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Folding Polyominoes with Holes into a Cube
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Abstract

When can a polyomino piece of paper be folded into a
unit cube? Prior work studied tree-like polyominoes,
but polyominoes with holes remain an intriguing open
problem. We present sufficient conditions for a poly-
omino with hole(s) to fold into a cube, and conditions
under which cube folding is impossible. In particular,
we show that all but five special simple holes guarantee
foldability.

Figure 1: Three polyominoes that fold along grid lines
into a unit cube, from puzzles by Nikolai Beluhov [4].

1 Introduction

Given a piece of paper in the shape of a polyomino (i.e.,
a polygon in the plane formed by unit squares on the
square lattice that are connected edge-to-edge), does it
have a folded state in the shape of a unit cube? The
standard rules of origami apply; in particular, we allow
each unit square face to be covered by multiple layers
of paper. Examples of this decision problem are given
by the three puzzles by Nikolai Beluhov [4] shown in
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Figure 1. We encourage the reader to print out the
puzzles and try folding them.

Prior work [2] studied this decision problem exten-
sively, introducing and solving several different models
of folding. This gave rise to a model that matches the
puzzles in Figure 1: Fold only along grid lines of the
polyomino; allow only orthogonal folding angles (±90◦

and ±180◦); and forbid folding material strictly interior
to the cube. In this model, the prior work [2] character-
izes which tree-shaped polyominoes lying within a 3×n
strip can fold into a unit cube.

Notably, however, the polyominoes in Figure 1 are
not tree-shaped or even simple: One puzzle has a hole,
another puzzle has two holes, and a third puzzle has
a degenerate hole (a slit). Arguably, these holes are
what makes the puzzles fun and challenging. Therefore,
in this paper, we embark on characterizing which poly-
ominoes with hole(s) fold into a unit cube in this model.
Although we do not obtain a complete characterization,
we give many interesting conditions under which a poly-
omino does or does not fold into a unit cube.

The problem is sensitive to the choice of model. In
the more flexible model allowing half-grid folds and 45◦

diagonal folds between grid points, the prior work [2]
shows that all polyominoes of at least ten unit squares
can fold into a unit cube, and lists all smaller poly-
ominoes that fold into a cube. Thus this model already
has a complete characterization of polyominoes that fold
into a cube, including those with holes. Therefore, we
focus on the grid-fold model described above.

Specific to polyominoes and polycubes, there is ex-
tensive work in this model on finding polyominoes that
fold into many different polycubes [3] and into multiple
different boxes [1, 5, 6, 7, 8].

Our Results.
1. We identify which polyominoes with a single hole

are foldable; see Theorem 1, Section 3.1. In fact, all
but five simple holes already guarantee foldability.

2. We identify combinations of two (of the remaining
five) holes that allow the polyomino to fold into a
cube; see Section 3.2.

3. We show that certain of the remaining five simple
holes or their combinations do not allow a foldable
polyomino; see Section 4.
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4. We present an algorithm that checks a necessary
local condition for foldability; see Section 4.4.

2 Notation

A polyomino is a polygon P in the plane formed by
a union of |P | = n unit squares on the square lattice
that are connected edge-to-edge. We do not require a
connection between every pair of adjacent squares; that
is, we allow slits along the edges of the lattice subject
to the condition that the polyomino is connected.

We call a set h of connected missing squares and slits
a hole if the dual has a cycle containing h in its interior.
We call a hole of a polyomino simple if it is one of the
following: a unit square, a slit of size 1, slits of size 2
(corner or straight), or a U-slit of size 3, see Figure 2
for an illustration.

Figure 2: The five simple holes.

A connected three-dimensional polyhedron formed by
a union of unit cubes on the cubic lattice that are con-
nected face-to-face is called a polycube. If the poly-
cube Q is a unit cube, we denote it by Q = C.

In this paper, we study the problem of folding a given
polyomino P with holes to form C, allowing only 90◦

and 180◦ folds along the lattice. We illustrate mountain
folds in red, and valley folds in blue. Whenever we
show numbers on faces in crease patterns these refer to
a “real” die, i.e., opposite faces sum up to 7.

3 Polyominoes That Do Fold

In this section, we present polyominoes that fold. We
start with polyominoes that contain a hole guaranteeing
foldability.

3.1 Polyominoes with Single Holes

In this section, we show that all holes different from a
simple hole guarantee foldability.

Theorem 1 If a polyomino P contains a hole h that is
not simple, then P folds into a cube.

