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Abstract. This paper studies common unfoldings of various classes of
polycubes, as well as a new type of unfolding of polyominoes. Previously,
Knuth and Miller found a common unfolding of all tree-like tetracubes.
By contrast, we show here that all 23 tree-like pentacubes have no such
common unfolding, although 22 of them have a common unfolding. On
the positive side, we show that there is an unfolding common to all
“non-spiraling” k-ominoes, a result that extends to planar non-spiraling
k-cubes.

1 Introduction

Polyominoes. A polyomino or k-omino is a weakly simple orthogonal polygon
made from k unit squares placed on a unit square grid. Here the polygon explicitly
specifies the boundary, so that two squares might share two grid points yet we
consider them to be not adjacent. Two unit squares of the polyomino are adjacent
if their shared side is interior to the polygon; otherwise, the intervening two
edges of polygon boundary are called an incision. By imagining the boundary
as a cycle (essentially an Euler tour), each edge of the boundary has a unique
incident unit square of the polyomino.

In this paper, we consider only “tree-like” polyominoes. A polyomino is tree-
like if its dual graph, which has a vertex for each unit square and an edge for
each adjacency (as defined above), is a tree. See Figure 1. By double-counting
overlapping boundary segments, every tree-like k-omino has a boundary consisting
of 2k+2 unit edges. A subclass of tree-like polyominoes is the class of path-like
polyominoes, whose dual graph is a path.

Polycubes. The 3D analogs of polyominoes are polycubes—weakly simple
orthogonal polyhedra made from unit cubes on the unit cube grid. As before,
two cubes are adjacent if their shared side is interior to the polyhedron, and
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Fig. 1. Three octakaidecominoes (18-ominoes): non-tree-like (left), tree-like (middle),
and incision-free tree-like (right).

otherwise the intervening polyhedron surface is an incision. The surface of the
polycube consists of square sides of cubes that have no adjacent cube along that
side (either from empty space or from an incision).

In this paper, we consider only tree-like polycubes, where the dual graph is a
tree. The surface area of every tree-like k-cube is 4k+2.

In a planar polycube, the bottoms of all cubes lie in the xy plane. Thus,
planar polycubes are only one cube thick.

A polycube and its mirror image are considered distinct if there is no rigid
motion that transforms one onto the other. Such pairs of polycubes are called
chiral twins.

Unfolding. For the purposes of this paper, an unfolding of a polycube involves
cutting a collection of edges of the polycube’s surface so that the resulting
manifold with boundary can be placed as a polyomino in the plane. One may
think of the polycube faces as remaining rigid, with their common edges serving
as flexible creases. Note that we are not concerned with the motion that makes
the manifold planar. It is only the final planar non-overlapping state that matters.

In the literature on unfolding orthogonal polyhedra [2, 4–8, 10, 14], such an
unfolding is usually called a (weakly simple) grid unfolding, because it only cuts
along grid lines.

We also define a related notion of unfolding polyominoes into more linear
structures, though our notion borrows some of the spirit of the vertex-grid
unfoldings from [9, 6, 10].

A subpolyomino is a connected subset of squares from a polyomino P , contain-
ing one designated edge from the boundary of P , called a flap. A cut subpolyomino
is obtained by separating its interior from its entire boundary, except for its flap.
A partition of P is a collection of interior-disjoint cut subpolyominoes whose
closure of their union is P .

The boundary of a given polyomino P can be cut at a vertex, to produce a
(weakly simple) chain. To begin an unfolding of P we partition P and cut its
boundary at a vertex. Then we straighten the boundary chain by straightening
the angle at every vertex, via rotation. Meanwhile we maintain the connection
between every cut sub-polyomino with its flap (see Figure 2). The motion of
this unfolding does not concern us. What matters it the mapping from P to its



unfolded state. If no two squares map to the same location, the unfolding is valid.

By construction, every subpolyomino lies on the same side of the straightened
boundary (corresponding to the interior). Every polyomino has a trivial valid
unfolding by partitioning into just one subpolyomino, leaving it connected to an
arbitrary flap, and cutting all other boundary edges.

Fig. 2. A possible unfolding of a tree-like 6-omino.

Common unfoldings. Let G be a collection of polycubes (or polyominoes). If
each member of G can unfold to the same shape, then this shape is a common
unfolding of G. The central questions addressed in this paper are (1) do all
tree-like k-ominoes have a common unfolding? and (2) do all tree-like k-cubes
have a common unfolding?

