Covering Folded Shapes

Oswin Aichholzer* Greg Aloupis[†] Erik D. Demaine[‡] Martin L. Demaine[‡] Sándor P. Fekete[§]

Michael Hoffmann[¶] Anna Lubiw^{||} Jack Snoeyink** Andrew Winslow[†]

Abstract

Can folding a piece of paper flat make it larger? We explore whether a shape S must be scaled to cover a flat-folded copy of itself. We consider both single folds and arbitrary folds (continuous piecewise isometries $S \to \mathbb{R}^2$). The underlying problem is motivated by computational origami, and is related to other covering and fixturing problems, such as Lebesgue's universal cover problem and force closure grasps. In addition to considering special shapes (squares, equilateral triangles, polygons and disks), we give upper and lower bounds on scale factors for single folds of convex objects and arbitrary folds of simply connected objects.

1 Introduction

In this paper, we consider covering all possible folded versions of a given shape by a scaled copy of the shape itself, with the objective of keeping the scale factor

Completed one fold stegosaurus. Note alternating plates along the back.

Figure 1: From Wu's diagram.

as small as possible. We explore how folds can make an origami model larger, in the sense that Joseph Wu's one-fold stegosaurus¹ cannot be covered by a copy of the square from which it is folded.

Problems of covering a family of shapes by one

minimum-cost object have a long tradition in geometry. The classical prototype is Lebesgue's universal cover problem from 1914 [10], which asks for a planar convex set of minimum area that can cover any planar set of diameter at most 1; Brass and Sharifi [3] give the best upper and lower bounds, but a gap remains. A similar question, also with a gap, is Moser's worm problem [9, 11], which asks for a convex set of minimum area that can cover any planar curve of length 1. As reported in [3] and the book by Brass, Moser, and Pach [2, Chapter 11.4], there is a large family of well-studied, but notoriously difficult problems parameterized by

- the family of sets to be covered,
- the sets allowed as covers,
- the size measure to be minimized, and
- the allowed transformations.

In this paper we consider a given shape S, which is a region of the plane that is a simply connected (no holes) closed 2-manifold with boundary (every interior point has a disk neighborhood and every boundary point a half-disk). A shape S may possess more specific properties: e.g., it may be convex, a (convex or non-convex) polygon, a disk, a square, or an equilateral triangle.

We denote by cS, for c>0, the family of copies of S that have been scaled by c, and then rotated, reflected, and translated. We consider upper and lower bounds on the smallest constant c such that, for any F obtained by folding S, some member of cS contains or $covers\ F$. Let us be more specific about folding.

A single fold of S with line ℓ reflects one or more connected components of the difference $S \setminus \ell$ across ℓ . Let $\mathcal{F}_1(S)$ denote the family of shapes that can be generated by a single fold of S. An arbitrary fold of S is a continuous, piecewise isometry from $S \to \mathbb{R}^2$, which partitions S into a finite number of polygons and maps each rigidly to the plane so that the images of shared boundary points agree. The key property that we will use is that the length of any path in S equals the length of its image in \mathbb{R}^2 . Let $\mathcal{F}(S)$ denote the family of all images of arbitrary folds of S.

The single fold and arbitrary fold are two simple notions of flat folding that avoid concerns of layering and fold order. Note that any upper bound that we prove for arbitrary folds applies to single folds, too. And, although the image of an arbitrary fold need not be the result of single folds, our lower bounds happen to be

^{*}Institute for Software Technology, TU Graz, Inffeldgasse 16b/II, A-8010 Graz, Austria, oaich@ist.tugraz.at. Partially supported by the ESF EUROCORES programme EuroGIGA—CRP 'ComPoSe', Austrian Science Fund (FWF): I648-N18.

[†]Dept. Computer Science, Tufts Univ., 161 College Ave., Medford, MA 02155, USA, aloupis.greg@gmail.com,awinslow@cs.tufts.edu. Partially supported by NSF grant CBET-0941538.

[‡]Computer Science and Artificial Intelligence Laboratory, MIT, 32 Vassar St., Cambridge, MA 02139, USA, {edemaine, mdemaine}@mit.edu.

[§]Computer Science, TU Braunschweig, Mühlenpfordtstr. 23, 38106 Braunschweig, Germany, s.fekete@tu-bs.de

[¶]Institute of Theoretical Computer Science, ETH Zürich, Universitätstrasse 6, 8092 Zürich, Switzerland, hoffmann@inf.ethz.ch. Partially supported by the ESF EUROCORES programme EuroGIGA, CRP GraDR and SNF Project 20GG21-134306.

David R. Cheriton School of Computer Science, Univ. Waterloo, Waterloo, ONT N2L 3G1, Canada, alubiw@uwaterloo.ca

^{**}Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA, snoeyink@cs.unc.edu. Partially supported by an NSF grant.

¹An origami joke. http://www.josephwu.com/Files/PDF/stegosaurus.pdf

limits of finite sequences of single folds. Our results apply to 3-d folded shapes if *covering* is understood to mean covering the orthogonal projection to the plane.

Throughout this paper, we consider *origami covers*:

Definition 1 For a given shape S and c > 0, cS is an origami cover of S if any member of $\mathcal{F}(S)$ can be covered by some member of cS. The origami cover factor of S is the smallest such c, which may be ∞ :

 $c^*(S) = \inf\{c \mid cS \text{ is a origami cover of } S\}.$ Analogously, c_1S is a 1-fold origami cover of S if any member of $\mathcal{F}_1(S)$ can be covered by c_1S ; and $c_1^*(S) = \inf\{c \mid cS \text{ is a 1-fold cover of } S\}.$

Questions of whether folding can increase area or perimeter have been considered before. It is clear that folding a piece of paper introduces overlap, so area can only decrease. On the other hand, the perimeter of a rectangle or square can be greater in a folded than an unfolded state—known as Arnold's ruble note or the Margulis napkin problem [1, 7]. Folding techniques that increase perimeter, like rumpling and pleat-sinking, make very small but spiky models that are easily covered by the original paper shape, however.