Proof. It is easy to see that because the hole h is non-
simple, it must be a superset of one of the holes in Figure
4, that is, we distinguish the cases where h contains
• Two unit squares sharing an edge
• Two unit squares sharing a vertex

Figure 3: Folding strategy to reduce to seven cases.

• A unit square and an incident slit
• A slit of length at least 3 (straight, zigzagged, L-

shaped, or T-shaped)
In a first step, we show that if h contains one of the

four above holes, we may assume that it contains ex-
actly this hole. Let h be a hole containing a hole h′ of
the above type. By definition of a hole, h needs to be
enclosed by solid squares. Thus we can sequentially fold
the squares of P in columns to the left and right of h′ on
top of the columns directly left and right of h′, respec-
tively, as illustrated in Figure 3. Afterwards, we fold
the squares of P in rows to the top and bottom of h′ on
top of the rows directly top and bottom of h′, respec-
tively. We call the resulting polyomino P ′. Note that
because h is a hole of P , all neighbouring squares of h′

exist in P ′. Thus we may assume that we are given one
of the seven polyominoes depicted in Figure 4, where
striped squares may or may not be present.

Figure 4: Any polyomino with a hole that is not simple
can be reduced to one of the seven illustrated cases;
striped squares may or may not be present.

Secondly, we present folding strategies. Note that the
case if h′ consists of two squares sharing only a vertex,
we can fold the top row on its neighboring row and
obtain the case where h′ consist of a square and an
incident slit. For an illustration of the folding strategies
for the remaining cases consider Figure 5. �

Are simple holes ever helpful? In fact, four of the five
simple holes sometimes allow foldability, as illustrated
in Figure 6. Note that the U-slit of size 3 reduces to the
square hole. In Lemma 11, we show that the slit of size
1 never helps to fold a rectangular polyomino. Lemma 7
implies that the polyominoes without the holes cannot
be folded.

3.2 Combinations of Two Simple Holes

In this section we consider combinations of two simple
holes that fold.
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Figure 5: Crease pattern of cube foldings; mountain
folds (solid red), valley folds (dashed blue). Squares
with the same number cover the same face of the cube.
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Figure 6: Four simple holes may be helpful.

Theorem 2 A polyomino with two vertical straight
size-2 slits with at least two columns and an odd number
of rows between them folds.

Proof. As in the previous section, we first fold all rows
between the slits together to one row; this is possible
because there is an odd number of rows between the
slits. Then, all the surrounding rows and columns are
folded towards the slits. Finally, we fold the columns be-
tween the slits to reduce their number to two or three.
Depending on whether the number of columns between
the slits was even or odd, this yields a shape similar
to the one shown in Figure 7 (a) and (b), respectively.
Striped squares may be (partially) present. In all cases,
the two shapes fold as indicated by the illustrated crease
pattern. Note that in Figure 7 (b) the polyomino is of
course connected, which implies that for sure at least
one square of the central column is part of the poly-
omino, i.e., a square with label 6 is used. �

If the two slits have only one or no column between
them, then the shape cannot be folded as can be verified
by the algorithm of Section 4.4.

In the following theorems we call a U-slit which has
the open part at the bottom an A-slit. If the orientation
of the U-slit is not relevant, then we call it a C-slit.

Theorem 3 A polyomino with an A-slit and a unit
square hole/C-slit in the same column above it, having
an even number of rows between them, folds.

Proof. We can assume that the upper hole is a unit
square, as the flaps generated by a C-slit can always be
folded away. Similar to before we fold away all surround-
ing rows and columns and reduce the number of rows

(a) (b) (c) (d)

(e) (g)(f )
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Figure 7: Combinations of two simple holes that are
foldable with and without (part of) the striped region.

between the A-slit and the unit square hole to two. This
yields the shape of Figure 7 (c), which can be folded. �

Note that if the bottom slit is a U-slit, then the shape
of Figure 7 (c) does not fold, again verified by the algo-
rithm of Section 4.4.

Theorem 4 A polyomino with an A-slit and a unit
square hole/C-slit below it and separated by an odd num-
ber of rows, folds, regardless in which columns they are.

Proof. As before we assume that the lower hole is
a unit square, fold away all surrounding rows and
columns, and reduce the number of rows between the
two slits/holes to one. Furthermore we fold the columns
between the slits/holes to minimize their number. In
this way the number of columns between the two
slits/holes is at most two, and we obtain one of the
shapes shown in Figure 7 (d) to (g). All of them fold,
with or without the striped region. Note that the upper
unit square holes in Figure 7 (d) and (e) can be replaced
by an A-slit which can be folded away. �

Note that if the two holes are in the same or neigh-
boured column(s) (Figure 7 (d) and (e)), then it does
not matter which orientation the U-slits have or whether
they are unit square holes—any combination folds. We
thus get the following statement.