When unfolding polycubes, one subtlety is whether the common unfolding
has an orientation, specifying which side of the polyomino is on top. A common
unfolding H is one-sided if all polycubes in G map their interior surface to the
same side of H; otherwise H is two-sided. If G consists of a pair of chiral twins,
and if one element of G has an unfolding H, then H is a two-sided (but not
necessarily one-sided) common unfolding for G.

Related work. Knuth and Miller found a common one-sided unfolding of all
seven tree-like tetracubes, by an exhaustive search. They used this to produce
Cubigami7 [12], a commercialized puzzle (see Figure 3).

Fig. 3. Cubigami7



Biedl et al. [1] found two examples of a common polyomino unfolding of
two distinct boxes (convex polycubes), described in [11, sec. 25.8.3]. Mitani and
Uehara [13] have shown that there is an infinite number of such polyominoes. It
remains open whether there is a polyomino that folds into more than two distinct
boxes.

The survey of O’Rourke [14] covers many results about unfolding orthogonal
polyhedra, which include polycubes. An orthostack is an orthogonal polyhedron
for which every horizontal planar slice is connected. Biedl et al. [2] showed that
orthostacks can be unfolded, but require cuts at half-integer coordinates. It
remains open whether orthostacks have polyomino (grid) unfoldings. They also
showed that orthotubes (what we call path-like polycubes) can always be grid
unfolded to polyominoes. Damian et al. [4] showed that a subclass of tree-like
polycubes called well-separated orthotrees can be grid unfolded into polyominoes.

Results. Define 〈c1, c2, . . . , c2k+2〉 to be the ordered sequence of unit edges
composing the unfolded boundary of a k-omino where c1 is the leftmost segment.
A caterpillar unfolding of a k-omino has one square attached to each edge
c2i+b2i/(k+1)c for 1 ≤ i ≤ k (see Figure 4).

The caterpillar unfolding, or just caterpillar, cannot fold into all path-like
polyominoes. For instance, take a path-like polyomino Q with no two bends
adjacent, and k even. Call ck+1 and ck+2 the middle edges of the caterpillar, i.e.,
the two consecutive edges without flaps. If neither of these two edges map to an
edge of an end-square of Q, then we claim that the folded caterpillar will not
cover all squares of Q: it suffices to consider four simple local cases to verify that
the squares mapped to by the middle edges could only be covered if there existed
two consecutive flaps in the unfolding, which does not occur on a caterpillar.
Therefore, the middle edges of a caterpillar must map to an end-square of Q.
Actually, the same must hold for edges c1 and c2k+2 (i.e., the first and last edges)
of the caterpillar. Now, if Q is made to be a spiral with a sufficient number of
bends, the length of the boundary on each side between end-squares will differ
significantly. Given the symmetry of the caterpillar and the necessary placement
of the middle and ends of the caterpillar on the end-squares of Q, this produces
a contradiction.

On the other hand, we prove that the caterpillar is a common unfolding
of many polyominoes, called “non-spiraling”. Roughly speaking, non-spiraling
polyominoes have almost equal boundary lengths between their endpoints. More
formally, a non-spiraling polyomino is path-like (allowing adjacent bends), but
with the additional restriction that the difference between the number of left
and right 90◦ turns does not exceed 3 if k is even, and does not exceed 4 if k is
odd. In Section 2 we show that the caterpillar can fold into any non-spiraling
polyomino. In Section 3.1 we prove a similar result for unfolding non-spiraling
planar polycubes into scolopendra polyominoes (illustrated in Figure 6).

In Section 3.2 we prove that there exist common one-sided unfoldings of all
tree-like incision-free planar k-cubes for k ≤ 6. In Section 3.3 we show that there
is no common unfolding for all tree-like pentacubes.
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Fig. 4. Caterpillar unfolding of k-ominoes for k even (top) or odd (bottom).

2 Unfolding Path-Like Polyominoes

As mentioned, caterpillars cannot fold into certain spirals. We conjecture that
any unfolding of a spiral will not also unfold from a straight path. See Fig. 5.

Fig. 5. Any common unfolding of these polyominoes must not be a caterpillar. We
conjecture that there is no common unfolding.

Theorem 1. For any positive value of k, the caterpillar is a common unfolding
of all non-spiraling k-ominoes.

Proof. It suffices to describe how to fold the caterpillar back to any non-spiraling
P . Let {s1, s2, . . . , sk} be the ordered sequence of unit squares composing P .
Let a non-shared side be a boundary edge of a square. The squares s1 and sk

each have three non-shared sides. All squares si for 1 < i < k have exactly
two non-shared sides. A square si is a connector if its two non-shared sides are
opposite, otherwise si is a turn. We assume without loss of generality that the
number of left turns is larger than the number of right turns (otherwise the order
of the sequence of squares is simply inverted).