Before we explore single folds in the next section, let us recall some common geometric parameters of a shape S and make one general observation.

For a given shape S, an incircle, C_r , is a circle of maximum radius (the inradius r) contained in S. Similarly, the circumcircle, C_R , is the circle of minimum radius (the circumradius) that contains S. For a nonconvex shape S, we instead measure geodesic distances within S, i.e., the distance between two points is the length of a shortest path in S between the points. A geodesic diameter is a path within S that attains the maximum distance D between two points of S. A geodesic center is a point in S that minimizes the maximum distance (the geodesic radius R) to all points of S. For convex shapes the geodesic radius R is also the circumradius. Jung's theorem in the plane says $\sqrt{3}R \leq D \leq 2R$, with the equilateral triangle and circle giving the two extremes [12, ch. 16].

For any folded state of S, these parameters give an upper bound on the origami cover factor.

Lemma 2 Any shape S with inradius r and geodesic radius R has an origami cover factor $c^*(S) \leq R/r$.

Proof. Place any folded state $F \in \mathcal{F}(S)$ in the plane so that the image of a geodesic center is at the origin. Choose a member of (R/r)S with an incircle center at the origin. Because no path in F can be more than R from the origin, the scaled incircle covers F.

2 Single Folds

In this section we explore the 1-fold cover factor $c_1^*(S)$, giving general bounds for convex S and for polygons,

and the exact values for equilateral triangles, squares, and a family derived from disks.

2.1 Convex shapes

For a convex set S, there is a lower bound for the 1-fold cover factor $c_1^*(S)$ that is within a constant factor of the upper bound given by Lemma 2.

Theorem 3 Let S be a convex shape with inradius r and circumradius R. Then $\kappa R/r \leq c^*(S) \leq R/r$ for an appropriate constant $\kappa = ((\sqrt{5}-1)/2)^{5/2} \approx 0.300283$.

Proof. The upper bound is from Lemma 2.

For the lower bound, consider the center p^* of the R-circle C_R that contains S. Because R is smallest possible, the set of points where the boundary of C_R touches S, $T:=\partial C_R\cap S$, must contain at least two points, and no open halfplane through p^* can contain all of T. If |T|=2, then these two points t_1 and t_2 must lie on a diameter of C_R ; if |T|>2, there must be two points $t_1,t_2\in T$ that form a central angle $\angle(t_1,p^*,t_2)$ in $[\frac{2}{3}\pi,\pi]$. Thus, for any $\varphi\in[0,\frac{2}{3}\pi]$, we can perform a single fold along a line through p^* that maps t_2 to t_2' such that the central angle $\angle(t_1,p^*,t_2')$ is φ .

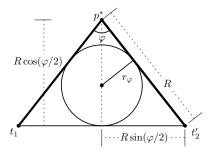


Figure 2: Parameters for calculating the 1-fold cover factor for convex S.

Now, after folding, consider a cover of the three points t_1, p^*, t_2' by cS for some c>0. As each member of cS is convex, in covering the triangle $\Delta(t_1, p^*, t_2')$, it also covers the largest circle C_{Δ} contained in $\Delta(t_1, p^*, t_2')$; let r_{φ} be the radius of this circle, see Figure 2. Using elementary geometry we obtain $r_{\varphi} = \frac{R}{2} \frac{\sin(\varphi)}{1+\sin(\varphi/2)}$, which is maximized at $\varphi = 2 \arctan\left(((\sqrt{5}-1)/2)^{1/2}\right) \approx 76.345^{\circ}$, giving $r_{\varphi} = \kappa R$ as the radius of C_{Δ} . Because the largest circle covered by cS has radius cr, and C_{Δ} is covered by cS, we conclude that $c \geq \kappa R/r$.

2.2 Cover factors for specific polygons

In this section we determine $c_1^*(S)$ when S is an equilateral triangle or a square. These two cases illustrate analysis techniques that could in theory be extended to other polygons, except that the number of cases explodes, especially for non-convex shapes.

An important subproblem is to fix the folded shape F and compute, for the given shape S, the smallest c such that cS covers F. With four degrees of freedom for translation, rotation, and scaling, we expect that four first-order contacts between the boundaries of S and F will define the minimum c. In polygons, these will be four pairs consisting of a vertex of F and an edge of S that it lies on. A enclosing triangle, therefore, has some edge touching two vertices of F [5, Lemma 2]; a enclosing square either has some edge touching two vertices or each edge touching one [4].

In the full paper we say more about how these structural characterizations support the use of rotating calipers to compute minimum enclosing shapes. (E.g., an appealing direct construction of the square through four points, which is unique when it exists, is the solution to problem 20 in Kovanova and Radul's list of "Jewish problems" [6]: for points A, B, C, D in ccw order, construct BD' perpendicular and of equal length to AC; If $D' \neq D$, then two sides of the square must be parallel to DD'.) In what follows we show that the folds that define $c_1^*(S)$ (that maximize the minimum scale factor) are characterized by having multiple equal-sized enclosing shapes.

2.2.1 Equilateral triangle

The example that establishes the maximum 1-fold cover factor of an equilateral triangle is nicely symmetric.

Theorem 4 The 1-fold cover factor of an equilateral triangle, $c_1^*(\triangle)$, is 4/3.

Proof. Let S be the triangle of side length 2 with vertices $(\pm 1, 0)$ and $(0, \sqrt{3})$. We begin by showing that any single fold can be covered by scaling to at most 4/3.

By symmetry, we may assume that we fold along a line y = mx + b that intersects both edges incident on $(0, \sqrt{3})$; let P be the image of this vertex in the folded state $S' \in \mathcal{F}_1(S)$. Consider three cases for the location of the image P and the resulting minimum enclosing equilateral triangle, depicted in Figure 3.

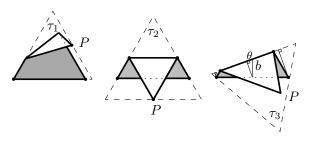


Figure 3: Cases for enclosing triangle depending on P. Point $P \in \tau_3$ should be below $P \in \tau_2$, but then small triangles mentioned in the proof are even harder to see.

