;,w, € perps(w) (denoted by
perp(w,vy) and perp(w,vs)) that are adjacent to v; and v,, respectively. (Here “adjacent”
means that there are no other perpendiculars between v; and w;, or v, and w,.)

Another property that follows by induction is that |v — v;| is the same for all v; €
perps(v). We denote this common length by plength(v). Note that plength(root(SS)) =
max {plength(v) | v € I(SS)}.



5 Folding Process

Although several researchers have suggested the definitions in Section 2 for foldings [3, 9, 14],
no one has yet published such a construction for an infinite class of folds. In this section, we
describe the folding process for extreme bases of convex polygons.

5.1 Circles in 3-Space

Much of our movement is defined by circles, so let us first develop some notation for points
on circles.

If p and ¢ are two distinct points in 2-space, let Z(p, ¢) denote the angle of the oriented
segment from p to g with respect to the z axis. This can be defined by Z(p. q) = Zp+(1.0).p.q
(specified in counter-clockwise order). For example, if ¢ — p = (0,y) where y < 0, then
L(p.q) =37/2 = —m /2.

If p is a point in 3-space, let ¢[p. 8, r] denote the circle in 3-space perpendicular to the zy
plane with center p. radius r, and angle § with respect to the zz plane. Hence. a point on
¢[p. 8, r] can be defined by an angle ¢ as follows:

¢[p,8.7](¢) = p+ r(cos pcos b, cos psin b, sin ).

For example, ¢[(p. z). £(p. q). [p — q/](0) = (g. z) and c[(p.0).8.7](—7/2) = (p. —7).

5.2 Convex Polygons

In this paper. we will only discuss the folding f for a convex paper P, where perpendiculars
do not bounce (the construction for non-convex P is under development). Furthermore, we
only consider non-degenerate P (Section 4).

Since f must be an isometry on each face of the crease pattern, we only need to define it at
the vertices of the crease pattern (that is, at each straight-skeleton vertex and perpendicular
end). The complete definition of f simply comes from linear interpolation along each edge
and in each face. We will define f on the vertices recursively, starting with root(SS) and
ending with v € L(SS). However, we delay the definition of f(root(SS),¢) until the end; for
now, assume that it is given.

Suppose that we know the movement of a v € I(SS) (e.g.., v = root(SS)), and let
vy € perps(v). We force v; to move along a circle centered at v with radius plength(v),
uniformly from angle 0 down to angle —7 /2, keeping in mind that v may be moving. Hence,
we define

f(U1: t) = C[f(’l% t): Z(’Uv 1)1)7 plength(v)](—tﬂ'/Q).
Suppose that v1, vy € perps(v), where v € I(SS) and f(v,t) is already defined, and suppose
that parent(w) = v, where w = neigh(v;,vs). Then we define f(w.t) = g[v1, ve, w](t). Let
us now consider the definition of g. We use this indirect definition since we also want to use
the same kind of movement (as captured by g) for w ¢ P.
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Figure 6: (a-b) lllustration of isometric preservation. w can be any point € b — {v}. Here
we show two cases, (a) w € I(SS) and (b) w € L(SS). (c¢) lllustration of the property that
f(v.t) — fA(w,t) = |[v —u| = |[v — v;| — |w — w;| = plength(v) — plength(w).

Let v, v € perps(v) be distinct for some v € I(SS), where parent(neigh(vy,vs)) = v,
and suppose that f(v,.t) is defined (and hence f(v;,t) and f(vs,t) are defined). Let b denote
the ray bisecting edge(v;) and edge(vs), that is, the angular bisector of v;,v,vs, pointing
towards neigh(vy,vs) (Figure 6(a)). Clearly, v, neigh(v;,v2) € b. We will give a formula for
the motion of any point w € b— {v}. Note that —7/2 < /w,v,v; = Lw,v, vy < 7/2, because
of the way b is oriented (to point towards a child, which has shorter perpendiculars). Such
a point w moves on a circle centered at v, given by

g[vl,v2,w](t) = C[f(’l),t), Z((U:w): |’U - wH(h(t))

where h(t) is yet to be determined; it specifies the “rate of movement” along the circle. Note
that h(t) depends on vy, vs, w.

