
Optimal Adaptive Algorithms for Finding the Nearest and

Farthest Point on a Parametric Black-Box Curve

Ilya Baran

ibaran@mit.edu

Erik D. Demaine

edemaine@mit.edu

MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street, Cambridge, MA 02139, USA

ABSTRACT

We consider a general model for representing and manip-
ulating parametric curves, in which a curve is specified by
a black box mapping a parameter value between 0 and 1
to a point in Euclidean d-space. In this model, we con-
sider the nearest-point-on-curve and farthest-point-on-curve

problems: given a curve C and a point p, find a point on
C nearest to p or farthest from p. In the general black-box
model, no algorithm can solve these problems. Assuming a
known bound on the speed of the curve (a Lipschitz condi-
tion), the answer can be estimated up to an additive error of
ε using O(1/ε) samples, and this bound is tight in the worst
case. However, many instances can be solved with substan-
tially fewer samples, and we give algorithms that adapt to
the inherent difficulty of the particular instance, up to a log-
arithmic factor. More precisely, if OPT(C, p, ε) is the mini-
mum number of samples of C that every correct algorithm
must perform to achieve tolerance ε, then our algorithm per-
forms O(OPT(C, p, ε) log(ε−1/OPT(C, p, ε))) samples. Fur-
thermore, any algorithm requires Ω(k log(ε−1/k)) samples
for some instance C ′ with OPT(C′, p, ε) = k; except that,
for the nearest-point-on-curve problem when the distance
between C and p is less than ε, OPT is 1 but the upper and
lower bounds on the number of samples are both Θ(1/ε).
When bounds on relative error are desired, we give algo-
rithms that perform O(OPT · log(2+(1+ε−1) ·m−1/OPT))
samples (where m is the exact minimum or maximum dis-
tance from p to C) and prove that Ω(OPT·log(1/ε)) samples
are necessary on some problem instances.

1. INTRODUCTION

Computational geometry has traditionally been focused
on polygonal objects made up of straight line segments. In
contrast, applications of geometric algorithms to computer-
aided design and computer graphics usually involve more
complex curves and surfaces. In recent years, this gap has

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’04, June 8–11, 2004, Brooklyn, New York, USA.
Copyright 2004 ACM 1-58113-885-7/04/0006 ...$5.00.

received growing attention with algorithms for manipulat-
ing more general curves and surfaces, such as circular arcs
[6], conic arcs [3, 17], and quadratic surfaces [13]. The most
general type of curve commonly considered in this algorith-
mic body of work is a piecewise bounded-degree polynomial
(algebraic) curve, although such curves are not usually ma-
nipulated directly and are more typically assumed to govern
some process such as the motion of a polygon in kinetic
collision detection [2].

Parametric Black-Box Curves. A much more general
model for specifying curves is the parametric black-box model

that represents a curve in Euclidean d-space as a function
C : [0, 1] → � d . The only operation that can be performed
is to sample (evaluate) the function at a given parameter
value x ∈ [0, 1].

Solving any nontrivial problem on a black-box curve re-
quires some additional conditions on the behavior of the
curve. We assume the Lipschitz condition that ‖C(x1) −
C(x2)‖ ≤ L|x1 − x2| for all x1, x2 ∈ [0, 1], for a known
constant L. Any piecewise-C1 curve has such a parameteri-
zation. By uniformly scaling the curve in

� d , we can assume
that the Lipschitz constant L is 1.

Nearest- and Farthest-Point-on-Curve Problems. In
this paper, we solve two of the most basic proximity queries
about black-box Lipschitz curves: given a curve C and a
point p, find a point on C that is closest to p (nearest point),
and find a point on C that is farthest from p (farthest point).
In the black-box model, these problems are impossible to
solve exactly, because an algorithm will never, in general,
sample the nearest or farthest point. Thus, a problem in-
stance also specifies an additive error tolerance ε, and our
goal is to find a point on the curve C whose distance to the
point p is within ±ε of the minimum or maximum possible.
See Figure 1. Although we focus on absolute (additive) er-
ror in this paper, we show in Section 6 how to modify the
absolute-error algorithms to obtain relative-error algorithms
(whose output is accurate to within a factor of 1 + ε) that
have nearly optimal adaptive performance.