First, suppose that P is on or above the x-axis. By symmetry, we may assume that P lies in the wedge

formed by extending both edges of S incident on vertex (-1,0) to rays from (-1,0). Because P has distance at most 2 from (-1,0), scaling S about (-1,0) by $2/\sqrt{3} < 4/3$ creates an enclosing equilateral triangle τ_1 .

Second, suppose that the image $P=(p_x,p_y)$ has $-\sqrt{3}/3 \le p_y \le 0$. Consider the enclosing triangle τ_2 obtained by scaling S about $(0,\sqrt{3})$ until the horizontal edge touches P. The scale factor for this triangle is $\frac{\sqrt{3}-p_y}{\sqrt{3}}=1-p_y/\sqrt{3}\le 4/3$.

Finally, suppose that $P=(p_x,p_y)$ has $p_y \leq -\sqrt{3}/3$. From the previous case, the scale factor for enclosing triangle τ_2 is $1-p_y/\sqrt{3} \geq 4/3$. So instead consider an enclosing triangle τ_3 with an edge e along the fold line, which we can parameterize by its y-intercept $b \leq \sqrt{3}/3$ and angle from horizontal θ . Draw perpendiculars to e through vertices $(\pm 1,0)$ to form two small 30-60-90 triangles. Edge e is composed of the short sides of these triangles plus the projection of the base edge of S, so e has length $(2+2b/\sqrt{3})\cos\theta$. Thus, the scale factor of triangle τ_2 is $(1+b/\sqrt{3})\cos\theta \leq 4/3\cos\theta \leq 4/3$.

These cases show that $c_1^*(\Delta) \leq 4/3$, and also reveal necessary conditions for equality: the fold line angle $\theta = 0$ and intercept $b = \sqrt{3}/3$, so $P = (0, -\sqrt{3}/3)$. To show that these are sufficient, we must check one more candidate for enclosing triangle.

Consider τ_4 , with edge incident to $P = (0, -\sqrt{3}/3)$ and (-1,0). The length of this edge is the sum of sides of two 30-60-90 triangles, marked α and β in Figure 4. The scale factor $(\alpha + \beta)/2 = \sqrt{3}/9 + 2\sqrt{3}/3 = 7\sqrt{3}/9 > 4/3$. Thus, τ_4 is not a minimum enclosing triangle, and $c_1^*(\Delta) = 4/3$, as determined by τ_2 and τ_3 .

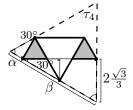


Figure 4: Not a min enclosing triangle.

This completes the proof.

2.2.2 Square

For squares, the optimal fold is astonishingly complex, and is neither symmetric, nor rational. For the unit square $[0,1]^2$, the vertex (0,1) folds to a location whose y coordinate is the root of a degree twelve polynomial: $\Phi(x) = 40x^{12} + 508x^{11} + 1071x^{10} + 930x^9 - 265x^8 - 1464x^7 - 1450x^6 - 524x^5 + 58x^4 + 76x^3 + 3x^2 - 6x - 1$. This polynomial will arise because the optimal fold has three distinct minimum enclosing squares. Let ρ denote the largest (and only positive) real root of $\Phi(x)$, which is approximately 1.105224.

Let $S = \{(x,y) : 0 \le x,y \le 1\}$ denote the axisparallel unit square and consider some $F \in \mathcal{F}_1(S)$ such that $F \ne S$. Note that F is a simple polygon that is uniquely determined (up to symmetry) by a fold line ℓ . **Proposition 5** The polygon F can be covered by S, unless fold line ℓ intersects S in the relative interior of two opposite sides.

Proof. If ℓ does not intersect the interior of S then $F \cong S$. Otherwise ℓ intersects ∂S in exactly two points. If these points lie on adjacent sides of S, then folding along ℓ reflects the triangle formed by these sides and ℓ inside the portion of the square S on the opposite side of ℓ . Therefore, F can be covered by S.

We are interested in a fold line ℓ that maximizes the smallest enclosing square of F. Using symmetry with Proposition 5, we can assume:

- (1) the line ℓ intersects both horizontal sides of S (else rotate by 90°);
- (2) the slope of ℓ is negative (else reflect vertically);
- (3) ℓ intersects the top side of S left of the midpoint (1/2, 1) (else rotate by 180°).

If we imagine F as the result of folding the part of S to the left of ℓ over to the right, then we can parameterize ℓ by the image $P = (p_x, p_y)$ of the top left corner (0,1) of S under this fold. Under the above assumptions, a line ℓ that passes (almost) through (1/2,1) and (1,0) would maximize p_y . Therefore $0 < p_x < 4/5$ and so $1 < p_y < \sqrt{2p_x - p_x^2 + 1} < 7/5$.

Denote the two points of intersection between ℓ and ∂S by $B=(b_x,0)$ and $T=(t_x,1)$ and denote the image of the bottom-left corner (0,0) of S under the fold across ℓ by $Q=(q_x,q_y)$. If $q_x>1$, then the convex hull $\mathcal{CH}(F)$ of F is the hexagon B,(1,0),Q,(1,1),P,T, else Q does not appear on $\partial(\mathcal{CH}(F))$ and it is only a pentagon. Note that in any case the width of F in the y-direction is greater than one, whereas the width in the x-direction is less than one.

For a given $P = (p_x, p_y)$, we have

$$\begin{split} \ell: y &= -\frac{p_x}{p_y - 1} x + \frac{p_x^2 + p_y^2 - 1}{2(p_y - 1)}, \\ T &= \left(\frac{p_x^2 + (p_y - 1)^2}{2p_x}, 1\right), \\ B &= \left(\frac{p_x^2 + p_y^2 - 1}{2p_x}, 0\right), \text{ and} \\ Q &= \left(\frac{p_x(p_x^2 + p_y^2 - 1)}{p_x^2 + (p_y - 1)^2}, \frac{(p_x^2 + p_y^2 - 1)(p_y - 1)}{p_x^2 + (p_y - 1)^2}\right). \end{split}$$

What does a smallest enclosing square σ of F look like? For the upper bound on the cover factor we consider three enclosing squares (Figure 5).