Consider the subpath P ′ = {s2, . . . , sk−1} of P . The sides of P ′ form the left
subchain L and the right subchain R with |L|+ |R| = 2k−4. The length of L or
R corresponds to the number of connectors on the path plus twice the number of



right or left turns, respectively. Since P is non-spiraling, |R| − |L| ≤ 6 for even
values of k and |R| − |L| ≤ 8 for odd.

Suppose that k is even. Let C be the boundary of P . As a first folding step,
we match the segments ck−1, ck and ck+1 of C to the sides of s1. In general,
whenever a single segment ci is matched to a side sj , the remainder of the
mapping is fully determined (and thus so is the outcome of the folding attempt).
Therefore, the left portion of C, 〈c1, . . . , ck−2〉 is matched to L, and the right
portion 〈ck+2, . . . , c2k+2〉 is matched to R.

We claim that the two portions of C meet at the end of P , i.e., at a vertex
of sk: After the first step of the folding, the unmatched left and right portions
of C have size k−2 and k+1, respectively. We know that |R| − 6 ≤ |L| ≤ |R|
and |L|+ |R| = 2k−4 thus k−5 ≤ |L| ≤ k−2 and k−2 ≤ |R| ≤ k+1. Hence the
folding of the left and right portions of C is ensured to reach the end of P and
there is no overlap at sk.

This last fact implies that the two boundary edges of every turn belong to the
same portion of C, whereas the two boundary edges of every connector belong
to a different portion of C. Since there is no more than one square attached to
every pair of consecutive segments of C (i.e. every such pair includes at most
one flap), it follows that a turn does not create an overlap. Note that the first
bk/2c squares (on the left portion) of C are attached to even segments and the
remaining squares (on the right portion)are attached to odd segments. Thus if
the segments of C that match the sides of a connector are either both even or
both odd, there is no overlap. We prove this below.

Suppose that we iteratively match segments from both portions of C to
squares along P , starting from s1. Assume as an induction hypothesis that during
the folding process, after the segments of C have been matched to the sides of s`,
both of the first segments of the remaining unmatched left and right portions of
C are even, or both are odd. Observe that this is the case for the first step after
we match the sides of s1. Now if s`+1 is a connector, the first segment of each
unmatched portion of C is matched to the side of s`+1. Since these two segments
are either both even or both odd there is no overlap and the induction hypothesis
is satisfied. If s`+1 is a turn then two segments of one of the unmatched sides of
C are matched to the side of s`+1 and the induction hypothesis is satisfied. This
concludes the proof for the even case.

For odd values of k, we have k−6 ≤ |L| ≤ k−2 and k−2 ≤ |R| ≤ k+2. If
|R| ≤ k−1 then the segments ck+1, ck+2 and ck+3 of C are folded so that they
match the sides of s1. Otherwise this is done with the segments ck−2, ck−1 and
ck. Using similar arguments as in the previous case (k even) we can show that
this yields a valid folding. ut

In the following we give a bound on the number of non-spiraling k-ominoes.

Corollary 1. For any odd k, there exists a common unfolding of a set of at least
1
4C(k−1)/2 k-ominoes, where Cn is the nth Catalan number.



Proof. A Dyck path [3] of order n is a monotone path along the edges of a n× n
square grid, going from (0, 0) to (n, n) while always remaining below (possibly
touching) the diagonal x = y. The number of Dyck paths of order n is Cn.

The number of grid vertices on a Dyck path of order n is 2n+1 and the
difference between the number of left and right turns does not differ by more
than 1. Thus a Dyck path of order (k−1)/2 is the dual of a non-spiraling k-omino.
Let D be a given Dyck path. D has at most one other Dyck path as a mirror
image (about the x = −y line). Also, D is a 180◦-rotation of at most one other
Dyck path. Thus there are at least 1

4C(k−1)/2 distinct Dyck paths (under rotation
and reflection). By Theorem 1 the set of polyominoes dual to these distinct Dyck
paths have a common caterpillar unfolding. ut

3 Unfolding Polycubes

3.1 Path-Like Planar Polycubes

Every path-like planar polycube has a planar dual, just as any path-like polyomino.
Thus non-spiraling polycubes are a subclass of path-like planar polycubes, and
are defined analogous to non-spiraling polyominoes.