Theorem 5 A polyomino with two unit square holes
which are in the same or in neighboured column(s) and
have an odd number of rows between them folds.

4 Polyominoes That Do Not Fold

In this section, we identify simple holes and simple hole
combinations that do not allow the polyomino to fold.
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First, we present some results that show how the pa-
per is constrained around an interior vertex.

Lemma 6 Four faces around a polyomino vertex v for
which the dual graph is connected cannot cover more
than three faces of C.

Proof. v is incident to 4 faces in P . As vertices of P
are mapped to vertices of C and all vertices of C are
incident to 3 faces, v is incident to only 3 faces in C. �

Lemma 7 Four faces around a vertex v not in the
boundary of P cannot cover more than two faces of
C. In particular, at least two collinear incident creases
must be folded by 180◦.

Proof. Let A, B, C, and D be the faces around v in
circular order. By Lemma 6, at most three faces of C
are covered by A, B, C, and D. Hence, at least two faces
map to the same face of C. These can either be edge-
adjacent of diagonal. For the first case, let this w.l.o.g.
be A and B. Hence, the crease between them must be
folded by 180◦. Then C and D must also map to the
same face of C to maintain the paper connected. The
crease between C and D must also be folded by 180◦. In
the latter case, w.l.o.g. A and C map to the same face
of C. As they are both incident to v, only two options of
folding those two faces on top of each other exist. Either
the edge between A and B gets folded on top of the edge
between B and C, this leaves a diagonal fold on B, a
contradiction, or the edge between A and D gets folded
on top of the edge between B and C, which results in D
being mapped to C, and those are two adjacent faces, in
which case we already argued that two collinear incident
creases must be folded by 180◦. �

Corollary 1 Let v, w be two vertices in P ’s interior,
which share a horizontal edge. If we fold horizontally
through v, i.e., if the two collinear incident creases of v
folded by 180◦ are horizontal, then we also have to fold
180◦ horizontally through w.

4.1 Polyominoes with Unit Square Holes, L-Shaped
Holes and U-Shaped Holes

We begin by examining the possible foldings of a poly-
omino containing a unit square hole. Suppose that a
given polyomino P with a unit square hole h folds into
a cube. Furthermore, let the shape of h no longer be a
square in the folded state. That is, the hole h is folded
in a non-trivial way. Then, in the folded state, either
all edges of h are glued together, or two pairs of edges
are glued forming an L-shape. We will argue that if P
folds into a cube, the first case is impossible, while the
second produces a specific crease pattern around h.

Lemma 8 The four edges of a unit square hole of a
polyomino that folds into a cube cannot be all glued to-
gether in the folded state.

DA
B CA C

B

DF4

F1 F2

F3

Figure 8: Four edges of a square hole glued together.

Proof. Let the four faces of the polyomino edge-
adjacent to the hole be A, B, C, and D, and the four
faces vertex-adjacent to the hole be F1, F2, F3, and F4,
see Figure 8. Consider A, F1, and B in the folded state.
As the two corresponding edges of the hole are glued to-
gether, the three faces must be pairwise perpendicular.
The similar statement holds for the triples {B,F2, C},
{C,F3, D}, and {D,F4, A}. Therefore, if P folds into a
cube, face A must be glued to face C, face B must be
glued to D, F1 to F3, and F2 to F4. Suppose, w.l.o.g.,
in the folded state face A lies in a more outer layer than
C. Then, F1 and F4 are in a more outer layer than F3

and F2, respectively. Thus, face B connects the more
inner layer of F2 to the more outer layer of F1, and at
the same time D connects the inner layer of F3 to the
outer layer of F4. Hence, faces B and D intersect, which
is impossible. Therefore, if the polyomino folds into a
cube, the four edges of a square hole cannot all be glued
together. �

It follows that the only non-trivial way to glue the edges
of a square hole of a polyomino folded into a cube is to
form an L-shape. This effectively amounts to gluing a
pair of diagonal vertices of the hole.