- σ_1 is the smallest axis-parallel enclosing square, which has points B and (1,0) on the bottom side, P on the top, T on the left, and no point on the right.
- σ_2 has points P and (1,1) on one side, B on the opposite side, and T on a third side.
- σ_3 has points B, (1,0), (1,1), and T appearing in this order, each on a different side of σ_3 .

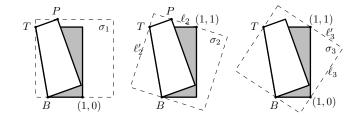


Figure 5: Three minimum enclosing squares for F.

Theorem 6 The 1-fold cover factor of a square, $c_1^*(\Box)$, is ρ , the real root of the degree twelve polynomial Φ .

Proof. The effort goes into showing that, for each folded shape F, one of the three enclosing squares σ_i , $i \in \{1, 2, 3\}$, as defined above, has side length at most ρ .

Denote the side length of a square σ by $|\sigma|$. For a start it is easy to see that $|\sigma_1| = p_y < 7/5$, which provides a first upper bound.

For σ_2 we have to consider the distance $d(B, \ell_2)$, where ℓ_2 is the line through P and (1,1) and the distances $d((1,0), \ell_2')$ and $d(Q, \ell_2')$, where ℓ_2' is the line orthogonal to ℓ_2 through T. Noting that

$$d(B, \ell_2) = \frac{\left| p_x^2 p_y + p_y^3 + p_x^2 - 2p_x p_y - p_y^2 - p_y + 1 \right|}{2p_x \sqrt{(p_x - 1)^2 + (p_y - 1)^2}}$$

$$\mathbf{d}((1,0), \ell_2') = \frac{\left| p_y^2 p_x + p_x^3 - p_y^2 - 3p_x^2 + 2p_y + p_x - 1 \right|}{2p_x \sqrt{(p_x - 1)^2 + (p_y - 1)^2}},$$

it can be checked that the former dominates the latter for $p_y \leq \frac{1}{2}(1+\sqrt{4p_x-4p_x^2+1})$ and that $\mathrm{d}((1,0),\ell_2') > p_y$ for $\frac{1}{2}(1+\sqrt{4p_x-4p_x^2+1}) < p_y < \sqrt{2p_x-p_x^2+1}$ (and so $|\sigma_1| \leq |\sigma_2|$ in such a case). Exactly the same holds if $\mathrm{d}((1,0),\ell_2')$ is replaced by

$$d(Q, \ell_2') = \frac{|N_1|}{2p_x(1 + (p_x - p_y)^2)\sqrt{(p_x - 1)^2 + (p_y - 1)^2}},$$

where $N_1 = p_x^5 + 2p_x^3p_y^2 + p_xp_y^4 - p_x^4 - 2p_x^3p_y - 2p_xp_y^3 + p_y^4 - 4p_x^2p_y - 4p_y^3 + 4p_x^2 + 2p_xp_y + 6p_y^2 - p_x - 4p_y + 1$. This verifies that σ_2 is enclosing, with side length $|\sigma_2| = d(B, \ell_2)$.

For σ_3 we consider a line $\ell_3: y=m(x-1)$ through (1,0), for some m>0 and the orthogonal line $\ell_3': y=(m+1-x)/m$ through (1,1). If σ_3 is a smallest enclosing square, then $\mathrm{d}(T,\ell_3)=\mathrm{d}(B,\ell_3')$. For our range of parameters, the only solution is

$$m = \frac{p_x^2 + p_y^2 - 1}{p_x^2 + (p_y - 1)^2},$$

which yields

$$|\sigma_3| = d(T, \ell_3) = \frac{\sqrt{2}|N_2|}{4p_x\sqrt{D_2}},$$

where $N_2 = p_x^4 + 2p_x^2p_y^2 + p_y^4 - 4p_x^3 - 2p_x^2p_y - 4p_xp_y^2 - 2p_y^3 + 4p_xp_y + 2p_y - 1$ and $D_2 = p_x^4 + 2p_x^2p_y^2 + p_y^4 - 2p_x^2p_y - 2p_y^3 + 2p_y^2 - 2p_y + 1$.

Because we choose the smallest square among σ_1 , σ_2 , and σ_3 , the claim certainly holds for $|\sigma_1| = p_y \le \rho$.

It can be checked that $|\sigma_2| \leq \rho$, for all P with $\rho < p_y < \sqrt{2p_x - p_x^2 + 1}$, except for a small region \mathcal{R} . This region \mathcal{R} is bounded from below by the line $y = \rho$ and from above by the curve $\gamma : |\sigma_2| = \rho$ (the branch of this curve that lies in $\{(x,y): \rho \leq y < a\}$ $\frac{1}{2}(1+\sqrt{4x-4x^2+1})$). The curve γ intersects the line $y = \rho$ at two points, whose x-coordinates are approximately 0.67969 and 0.77126, respectively. The more interesting of these two is the first point of intersection, which can be described exactly as the smallest positive real root x_{ρ} of the polynomial $40x^{12}-116x^{11}-1045x^{10}+$ $4756x^9 - 10,244x^8 + 7260x^7 - 8392x^6 - 184x^5 + 620x^4 160x^3 + 1088x^2 - 192x + 256$. For the fold defined by $P = (x_{\rho}, \rho)$ we have $|\sigma_1| = |\sigma_2| = |\sigma_3| = \rho$, while for all other points in \mathcal{R} the corresponding value for $|\sigma_3|$ is strictly less than ρ .

It can also be checked that $|\sigma_3| < \rho$, for any P with $p_y > \rho$ and $\frac{1}{2}(1+\sqrt{4p_x-4p_x^2+1}) < p_y < \sqrt{2p_x-p_x^2+1}$ (above we committed to using σ_2 only if $p_y \leq \frac{1}{2}(1+\sqrt{4p_x-4p_x^2+1})$).