We enforce that h(0) = 0, that is, g[v1,vs, w](0) = (w,0). We wish to define the rest
of h so that Tl = Ag[vl,vz,w](t), f(’l),t), f(’l)l,t) and T2 = Ag[v1:v2:w](t): f(’l),t), f(’l)2,t)
are isometrically preserved as t varies (Figure 6(a-b)). By the side-side-side theorem, this
is equivalent to ensuring that the distances |f(v,t) — f(vi.t)|, |f(v.t) — f(va. t)|, |f(v.t) —
glvi, va, w](¢)], | f(v1,t) — g[v1, va, w](t)|, and |f(va, t) — g[v1, vo, w](t)| are constant as ¢ varies.
It should be clear that |f(v,t) — f(v1,t)|, |f(v,t) — f(vse. t)|, and |f(v.t) — g[v1, ve, w](t)| are
each constant since f(vi.t), f(vs,t), and g[vy, va, w](t) are defined to be on the appropriate
circles centered at f(v,t). Also, |f(v1,t) — g[vi,ve, w](t)| = |f(va,t) — g[v1,vs, w](t)] since
w € b and |f(v.t) — f(v1,t)| = |f(v,t) — f(ve,t)|. Hence, we only need to ensure that
|f(v1,t) — glv1, ve, w](t)] is constant in defining h(t).

Lemma 5 Letc; = ¢[p, 01,71 and ca = ¢[p, 02, 72]. Define @ = 61—65 and d = |¢1(0) —ca(0)].
Assume that o € [—7 /2, 7/2] and @1, @2 € [—7/2,0]. Then |c1(p1) — ca(p2)| = d if and only
if

| sin | + cos ¢

cospy = - . and
sin «| cos ¢y
p1+1

sings, = —y/1 — cos? ps.
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The proof of this lemma is given in Appendix A. In our case, ¢; and @, denote —tn/2
and h(t), respectively. These equations completely determine h(t) in terms of ¢, (that is, ),
and hence define g.

Lemma 6 Let i € {1,2}, and let w; = perp(w,v;). If w € L(SS), f is an isometry on
Av,v;, w. Otherwise, f is an isometry on the trapezoid with vertices v, w, w;, v;.

Proof: The properties of g show that f is an isometry on 7' = Av,w,p. regardless
of whether w € L(SS). Suppose that w € I(SS) (Figure 6(a)). Since perpendiculars to a
common edge are parallel, /(v,v;) = Z(w,w;). Now f(v;,t) and f(w;,t) are defined to be
on circles having centers at f(v.t) and f(w,t) and angles /(v,v;) and /Z(w, w;), respectively.
Hence, the vectors f(v;,t)— f(v,t) and f(w;,t)— f(w,t) have the same direction, proving that
f(v.t), f(w,t), f(w;.t), and f(v;,t) are coplanar. In addition, Zf(w;.t), f(w.t), f(v.t) =
7w — Lf(w,t), f(v,t), f(vi,t) (because the two perpendicular vectors have the same direc-
tion). Since T is preserved, /f(w.t), f(v,t), f(vi,t), hence /f(w;,t), f(w,t), f(v,t), and
hence £f(w;.t), f(w,t), f(vi, t) is constant. We know that |f(w;,t) — f(w,t)| is constant (by
the circle construction). By the side-angle-side theorem, f is an isometry on 7 = Aw, w;, v;.
Since f maps T and 7" to a common plane, f is an isometry on the desired trapezoid. [

Now that we know how to recurse, we only need to define f(r.t), where r = root(SS),
which can be done arbitrarily (provided it is continuous in ¢). The obvious definition is
f(r,t) = (r,0) for any 0 < ¢ < 1, but then f would not be uniaxial since most z coordinates
are less than zero. We choose the following definition. which causes the perpendicular ends
of r to be on the zy plane:

f(r.t) = (v, —plength(r) sin(—tx /2)) = (v, plength(r) sin(¢x/2)).

All that remains is to prove the correctness of f. We first prove the angle containment
property of the crease pattern.