The scolopendra is designed to be able to fold to any non-spiraling k-cube. It
has a primary structure formed by a row of 2k+2 unit squares {s1, . . . , s2k+2}.
Two additional squares, called feet, are joined to the remaining sides of each
square s2i+b2i/k+1c for 1 < i ≤ k. (see Fig. 6).

. . . . . .

. . . . . .

Fig. 6. The scolopendra, for k even and odd.

Theorem 2. The scolopendra is a common unfolding of all non-spiraling k-cubes.

Proof. It suffices to show how to fold a scolopendra H to any given k-cube.
Fold every foot of H so that it forms an angle of π/2 with its adjacent square.



Now, the projection of H along the common normal direction of each foot is
identical to the caterpillar unfolding shown in Fig. 4. The primary structure
of H projects to a line segment. Also, every non-spiraling k-cube projects to
its own unique non-spiraling k-omino. By Theorem 1 the projection of H will
cover the projection of the k-cube. What this means is that the feet of H will
correctly fold to cover all top and bottom faces of the k-cube. Meanwhile, the
primary structure of H covers all the side faces of the k-cube, just as the chain
of a caterpillar folds to create the boundary of a k-omino in Theorem 1. Thus
the scolopendra is a valid unfolding of the given k-cube. ut

Corollary 2. For any k, there exists a polyomino that folds to at least 1
4C(k−1)/2

k-cubes, where Cn is the nth Catalan number.

Proof. Similar to the proof of Corollary 1. ut

3.2 Tree-Like Planar Polycubes

Consider a k-tube, that is, a 1× 1× k box. One natural type of unfolding of an
k-tube is a river Nile unfolding, consisting of a 1 × (2k + 1) spine together with
2k squares attached symmetrically on either side of the spine. The spine can fold
into the end squares and two sides of the k-tube, while appropriately attached
squares can form the two remaining sides; but such a river Nile unfolding might
fold into other k-cubes as well.

The following result has been verified by exhaustive enumeration.

Proposition 1. For 0 < k ≤ 6, there exists a common river Nile unfolding of
all tree-like incision-free planar k-cubes. For 7 ≤ k ≤ 8, there is no common river
Nile unfolding of all tree-like incision-free planar k-cubes.

Indeed, there are 26 common river Nile unfoldings of all tree-like incision-free
hexacubes. Figure 7 shows one of them. The question remains open for k ≥ 9.

Fig. 7. A river Nile unfolding of all tree-like incision-free hexacubes, and how it folds
into a 6-tube.
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Fig. 8. The 27 incision-free pentacubes. Only those from 1 to 11 are planar. Those from
12 to 23 are chiral twins and are grouped by pairs.

3.3 Pentacubes

The Cubigami puzzle is a common unfolding of all incision-free tetracubes.
We investigate the problem of finding common unfoldings of all 27 incision-
free pentacubes (shown in Figure 8). The results described in this section are
experimental. Using a supercomputer at the Université Libre de Bruxelles, the
1,099,511,627,776 possible unfoldings of the 5-tube (Figure 8(1)) were generated.
For each unfolding it was determined which of the remaining pentacubes it could
be folded to. This yielded the following discoveries for tree-like incision-free
pentacubes:

– There is no common two-sided unfolding of all pentacubes (even when chiral
twins are considered identical).

– There are several two-sided common unfoldings for a set of 23 pentacubes
(one is pictured below). There is no set of 24 pentacubes that includes the
5-tube and has a common unfolding.

– There are 27 one-sided common unfoldings for a set of 22 pentacubes. There is
no set of 23 pentacubes that includes the 5-tube and has a common unfolding.

– There is a unique two-sided unfolding of all 22 non-planar pentacubes (Fig-
ure 8(12–27)), shown below.

– There are 492 common one-sided unfoldings of all planar pentacubes (Fig-
ure 8(1–11)). None of them can fold to a non-planar pentacube. One such
unfolding is shown below.



– There is no common two-sided unfolding of all path-like pentacubes.
– The smallest subset of pentacubes that have no common unfolding has a size

of at most 4. For example pentacubes (numbered in Figure 8) 1, 9, 27 taken
with any of 6, 7, 12, 13, 24 or 26 have no common unfolding.

It remains open if there is an ` such that for all k ≥ `, there are always two
incision-free k-ominoes without a common unfolding. We conjecture that this
is true. One natural candidate pair to consider was the (6k+1)-tube and k-jack.
However, as shown in Figure 9, a common unfolding of the two exists. We still
suspect that a modification of the jack, or a series of jacks, might resolve this
question.

Fig. 9. A common unfolding of the 2-jack and the 13-tube. This generalizes to the
k-jack and the (6k+1)-tube.
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