Altogether it follows that $\min\{|\sigma_i|: i \in \{1, 2, 3\}\} \le \rho \approx 1.105224446$, as claimed.

Using rotating calipers, one can verify that all other enclosing squares are larger, giving the equality. \Box

2.2.3 Polygons and single folds

In the full paper we prove that any polygon (a finite cyclic sequence of vertices and edges with no self-intersections) can be made larger with a single fold. The following lemma is in contrast to observations in Section 3.2 for disks and a family of shapes related to disks.

Lemma 7 For every plane polygon P, the 1-fold cover factor, $c_1^*(P)$, is greater than 1.

The idea of the proof is to look for finite sets of structures in P that, if not destroyed by folding, can be covered only by members of that set. For example, the set of diameters in a polygon is finite because the maximum distance D is realized by pairs of vertices, and any diametral pair still at distance D in the folded state F must be covered by a diameter of P, possibly itself.

For a quick example, consider the class of polygons P in which there exist vertices that participate in two or more diametral pairs. (E.g., for odd n, every vertex of a regular n-gon.) Choose as our structure two diametral pairs, pq and qr, that minimize $\theta = \angle pqr$. Fold along a line trisecting θ , reflecting qr to create qr' in the folded shape F. This modified structure has angle $\angle pqr' = \theta/3$

between two diameters; by minimality of θ , it cannot be covered by P.

The proof repeatedly identifies classes of polygons by structures found in the neighborhoods of diameters, until every polygon is in some class. Modifications to these structures show that $c_1^*(P) > 1$ for all polygons.

3 Arbitrary Folds

3.1 Simply connected shapes

In this section we show that, for a simply connected shape S, there is a lower bound for the origami cover factor $c^*(S)$ that is within a constant factor of the upper bound given by Lemma 2.

Theorem 8 Let S be a simply connected shape with inradius r, geodesic radius R, and geodesic diameter D. Then $\kappa R/r \leq D/(2\pi r) \leq c^*(S) \leq R/r$ for $\kappa = \sqrt{3}/(2\pi) \approx 0.27566$.

Proof. Again, the upper bound is from Lemma 2. The basic idea for the lower bound is to find a path in S that can be folded into a large circle, which must then be covered by a scaled copy of the incircle of S. Here, for brevity, we use a path of length D, the geodesic diameter.

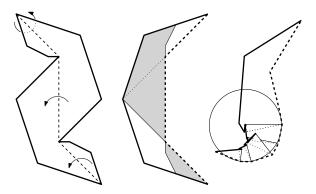


Figure 6: For Theorem 8, folding inflection edges to make a generalized spiral, then crimping to approximate a circle that must be covered by the incircle.

A generalized spiral is a simply connected region composed of consistently orientable plane patches having a distinguished shortest path γ that follows the boundary and never turns to the left. A generalized spiral may overlap itself if projected onto a plane, but we can think of it as embedded in a covering space of the plane.

Ordinarily, a diameter path γ will alternate between sequences of left turns and right turns at boundary points; a portion of the path between opposite turns is a line segment that we can call an *inflection edge*. We can simply fold along every inflection edge, gluing doubled layers along these edges, to turn γ into a path that goes only straight or to the right. Folding any non-boundary

edges creates a generalized spiral with path γ . These folds are along lines of the geodesic path, so γ remains a shortest path between its endpoints.

We fold the generalized spiral into a left-turning circle with circumference approaching the length of γ . If we sweep a paired point and normal vector along γ , we can think of painting a portion of the generalized spiral with fibers that each start on γ and grow orthogonal to a local tangent (because γ is a shortest path) and that are disjoint (because the sweep in position and angle is monotonic). We construct a circle whose circumference is arbitrarily close to the length of γ by crimp folds that align successive fibers of γ with the circle center. Figure 6 shows an example. It does not matter how far the fibers extend towards or beyond the circle; in order to cover the boundary of the circle, the inradius r must be scaled to the circle radius, which is $D/(2\pi)$.

3.2 Disks with bumps

Because the radius of a disk is simultaneously the inradius and the geodesic radius, Lemma 2 implies that the cover factor of a disk, $c^*(\bigcirc)$, is 1. It is interesting to note that there are other shapes S with $c^*(S) = 1$; here is one simple family.

In a unit disk centered at C with a chord AB, choose a point D between C and the midpoint of AB. Add the disk centered at D of radius |AD|. Thus, we have a family of shapes $S_{d,e}$, parameterized by two distances, d = |CD| and e = distance from C to chord AB, satisfying $0 < d \le e < 1$. See Figure 7.

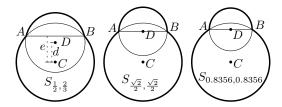


Figure 7: Shapes $S_{d,e}$ with $c^*(S_{d,e}) = 1$.

Lemma 9 The shape $S_{d,e}$, with $0 < d \le e < 1$, has origami cover factor $c^*(S_{d,e}) = 1$.

Proof. Shape $S_{d,e}$ is the union of a unit disk centered at C and a disk centered at D whose radius we denote r. Note that by construction the boundaries of the disks intersect at A and B. This shape also covers all disks of radius r that are centered between C and D.

Now, in an arbitrary folded state $S'_{d,e}$, consider the locations of these centers, C' and D'. Placing a unit disk centered at C' and a radius r disk centered at D' will cover all points of $S'_{d,e}$. Because $|C'D'| \leq |CD|$, this pair of disks will be covered by placing a copy of $S_{d,e}$ with C at C' and D on the ray $\overrightarrow{C'D'}$.

Choose any $d \in (0,1)$ and for all $e \in [d,1)$ shape $S_{d,d}$ covers $S_{d,e}$, so these extremal members of the family have AB as the diameter of the smaller disk. Just for the sake of curiosity, the example with $d = e = \sqrt{2}/2$ minimizes the ratio of inradius to circumradius, $R/r = (1 + \sin \theta + \cos \theta)/2 \approx 0.8284$, and the example with $d \approx 0.8356$ minimizes the fraction of the circumcircle covered, $(\pi(1 + \sin^2 \theta) + \sin 2\theta - \theta)/(\pi R^2) \approx 0.7819$.