Let a, b, c, and d be the four vertices of the hole, and
suppose a and c are glued together when folding the
polyomino into a cube, see also Figure 9 (left). Consider
the crease pattern around the hole. We shall only focus
on the angles of the creases and not the type of the fold,
as there may be (and will be) other creases in P affecting
the type of the creases under our consideration. Observe
that the three faces incident to each of the vertices b and
d are pairwise perpendicular, they form a corner of a

a

cb

d
1

11

2

2

3

3

5

4

Figure 9: Left: crease pattern around a hole folding into
an L-shape when gluing vertices a and c; 90◦ creases
are shown in green, and 180◦ creases in orange. Right:
numbers indicate the face of the cube in the folded state;
mountain folds are shown in solid, and valley folds as
dashed lines.
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cube. Thus, the creases emanating from b and d are all
90◦. Further observe that the three faces around each
of the vertices a and c fold into two faces of a cube,
thus leading to one of the creases being 90◦ and the
other 180◦. Finally, the two 180◦ creases are parallel to
each other. Indeed, consider the right side of Figure 8.
For a crease to form an L-shape one of the two dashed
blue lines must fold to 180◦, which corresponds to two
parallel creases in the unfolded state. Therefore, the
crease pattern in Figure 9 (left) is the only pattern of
creases (up to rotation and reflection) around a non-
trivially folded square hole. Figure 9 (right) shows the
faces of the corresponding crease pattern.

Note that the arguments above extend to an L-shape
slit of size 2, and a U-slit of size 3.

Theorem 9 Two holes, which are either unit square,
L-slit of size 2, or U-slit of size 3, of a polyomino P such
that (1) P contains all the other cells of the bounding
box of the two holes, (2) P folds into a cube, cannot be
both folded non-trivially if the number of rows and the
number of columns between the holes is at least 1.

Proof. It follows from the above observations that if
there were two unit square holes, both folded non-
trivially, with positive number of rows and columns
between them, there would be two intersecting 90◦

creases. �

Theorem 10 A rectangle with two unit square holes in
the same row does not fold into a cube if the number of
columns between the holes is even.

Proof (sketch). We prove that a 3× 6 rectangle with
two unit squares holes as in Figure 10 does not fold
into a cube. From that it follows that any 3× (4 + 2k)
rectangle with two unit square holes in the same row
separated by 2k columns does not fold into a cube. Note
that both holes must be folded non-trivially, otherwise
the polyomino cannot be folded into a cube.

The vertical fold in the middle of two holes must be
a 180◦ fold as depicted in Figure 10; otherwise there
would be two perpendicular 90◦ creases. There are two
types of crease patterns for this polyomino: when pairs
of parallel 90◦ creases run vertical, and when there is one
pair of horizontal parallel 90◦ creases. In both cases, the
faces in between of those creases all map to the same
face on C, which implies that the face opposite to the
one on C cannot be covered. �

1

1

1

1

1 1 11

Figure 10: A polyomino that does not fold into a cube.

4.2 Polyominoes with a Single Slit of Size 1

The following Lemma shows that slit holes of size one
do not help in folding a rectangular polyomino into C.

Lemma 11 A rectangular polyomino P with a single
slit hole of size 1 does not fold into C.

Proof. Because of Corollary 1 we can restrict to the
polyomino in Figure 11. Let A, B, C, D, E and F be
the faces adjacent to h as in Figure 11. Because the
paper must remain connected, the endpoints of h must
map to adjacent vertices of C. Then the paper behaves
exactly as if the slit were not there as follows. If E and B
maps to the same face of C, then A (resp., C) must map
to the same face as F (resp., D). Otherwise, E and B
maps to adjacent faces. Then, A and C (resp., F and D)
maps to the same face as B (resp., E). By the successive
application of Lemma 7 in a rectangular polyomino P ,
without loss of generality only the front, left, back and
right faces of C can be covered. �

A B C

DEF

Figure 11: A polyomino
with a slit hole of size one.

A B C

ED

F G H

Figure 12: A polyomino
with a single square hole.

4.3 Rectangles with a Single Square Hole

In this section, we show the following fact:

Theorem 12 If P is a rectangle with a single square
hole h, then P does not fold into a unit cube C.

Proof. Let P ′ denote the 3×3 rectangle with a central
unit square hole depicted in Figure 12. By Corollary 1
any polyomino P needs to be reduced to P ′:

Claim 1 Every rectangle with a single unit square hole
is foldable (if and) only if P ′ is foldable.

Consequently, it remains to show that

Claim 2 The polyomino P ′ does not fold into C.