Hard and Easy Instances. Any nearest-point-on-curve or
farthest-point-on-curve instance can be solved using 1/2ε +
O(1) samples: C(0), C(2ε), C(4ε), . . . , C(1). Unfortunately,
this many samples can be necessary in the worst case. For
example, when C(x) = q for all x outside an interval of
length 2ε where at speed 1 the curve moves toward p and

C(1)

C

closest point to p on C

also acceptable outputs

ε

p
C(0)

Figure 1: An instance of the nearest-point-on-curve problem.

then returns to q, we need 1/2ε −O(1) samples to find the
interval. Thus, worst-case analysis is not very enlightening
for this problem.

On the other hand, many instances are substantially eas-
ier. As an extreme example, if C is a unit-length line seg-
ment, then two samples, at C(0) and C(1), completely de-
termine the curve by the Lipschitz condition.

Adaptive Analysis. Because the instance-specific opti-
mal number of samples varies widely from Θ(1) to Θ(1/ε),
we use the adaptive analysis framework, considered before
in the context of boolean set operations [5] as well as sort-
ing [7] and aggregate ranking [8]. In the adaptive analysis
framework, the performance of an algorithm on a problem
instance is compared to OPT, the performance of the best
possible algorithm for that specific problem instance. By
definition, for every problem instance, there exists an algo-
rithm that achieves OPT on that instance. The question is
whether one adaptive algorithm uses roughly OPT(C, p, ε)
samples for every instance (C, p, ε).

Our Results. We develop adaptive algorithms that solve
the nearest-point-on-curve and farthest-point-on-curve prob-
lems using O(OPT(C, p, ε) log(ε−1/OPT(C, p, ε))) samples;
except that, for the nearest-point-on-curve problem when
the distance between C and p is less than ε, the number of
samples may be Θ(1/ε), yet OPT = 1. We also prove that
these algorithms are optimally adaptive in the sense that no
adaptive algorithm can achieve a strictly better bound (up
to constant factors) with respect to OPT and ε. Specifically,
we show that, for any ε > 0 and k > 0, there is a family of
curves C each with OPT(C, p, ε) = k such that every algo-
rithm (even randomized) requires Ω(k log(ε−1/k)) samples
on average for a curve C selected uniformly from the family;
and there is a family of instances of the nearest-point-on-
curve problem where the distance between C and p is less
than ε such that every algorithm requires Ω(1/ε) samples
on average, but OPT is 1.

Related Work. Because our curve model is a black box,
the problems that we consider here have natural formula-
tions in information-based complexity terms (see [16] for an
overview). However, information-based complexity is pri-
marily concerned with worst-case, average-case, or random-
ized analysis of more difficult problems, rather than adaptive

analysis of algorithms for easier problems as in this paper.
Information-based complexity does consider adaptive algo-
rithms (algorithms for which a query may depend on the
answers to previous queries), but primarily when they are
more powerful than non-adaptive algorithms in the worst
(or average, etc.) case, such as for binary search.

The problem of maximizing a Lipschitz function has been
studied in the context of global optimization. This problem
essentially corresponds to the special case of the nearest-
or farthest-point-on-curve problem in which d = 1. Be-
yond worst-case analysis, many algorithms for this problem
have been studied only experimentally (see, e.g. [10]), but
Piyavskii’s algorithm [14] has been previously analyzed in
what is essentially the adaptive framework, first in [4]. The
analysis was sharpened in [11] to show that the number of
samples the algorithm performs on (C, ε) is at most 4 times
OPT(C, ε). As Theorem 3 shows, this analysis cannot gen-
eralize to d > 1.

Practitioners who manipulate curves and surfaces typi-
cally use numerical algorithms, which are extremely general
but sometimes fail or perform poorly, or specialized algo-
rithms for specific types of curves, such as B-splines. Some
algorithms for manipulating general parametric curves and
surfaces guarantee correctness, but the theoretical perfor-
mance of these algorithms is either not analyzed [15] or
analyzed only in the worst-case [12, 9]. At the heart of
our algorithm is Günther and Wong’s [9] observation that
the portion of a Lipschitz curve between two nearby sample
points can be bounded by a small ellipse, as described in
Section 3.1.