4 Open Problems

The most interesting questions are whether $c^*(\triangle) = c_1^*(\triangle)$ and $c^*(\square) = c_1^*(\square)$, and whether we can completely characterize those shapes with origami or 1-fold cover factor of unity.

Acknowledgments: This work began at the 28th Bellairs Workshop, March 22-29, 2013. We thank all other participants for the productive and positive atmosphere, in particular Godfried Toussaint for co-organizing the event. We thank the CCCG reviewers for detailed and helpful comments.

References

- [1] V. I. Arnold. Problem 1956–1. In *Arnold's Problems*. Springer, Berlin, 2005.
- [2] P. Brass, W. O. J. Moser, and J. Pach. Research Problems in Discrete Geometry. Springer, 2005.
- [3] P. Brass and M. Sharifi. A lower bound for Lebesgue's universal cover problem. *Int. J. Comput. Geometry* Appl., 15(5):537–544, 2005.
- [4] S. Das, P. P. Goswami, and S. C. Nandy. Smallest k-point enclosing rectangle and square of arbitrary orientation. *Inform. Process. Lett.*, 94(6):259–266, 2005.
- [5] N. A. A. DePano and A. Aggarwal. Finding restricted k-envelopes for convex polygons. In Proc. 22nd Allerton Conf. on Comm., Ctrl, & Comp., pages 81–90, 1984.
- [6] T. Khovanova and A. Radul. Jewish problems. http://arxiv.org/abs/1110.1556v2, Oct. 2011.
- [7] R. J. Lang. Origami Design Secrets: Mathematical Methods for an Ancient Art. A. K. Peters, 2003.
- [8] X. Markenscoff, L. Ni, and C. H. Papadimitriou. The geometry of grasping. *Internat. J. Robot. Res.*, 9(1), Feb. 1990.
- [9] R. Norwood, G. Poole, and M. Laidacker. The worm problem of Leo Moser. Discrete & Computational Geometry, 7:153–162, 1992.
- [10] J. Pál. Über ein elementares Variationsproblem. Math.fys. Medd., Danske Vid. Selsk., 3(2):1–35, 1920.
- [11] C. Panraksa, J. E. Wetzel, and W. Wichiramala. Covering n-segment unit arcs is not sufficient. Discrete & Computational Geometry, 37(2):297–299, 2007.
- [12] H. Rademacher and O. Toeplitz. The Enjoyment of Mathematics. Dover, 1990.

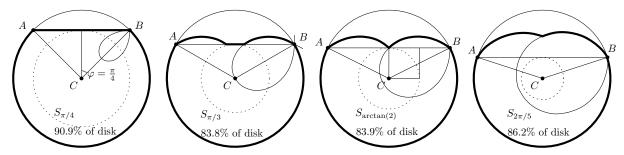


Figure 8: Example shapes S_{φ} with $c_1^*(S_{\varphi}) = 1$. The dotted circle of radius $\cos \varphi$ gives the drawn loops of limaçons in two ways: as reflections of B across tangents that separate B and C and as the envelope of circles through B that are centered on the arc of the dotted circle that lies between the tangents through B.

A Appendix: single folds for disks and polygons

A.1 Disks and limaçons

A circle sector, folded toward the center, never leaves its circle. This makes it easy to observe that $c_1^*(\bigcirc) = 1$.

We extend this observation to create a family of shapes, parameterized by an angle $\varphi \in (0, \pi/2)$, that has 1-fold cover factor $c_1^*(S_\varphi) = 1$, but origami cover factor $c^*(S_\varphi) > 1$. Figure 8 shows four examples. We remove a circle segment defined by a chord AB at distance $\cos \varphi$ from the disk center C. We then add back the area bounded by small loops of limaçons traced by reflections of A and B across lines at distance $\cos \varphi$ from C. For $\varphi \leq \pi/4$, the limaçons do not appear on the boundary of S_φ , and for $\varphi > \arctan(2) \approx 63.4^\circ$, the interior of AB does not appear.

First, we show that the reflection traces a limaçon, a curve usually defined by tracing a point as one circle is rotated about another of the same radius. Their standard expression in polar coordinates is $r(\theta) = a + b \cos \theta$. Let \mathcal{C} denote the circle of radius $\cos \varphi$ centered at C.

Lemma 10 The loci of the reflections of A about all lines for which circle C is contained in one closed halfplane and point A in the other closed halfplane is the inner loop of a limaçon.

Proof. For this proof only, choose a coordinate system with origin A, scaled so \mathcal{C} is a unit circle with center at C = (-d,0) with d > 1. The boundary of the loci consists of the reflections of A about lines tangent to \mathcal{C} , which can be parametrized by θ . Let $v = (\cos \theta, \sin \theta)$. The reflection of A about the line tangent to \mathcal{C} at C + v is $A - 2((A - C - v) \cdot v)v$, which can be written in polar form as $r(\theta) = 2 - 2d\cos\theta$. To see that we get the inner loop, notice that the tangents to the circle \mathcal{C} through A are the extreme lines that satisfy the hypothesis, and these reflect A to itself.

With this formula, one can verify that the distance from C is unimodal, with the maximum at A and minimum at the other intersection of the loop with CA.

Another standard characterization of this loop of the $limaçon^2$ is as the intersection of disks centered on C and containing A. We know how disks fold, so:

Lemma 11 Let ℓ be any line that does not intersect the arc of C that lies between the two tangents through A. The image of the limaçon loop by folding across ℓ is contained in the loop.

Proof. Let ℓ^+ denote the closed halfplane of ℓ that contains the arc, and thus contains all centers of disks used to define the limaçon loop \mathcal{L} . For any individual disk O we fold a sector toward the center; the image of folding $O \setminus \ell^+$ across ℓ remains inside $O \cap \ell^+$. Since this is true for all disks, the portion of the loop $\mathcal{L} \setminus \ell^+$ folds inside the intersection $\mathcal{L} \cap \ell^+$.