Lemma 7 Leta,b.....u,v be a path in SS of length at least 2. Suppose that b = neigh(as, as),
where perps(a) = {ai1,a2,a3}. Let R(a.b) denote the range of angles between /(a,a;) and
L(a,ay) that does not include L(a,as) (we need to specify this since we are dealing with a
cyclic order). Then /(u,v) € R(a.b) and L(v,v1) € R(a,b) for any v, € perps(v).

Proof: We will prove this by induction on the length of the path (see Figure 7). It is clear
that Z(a,b) € R(a,b) and £(b,b1) € R(a,b) for any b, € perps(b) (base case). Assume that
the path is of the form a,b.c,....u,v and has length at least 3. The induction hypothesis
says that Z(u,v) € R(b,¢) and Z(v,v;) € R(b,c) for any v; € perps(v). Since P is convex,
R(b.c) C R(a,b), and the result follows. [

Lemma 8 f*Y (and hence f itself) is one-to-one for any fized t < 1.
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Figure 7: Illustration of the induction in the proof of Lemma 7. Note that /(a,b) € R(a,b)
L(b.b1) € R(a,b), and R(b.c) C R(a,b).

;

;

Proof: Since f is defined as the linear interpolation of the crease-pattern vertices, it
suffices to show that, for any fixed ¢ < 1, the zy-projections of any two crease-pattern edges
do not intersect.

Note that the angles of the circles are constant, so the angles in the zy projection
of straight-skeleton edges are preserved over time. By Lemma 7. Z(f*(u,t), f*(v,t)) =
L(u,v) € R(a,b) and L(f™(v,t), f*¥(v1,t)) = L(v,v1) € R(a,b) for any path a.b, ..., u,v in
SS and v; € perps(v).

Let S(a,b) denote the region of the plane defined by an infinite triangle (or wedge) that
has f*(a,t) as a vertex and f*(a,t), f*¥(a1.t) and f*¥(a.t), f*¥(as,t) as parts of edges,
where aj,as € perps(a) are such that neigh(a;,as) = b. Note that if v € S(a.b) and
L(u,v) € R(a,b) then v € S(a,b). Hence, f*¥(u,t), f*¥(v.t) and f*¥(v.t), f*¥(v1.t) € S(a,b)
for any path a,b,....u,vin SS and v; € perps(v).

Applying this property to all a € I(SS) provides a spatial separation of the zy-projections
of the straight-skeleton perpendicular folds. It is easy to show the same result for edges of
P, thereby proving the lemma. [

The following is a constructive version of Theorem 1 (for convex polygons P).

Theorem 3 f is a folding of an extreme base.

Proof: We must prove that f is a folding, and that the resulting base b is uniaxial and
extreme.

Lemma 6 shows that f is an isometry on the faces of the crease pattern. Lemma 8 shows
that f satisfies the non-crossing condition. It should be obvious that f(p.0) = (p,0) for all
p € P, since ¢[(p,0). Z(p.q),|p — q|](0) = g for all points p,q in 2-space. Hence, f folds a
base b, defined by b(p) = f(p.1).

Note that b(v),b(v;) points in the negative-z direction for each v € I(SS) and v; €
perps(v) (corresponding to angle —7 /2 on the circle containing v;). Hence, the faces of f are
perpendicular to the zy plane. The zy-projection and the intersection with the zy plane are
both equal to the tree with edges {b(v1). b(w1)}, where v = parent(w) and w; = perp(w,vy),
for all w € V(SS) and one choice of v; € perps(v). Therefore, b is uniaxial.
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Let v € I(SS) and w = neigh(v;, vs), where vy, vy € perps(v) are distinct and parent(w) =
v. Let i € {1,2}, and let w; = perp(w,v;) (Figure 6(c)). If we shoot a ray from w parallel
to w;, v; (that is, edge(v;) = edge(w;)) and intersect it with v,v;, we get a vertex w such
that f(w.t), f(u,t) is perpendicular to f(v.t), f(v;,t) (this is clearly true for ¢ = 0, and
is preserved by Lemma 6). Hence, |f(v.t) — f(u.t)| = plength(v) — plength(w) (again,
this i1s clear for ¢ = 0 because the two perpendiculars are parallel. and is preserved by
Lemma 6). The oriented segments b(v), b(v;) and b(w), b(w;) both point in the negative-z
direction (argued above). Hence, b(w), b(u) is on a plane parallel to the zy plane, so they
have the same z coordinate, and hence b*(w) — b*(v) = plength(v) — plength(w).