2. PROBLEM STATEMENT

We use the real RAM model, which can store and ma-
nipulate exact real numbers in O(1) time and space. Ma-
nipulation of real numbers includes basic arithmetic (+, −,
×, ÷), comparisons, and nth roots. We separately ana-
lyze the number of samples and the additional computation
time. Although we describe and analyze our algorithms in
� 2 , both the algorithms and their analyses trivially carry
over to

� d for d > 2.

We assume without loss of generality that the Lipschitz
constant is 1, that the parameter space is the unit interval,
and that the query point p is the origin O. Throughout
our discussion of nearest-point-on-curve, dmin refers to the

EC(x1, x2)

C(x1) C(x2)

Figure 2: Some possible curves C inside an ellipse.

minimum distance from C to the origin. Analogously, dmax

denotes the maximum distance from C to the origin. We
assume that ε is smaller than 1/2 because otherwise, a single
sample at 1/2 immediately solves both problems. The two
problems we consider are to find a point on C whose distance
to O is approximately dmin or dmax:

Problem Nearest-Point-On-Curve Given a Lipschitz

curve C and an 0 < ε < 1/2, find a parameter x such that

‖C(x)‖ ≤ dmin + ε.

Problem Farthest-Point-On-Curve Given a Lipschitz

curve C and an 0 < ε < 1/2, find a parameter x such that

‖C(x)‖ ≥ dmax − ε.

3. NEAREST-POINT-ON-CURVE:

ADAPTIVE ALGORITHM AND

ITS ANALYSIS

3.1 Main Idea

The main observation is that, if we have sampled C at x1

and x2, then for x between x1 and x2, ‖C(x) − C(x1)‖ +
‖C(x) − C(x2)‖ ≤ |x2 − x1|. This means that when the
parameter x is between x1 and x2, C(x) stays within an
ellipse with foci at C(x1) and C(x2), whose major axis (sum
of distances to foci from a boundary point) has length |x2−
x1|. See Figure 2. Note that this ellipse is tight: by changing
C only between x1 and x2, we can force it to pass through
any point in the ellipse while keeping C Lipschitz. The
following propositions formalize this idea:

Definition 1. Given a Lipschitz curve C and an interval
[x1, x2] ⊆ [0, 1], define the ellipse

EC(x1, x2) =
�
p ∈ � 2 ��� ‖C(x1)−p‖+‖C(x2)−p‖ ≤ x2−x1 � .

Proposition 1. For an interval J = [x1, x2] ⊆ [0, 1],
C(J) ⊆ EC(x1, x2).

Proof: Let x ∈ J . By the Lipschitz condition, ‖C(x1) −
C(x)‖ ≤ x − x1 and similarly ‖C(x2) − C(x)‖ ≤ x2 − x.
Adding these, we get ‖C(x1) − C(x)‖ + ‖C(x2) − C(x)‖ ≤
x2 − x1, so C(x) ∈ EC(x1, x2). 2

Proposition 2. Let J = (x1, x2) ⊆ [0, 1] and let C be a

Lipschitz curve. Then for every point p in EC(x1, x2), there

is a Lipschitz curve C ′ such that C(x) = C ′(x) for x 6∈ J
and for some x ∈ J, C ′(x) = p.

Proof: We can make C ′ on J consist of a line segment from
C(x1) to p and another one from p to C(x2). Because the
total length of these line segments is at most x2 − x1, we
can parametrize C′ at unit speed (or less) on J . 2

The following proposition will often be used implicitly in
our reasoning:

Proposition 3. If J ′ = [x′
1, x

′
2] and J = [x1, x2] and

J ′ ⊆ J, then EC(x′
1, x

′
2) ⊆ EC(x1, x2).

Proof: If p ∈ EC(x′
1, x

′
2) then ‖C(x′

1)− p‖+ ‖C(x′
2)− p‖ ≤

x′
2 − x′

1 by definition. We have ‖C(x1)− C(x′
1)‖ ≤ x′

1 − x1

and ‖C(x2)−C(x′
2)‖ ≤ x2−x′

2 by the Lipschitz condition on
C. Adding the three inequalities and applying the triangle
inequality twice, we get

‖C(x1)− p‖+ ‖p− C(x2)‖ ≤

≤ ‖C(x1)− C(x′
1)‖+ ‖C(x′

1)− p‖+

+‖p− C(x′
2)‖+ ‖C(x′

2)− C(x2)‖ ≤ x2 − x1

So p ∈ EC(x1, x2), as required. 2

For notational convenience, let closest-possible(x1, x2) de-
note the minimum distance from a point in EC(x1, x2) to
the origin.