We label the eight faces of P ′ by (A,B,C,D,E,F,G,H) as
depicted in Figure 12. Without loss of generality assume
that A maps to the top face of C. First, we argue that C
cannot map to the same face. If that was true, then B
also maps to the top face and by the number of faces,
every remaining face must map to a different face of C.
However, if D maps to the back face of C, so does E,
a contradiction. Consequently, A and C do not map to
the same face. By symmetry, F does not map to the top
face (and neither C nor F map to the same face as H).
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Next, we argue that the only faces that can map to
the bottom face of C are C and F: If E would map to the
bottom face, any of (B,C) or (D,F,G,H) must cover the
front face and right face, respectively. For B to cover the
front face, C must cover the bottom face. (Analogously,
the argument for G.) H has odd number of squares to
A, if H would map to the bottom face, one face would
have to be between A and H, hence, we would need to
reduce the number by folding, this folds H onto C or F.
A contradiction to the first fact. Hence, only faces that
can map to the bottom face of C are C and F.

W.l.o.g., let F be the bottom face, and D the back
face. Then the only faces that can cover the left face are
C and H; in particular, if E covers the left face then the
right face remains uncovered. Thus, we assume w.l.o.g.
that C covers the left face. Hence, B maps to the top
face. Now, if E maps to the back face, both G and H
must map to the right face of C, and the front face is
uncovered. If E maps to the left face, because the top
and left faces are doubly covered, every remaining face
must be singly covered. Then, H must map to the front
face. But face G can only map to the top face, which
cannot happen because A and B already cover this face.
The only remaining case is when both C and F map to
the bottom face, thus, B and D maps to the right and
back faces of C respectively. However, both E and G can
only cover faces of C that are already covered (bottom,
back and right faces), and C would not have all its faces
covered. �

4.4 An Algorithm to Check a Necessary Local Con-
dition for Foldability

Consider the following local condition: let s be a square
in a polyomino P such that the mapping between ver-
tices of s and vertices of a face of C has been fixed.
Then, for every adjacent square s′ of s, there are two
possibilities how to map its four vertices onto C: the
two vertices shared by s and s′ must be mapped con-
sistently and for the other two vertices there are two
options depending on whether s′ is folded at 90◦ angle
to an adjacent face of C, or whether it is folded at 180◦

to the same face of C.
The algorithm below checks whether there exists a

mapping between all vertices of squares of P to vertices
of C such that the above condition holds for every pair
of adjacent polyomino squares of P .

1. Run a breadth-first-search on the polyomino
squares, starting with the leftmost square in the
top row of P and continue via adjacent squares.
This produces a numbering of polyomino squares
in which each but the first square is adjacent to at
least one square with smaller number.

2. Map vertices of the first square to the bottom face
of C. Extend the mapping one square at a time
according to the numbering, respecting the local

condition (that is, in up to two ways). Track all
such partial mappings.

The algorithm is exponential, because unless inconsis-
tencies are produced, the number of possible partial
mappings doubles with every polyomino square. Never-
theless, it can be used to show non-foldability for small
polyominoes: if no consistent mapping exists for a poly-
omino, then the polyomino cannot be folded onto C. On
the other hand, any consistent vertex mapping covering
all faces of C obtained by the algorithm that we tried
could in practice be turned into a folding. However, we
have not been able to prove that this is always the case.

The algorithm above was used to prove that poly-
ominoes in Figure 13 do not fold, as well as it aided
us to find the foldings of polyominoes in Figure 7. An
implementation of the algorithm is available at http:

//github.com/zuzana-masarova/cube-folding.

Figure 13: These polyominoes with single L, U and
straight size-2 slits do not fold.

5 Conclusion

We showed that, if a polyomino P does contain a non-
simple hole, then P folds into C. Moreover, we showed
that a unit square hole, size 2 slits (straight or corner),
and a size-3 U-slit sometimes allow for foldability.

Based on the presented results, we created a font of
26 polyominoes with slits that look like each letter of
the alphabet, and each fold into C. See Figure A in
the appendix, and http://erikdemaine.org/fonts/

cubefolding/ for a web app.
We conclude with a list of interesting open problems:
• Does a consistent vertex mapping output by the al-

gorithm in Section 4.4 imply that the polyomino is
foldable? If so, is the folding uniquely determined?
• Is any rectangular polyomino with one L-shape, U-

shape or straight size-2 slit foldable? Currently, we
only know that the small polyominoes in Figure 13
do not fold.
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Figure A: Cube-folding font: the slits representing each letter enable each rectangular puzzle to fold into a cube.
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