Since f(v;,t) is plength(v) lower than f(v.t) in z coordinate (corresponding to angle
—m /2 on the circle containing v), we have that

kol

b*(v;) = b*(r) — plength(v E (plength (parent?(v)) — plength(parentj_l(v))

= b*(r) — plength(r) i
= plength(r) (sin (w/2) — 1)
— 0,

where r = root(SS) and parent®(v) = r. If we define plength(v) = 0 for v € L(SS), this also
shows that b*(v) = 0. Therefore, b is extreme. [

5.3 Flattening Extreme Bases

Finally. to solve the folding-and-cutting problem for convex polygons from these results, we
need to be able to “flatten” an extreme base.

Lemma 9 The base b of f, viewed as the 3-dimensional “paper,” can be folded flat. In other
words, there exists a function g from b(P) x [0,1] to 3-space that is a flat folding.

Since each face of b(P) is perpendicular to the zy plane, this is simply a two-dimensional
problem of folding a tree (namely the shadow tree) into a line segment. If we disallow extra
folds, this is a kind of linkage problem [19], constrained so that the links (rigid rods) cannot
cross. A recent conjecture, simultaneously made by several people including Sue Whitesides
and Joe Mitchell, is that any closed chain of links can be folded in the plane (at no time
crossing links) to be convex. We believe that this conjecture is equivalent to that of folding
a tree of links into a line segment. In particular, the closed-chain conjecture clearly implies
the tree conjecture; simply “thicken” (i.e., split into two segments) each edge of the tree to
turn it into a closed chain. For the case of the shadow tree of our extreme bases, however,
we can prove “flattenability” without using any extra folds.

Proof: As we noted before, the shadow tree has the same structure and angles as SS(P),
just the lengths of the edges may differ. Find two leaves [; and [, incident to a common
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vertex v (if such leaves do not exist, the shadow tree is already a segment). Let u be the
other vertex incident to v. By the spatial separation property (see the proof of Lemma 8),
R(u,v) is empty except for [; and [,. In particular, the pie wedge centered at v with radii
endpoints /; and [; contains no links. Hence, there is room to fold the edges (v.[;) and (v, l5)
together so that they simply extend the edge (u,v). We have thus reduced the problem by
effectively removing the two edges I; and [5. except that the lengths of the edges may differ.
All relevant properties are therefore preserved, and the desired result follows by induction.
[

6 Conclusion

In this paper, we have presented an algorithm to construct the crease pattern of a uniaxial
base with an arbitrary polygonal paper boundary mapping to a common plane. This signif-
icantly generalizes previous results. We feel that the bases form useful molecules, and hence
have applications to origami design. So far, we have successfully designed a few origami
models using extreme bases.

We have presented a full description of the folding process for an extreme base of a convex
polygon. Such descriptions have not been previously made other than for simple folds like
those involved in a flapping bird [20]. In our case, they prove the interesting result that our
foldings can be performed with rigid faces of paper. In addition, we are able to animate the
folding of extreme bases; snapshots are given in Figure 1. We also plan to extend to other
origamis; the goal is to develop functions that represent all types of folds. This will require
extending our definition of foldings to allow curving.

Extreme bases by themselves, the topic of this paper, allow us to solve the folding-and-
cutting problem directly only for convex polygons, since otherwise we must deal with the
outside of the polygon in addition. Our current work is on solving the general problem of an
arbitrary arrangement of line segments. In particular. we have nearly completed the solution
for non-convex polygons.

We conclude with a conjecture relating to extreme bases, the latter part of which was
suggested by Jeff Erickson.

Conjecture 1 Any extreme base for a simple polygon P includes a bisector graph as part
of its crease pattern. Conversely, there exists an extreme base using any given bisector graph

of P.
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Distance-Preserving Movement on Two Circles

This appendix provides a derivation and proof of Lemma 5.

the

Suppose that we have two circles C; and C5 in 3-space that are both perpendicular to
zy plane and have a common center point. Let r; and r, denote their radii, respectively.

Without loss of generality, translate so that the center point is the origin, and rotate to make
C; on the zz plane. Hence, an arbitrary point on € has the coordinates

(r1cos 1,0, 7 sin @)

where @ is a parameter, 0 < ¢; < 27.