Now we can determine the 1-fold cover factor for S_{φ} .

Theorem 12 The shape S_{φ} , with $\varphi \in (0, \pi/2)$, has 1-fold cover factor $c_1^*(S_{\varphi}) = 1$.

Proof. For a given line ℓ , let ℓ^+ be the closed halfplane containing C. Construct a folded shape F by reflecting across line ℓ one or more components of $S_{\varphi} \setminus \ell^+$. We consider cases for the fold line ℓ based on its distance from C and the types of boundary curves of S_{φ} that it intersects.

Suppose first that the fold line ℓ is less than $\cos \varphi$ from C (i.e., intersects a dotted circle in Figure 8) and that all components of $S_{\varphi} \setminus \ell^+$ are folded over. Fold the entire unit disk along ℓ then rotate about C to make ℓ parallel to AB. Since this folded unit disk is covered by S_{φ} , the subset F is certainly covered by S_{φ} .

We sketch the arguments that, for all remaining cases, F remains inside S_{φ} with no rotation needed. It will be enough to worry about points of $S_{\varphi} \setminus \ell^+$ that fold to locations above AB. This can only occur for $\varphi > \pi/3$, which happens to place C inside the two limaçon loops. (This isn't crucial to the argument, but does simplify its geometric interpretation.)

 $^{^2}A\ demo\ by\ Daniel\ Joseph:\ http://demonstrations.wolfram.com/LimaconsAsEnvelopesOfCircles/$

We begin with the cases in which the fold line ℓ is at least $\cos \varphi$ from C. Lemma 11 implies that points in limaçon loops remain inside their loops after folding. So it is enough to consider any point Q on the arc of the unit circle that bounds S_{φ} between A and B. By Lemma 10, the image of Q under all possible folds in this case is also a limaçon loop; we can rotate this loop around C to align with the loop at A or B.

For our chosen fold line ℓ we get an image Q' above AB. If we extend CQ' through Q' we hit the loop for Q before we hit the last of the loops for A or B, thanks to unimodality of distance to C. Thus Q' is inside S_{φ} .

In the remaining case $S \setminus \ell^+$ has two components and we choose to fold only one. One component must be a portion of a limaçon loop that ℓ intersects twice above AB; Lemma 11 implies that these may be safely folded.

So, we may assume that the fold line ℓ has positive slope, intersects the loop of B twice above AB, and intersects the dotted circle $\mathcal C$ in the upper left quadrant. If ℓ crosses the boundary of S_ϕ on AB, then all points of the folded component go below AB. Otherwise, ℓ crosses on the limaçon loop for A. The centers of disks that define the portion of this loop above AB are in the lower left quadrant of $\mathcal C$, so lie in ℓ^+ . As in the proof of Lemma 11, points that fold above AB remain in the intersection of these folded disks, and thus remain in the loop.

To see that the origami cover factor $c^*(S_{\varphi}) > 1$, find the two points of S_{φ} farthest from (0, -1), then crimp fold to narrow the angle between them.

The minimum area of S_{φ} is achieved by $\varphi \approx 61.5^{\circ}$, which occupies about 83.7% of the unit disk. The shape is between $S_{\pi/3}$ and $S_{\arctan(2)}$ in Figure 8.

A.2 Polygons

In contrast to disks, polygons can always be made larger with a single fold; that is, $c_1^*(P) > 1$ for all shapes bounded by a finite cyclic sequence of vertices and edges with no self-intersections.

Lemma 13 For every plane polygon P, the 1-fold cover factor $c_1^*(P) > 1$.

Proof. We look for finite sets of structures in P that, if not destroyed by folding, can only be covered by members of that set. For example, the set of diameters in a polygon is finite because the maximum distance D is realized only by pairs of vertices, and any diametral pair that remains at distance D in the folded state F must be covered by a diameter of P, possibly itself.

We proceed through increasingly elaborate structures as we consider different cases for the polygon P. To begin simply, suppose that in P there exist vertices that participate in two or more diametral pairs. (E.g., for odd n, every vertex of a regular n-gon.) Choose as our

structure two diametral pairs, pq and qr, that minimize $\theta = \angle pqr$. Fold along a line trisecting θ , reflecting qr to create qr' in the folded shape F. This modified structure has angle $\angle pqr' = \theta/3$ between two diameters; by minimality of θ , it cannot be covered by P.

Normalize so that the diameter length D=1. Choose $0 < \varepsilon < 1/4$ so all edge lengths in P are at least 2ε and the distance between any non-diametral pair of vertices is at most $1-\varepsilon$. Define a double arrow to be a diameter pq, plus ε -length segments, ap, bp, cq and dq, of the polygon edges incident on q. Denote the positive angles these four edge form to pq by α , β , γ , and δ , respectively. Assume, by relabeling and reflecting, if necessary, that $\alpha + \beta \geq \gamma + \delta$ and $\gamma \geq \delta$, as illustrated in Figure 9. Note that angle $\angle paq$ is obtuse because a is at most the midpoint of its edge and the distance pq is at least the distance to the other endpoint. Similarly, the other three edges also form obtuse triangles with pq.

From here on, we restrict attention to the set of max arrows that lexicographically maximize the 4-tuple ($\alpha + \beta, \gamma + \delta, \gamma, \max\{\alpha, \beta\}$). (That is, when comparing two 4-tuples, compare the pair of jth elements iff, for all k < j the kth elements are equal.) Not only must max arrows be covered by max arrows, but we can find other structures within them.

Case $\pi/2 > \gamma + \delta$: For this case we define a set of blunt arrow structures by removing the sharper tip of the max arrow. Let m be the midpoint of qd. Drop a perpendicular from m to cq at m'. A blunt arrow is any isometric copy of the heptagon apbcm'md. Because $mp > 1 - \varepsilon$, a blunt arrow can be covered only near a diameter, and because it includes portions of all four edges, these must be covered by a max arrow (possibly with reflections and rotations if enough of the angles have equal values.) Thus, a blunt arrow that is not destroyed by folding must be covered by one of a finite set of blunt arrows.