C, is defined parametrically by

(172 COS 3 COS @, 7' COS Pg SIN @, T'2 SN V3

where @, is a parameter with the same bounds as ¢;. Note that « is the angle between the

planes of C; and C,.
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For given values of ¢; and ¢,. we can compute the square of the Euclidean distance
between the corresponding points on the circles:

(71 cOS (o1 — T3 COS (g cos @)’ + (g cOs Py sin a)® + (71 sin 1 — 74 80 3)°
2 2 2 2 2
= (r{ cos® o1 — 21175 COS 1 COS P2 COS @ + 75 COS” 2 cOS” @) +
(72 cos® g sin® @) + (3 sin® 1 — 2717 sin @y sin @y + 72 sin® @)

= 17 4+ 72 — 2r175(COS (1 COS g COS @ + Sin Py sin @s). (1)

We want to restrict ¢, with respect to ¢; such that this distance is constant. We are
only interested in the case when ¢; € [—7/2,0]. Substituting ¢; = p5 = 0 into (1) gives the
desired distance

d =12+ 72— 2rirycos a.

Since (1) must equal d,

COS QX = COS(P1 COS Py COS (& + SIN (1 SIN P
= cos a(l — cos @1 cos ps) = sin g sin s
= cos’ a(l — cospy cosps)? = (1 —cos® p1)(1 — cos® ps)

Let a, s, and ¢ denote cos a, cos gy, and cos s, respectively. Rewriting,

a*(1 —st)? = (1 —s*)(1 —t?)
= (a?s?+1—s*)t? — (2a%s)t + (a® — 1 + s?) = 0.

We can then solve for ¢ using the quadratic formula.

a’s + \/a432 — (a2 =1+ s?)(a?s2 4+ 1 — s?)

-
a?s? + 1 — s?
azs:I:\/34(1—a2)—232(1—a2)—|—(1—a2)
B a?s? +1— s?
_ad’st(1—s%)V1—a?
B a?s? +1— s? ’
that is,
cos? a cos p; % sin® p; sin «
cospy =

cos? accos? 1 + sin® @,

2

(1 — sin” &) cos 1 + (1 — cos? 1) sin a

(1 — sin® @) cos? p; + (1 — cos? ;)

2 o cos py F sin accos? @y

2

COS (1 T sin @ — sin

1 — sin® acos?
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(sin a & cos 1) (—sinacosp; £ 1)

(14 sin ccos 1)(1 — sin a cos ¢
sin & £ cos ¢

= (2)

sinacosp; &1

Since we know that —w /2 < ¢, < 0. this completely determines @, in terms of ¢; and
a, aside from the choice of sign (4 or —).

To decide between the sign, let us examine the case where ¢; = —=n /2, which implies
that cos ps = +sin a by (2). Now

@y = —|cos™H(Esina)| = —|7/2 F qf

since g € [—7/2,0]. We only need to deal with the case where a € [—n /2, 7 /2], that is, the
circles” planes are no more than n/2 apart. Since @, € [—7/2, 0], we must choose F to be —
if @ € [0,7/2], and choose F to be + if @ € [—7/2,0]. That is, we choose + to be the sign

of sin «. Hence,
| sin | + cos 1

(3)

We must ensure that (3) is solvable in all cases that we are interested in. The denominator
is never 0 since —m/2 < ¢; < 0. Hence, we must ensure that its range is at most [—1,1]
(since cos g2 € [—1,1]). To do so, we can solve

cospz = |sin a| cos p; +1°

dcospy  —singp(1—[sinal?)

dp;  (|sinalcosp; + 1)2

Since the denominator of this is never zero (using the same reasoning as for the denominator
of (3)). this is equivalent to solving

sin 1 (1 — | sin a|?) = sin ¢, (1 — sin® @) = sin ¢, cos® a = 0.

This is true if ¢p; = 0 or @ = +7/2. Plugging either of these into (3) gives the value 1. We
must also check the boundary values, where ¢; = +7/2 or @ = 0. Plugging these into (3)
gives the values |sin «| and cos ¢, respectively. Therefore, the range is [—1, 1].
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