Folding the arrow tip q along the bisector of $\angle m'mq$ does not destroy the blunt arrow. However, by making mq' extend mm', it does put q' outside any copy of P that covers this blunt arrow.

Case $\gamma + \delta \geq \pi/2$ and either $\gamma > \delta$ or $\alpha \neq \beta$: For this case we define a narrower dart structure. We've assumed that $\gamma > \delta$. Because we will use the fact that $\alpha + \beta \geq \gamma + \delta$ only to conclude that $\alpha + \beta \geq \pi/2$, the cases for $\alpha > \beta$ and $\beta > \alpha$ can be handled in the same way.

Draw a line through the point 2p-q that forms an angle $\theta = (\gamma - \delta)\frac{\varepsilon}{6}$ with \overline{pq} , and intersects bp at m' and cq at m. A dart is a copy of the hexagon apm'mqd. Because a dart has a diameter segment and portions of all four incident edges, it should be clear that darts that survive folding to appear in F must be covered by darts in P.

The angle θ is chosen so that if we fold along the line

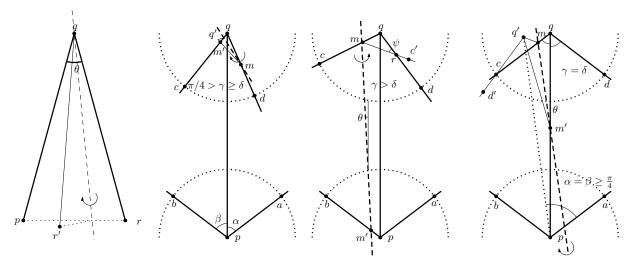


Figure 9: Structures in polygons and the folds used to show $c_1^*(P) > 1$.

 $\overline{mm'}$, the reflected mc' intersects qd and extends outside the dart and the polygon. Proof: For $0 < \theta < \pi/4$, we can bound $\frac{2\sqrt{2}}{\pi}\theta < \sin\theta < \theta$. Let $r = mc' \cap qd$ and apply the law of sines to $\triangle mrq$ to show that r is on both segments mc' and qd:

$$\angle mrq = (\gamma - \delta) + 2\theta > (\gamma - \delta).$$

$$mq = \frac{2\sin\theta}{\sin(\gamma + \theta)} < 2\sqrt{2}\theta = \varepsilon \frac{\sqrt{2}(\gamma - \delta)}{3}.$$

$$qr < mr + mq = mq \left(\frac{\sin(\gamma + \delta)}{\sin(\angle mrq)} + 1\right)$$

$$< \varepsilon \frac{\sqrt{2}(\gamma - \delta)}{3} \left(\frac{\pi}{2\sqrt{2}(\gamma - \delta)} + 1\right)$$

$$< \varepsilon \left(\frac{\pi}{6} + \frac{\sqrt{2}}{3} \frac{\pi}{4}\right) < \varepsilon.$$

Case $\alpha = \beta \geq \pi/4$ and $\gamma = \delta \geq \pi/4$: Assume $\alpha \geq \gamma$. For this case we define a family of bent arrows, parametrized by angle θ , which is the angle the fold line ℓ_{θ} makes with pq. We show that for sufficiently small θ , a triangle with side on pa and vertex q' cannot be covered by a copy of P.

To complete the specification of the fold line ℓ_{θ} , choose its point of intersection $m' = \ell \cap \overline{pq}$ at distance $h = \varepsilon \cos\theta/\cos(\gamma - \theta)$ from q. This makes the folded image q'd' pass through c, placing q' outside of the arrow. Folding in the other direction, we see that points in the neighborhood of c' go outside of qd. Thus, neither P, nor the reflection of P can cover the folded shape F by aligning pq to a diameter. On the other hand, pq must remain in the neighborhood of a diameter, because $|pq'| \geq D - \varepsilon$. (Recall that diameter length D = 1.)

If $\varepsilon > \cos \gamma$, then we can choose $\theta > 0$ sufficiently small that h > 1 so folding misses the diameter pq and forms a dart, as in the previous case. So assume that the fold line ℓ crosses the segment pq.

If we calculate the position of $q' = m' + (h, 2\theta)$, we observe that the derivative with respect to θ is perpendicular to pq:

$$\frac{d}{d\theta}q' = \frac{2\varepsilon}{\cos\gamma}(q-p)^{\perp}.$$

Let e be a portion of the polygon edge giving pa, truncated to length 2ε . (Thus, a is the midpoint of e.) We consider covering the triangle with side e and vertex q'. Initially, assume that we try to do so by rotating an arrow with maximal angle α . Let C be the circle that is tangent to pb at p and has e as a chord. Let $o \neq p$ be the other point intersection $C \cap pq$.

Now, fix edge e in the plane and rotate polygon P, keeping e covered by keeping the endpoints of e in contact with the wedge bpa of angle 2α . Point \hat{p} moves on an arc of circle C and \hat{q} moves so that the unit segment $\hat{p}\hat{q}$ always passes through o. We can represent this curve (a portion of a limaçon) in polar form about the origin o, with ψ being the angle from oq, and compute its derivative, which is not perpendicular to pq:

$$\hat{q} = (1 - 2\varepsilon \frac{\sin(\psi + \alpha)}{\sin(2\alpha)}, \psi)$$
$$\frac{d}{d\psi}\hat{q} = \frac{\varepsilon}{\cos\alpha}(q - p)^{\perp} - \frac{\varepsilon}{\sin\alpha}(q - p).$$

This means that we can choose a small $\theta > 0$ so that, even in the widest arrow of angle 2α , the edge e forces q' outside the curve traced by \hat{q} . For narrower arrows, q' is forced even further outside. Thus, P cannot cover F without scaling.

This completes the proof that $c_1^*(P) > 1$ for any polygon P.