3.2 Proof Sets

The properties of EC immediately suggest a criterion for
determining whether a set of points on a curve is sufficient
to guarantee that a point sufficiently close to O is among
those in the set: the distance from O to the nearest sampled
point and the distance from O to the nearest ellipse (around
adjacent points) should differ by at most ε.

Definition 2. Let P = {x1, x2, . . . , xn} be a set of param-
eters in [0, 1] so that 0 = x1 < x2 < · · · < xn = 1. Let
xmin ∈ P be an element that minimizes ‖C(xi)‖. Then P is
a proof set if ‖C(xmin)‖ − ε ≤ closest-possible(xi, xi+1) for
all i.

The following proposition shows that producing a proof
set is the only way an algorithm can guarantee correctness.

Proposition 4. Let P = {x1, x2, . . . , xn} ⊆ [0, 1] so that

0 = x1 < x2 < · · · < xn = 1. Let xmin be an element of

P that minimizes ‖C(xi)‖. If P is a proof set, then for any

curve C′ such that C ′(xi) = C(xi), xmin is a solution to

nearest-point-on-curve. Conversely, if P is not a proof set,

there is a curve C ′ such that C ′(xi) = C(xi) for all i and

for which xmin is not a solution.

Proof: For any curve C ′ for which C′(xi) = C(xi), P is
a proof set for C ′ precisely when it is a proof set for C.
Applying Proposition 1, we find that C ′([0, 1]) is contained
in the union of the ellipses EC(xi, xi+1). So, if P is a proof
set, ‖C′(xmin)‖−ε ≤ ‖C′(x)‖ for all x ∈ [0, 1], which implies
that xmin is a solution for C ′.

Conversely, if P is not a proof set, then there is a point p
in some ellipse EC(xi, xi+1) such that ‖C(xmin)‖− ε > ‖p‖.
By Proposition 2, we can construct a curve that coincides

with C except in (xi, xi+1) and passes through p. For this
curve, xmin will not be a solution. 2

The requirement that x1 = 0 and xn = 1 allows the anal-
ysis to avoid special cases. An algorithm could guarantee
correctness without sampling these endpoints, but because
this saves only a constant amount of work, we ignore this
possibility in favor of simpler analysis.

3.3 Algorithm Description and Correct-

ness

As we sample the curve, we maintain a set of ellipses
around the unsampled intervals. At each step, we take the
interval whose ellipse is closest to the origin and sample in
the middle of it, thus replacing it with two smaller inter-
vals (with smaller ellipses). When the sampled points form
a proof set, we terminate and output the closest point of
those sampled.

Let Q be a priority queue that stores triples of real num-
bers (d, x1, x2) sorted by d. The algorithm is as follows:

closest-point(C, ε)

1. Add (closest-possible(0, 1), 0, 1) to Q

2. If ‖C(0)‖ < ‖C(1)‖ then (x̂min, d̂min)← (0, ‖C(0)‖)
else (x̂min, d̂min)← (1, ‖C(1)‖)

3. Do until finished:
4. (d, x1, x2)← extract-min(Q)

5. If d̂min − ε ≤ d then output x̂min and stop
6. x← (x1 + x2)/2

7. If ‖C(x)‖ < d̂min then (x̂min, d̂min)← (x, ‖C(x)‖)
8. Add (closest-possible(x1, x), x1, x) to Q
9. Add (closest-possible(x, x2), x, x2) to Q

Correctness follows from Proposition 4: the algorithm
stops when the points sampled form a proof set and out-
puts the closest point. To show termination, we note that
no interval of length 2ε or less is ever subdivided:

Proposition 5. If in line 5, x2 − x1 ≤ 2ε, closest-
point terminates at this line.

Proof: Because d̂min stores the minimum known distance
to a point, d̂min ≤ ‖C(x1)‖ and d̂min ≤ ‖C(x2)‖. Let p
be a point in EC(x1, x2) such that ‖p‖ = d. Then by the
definition of EC , ‖C(x1)−p‖+‖C(x2)−p‖ ≤ 2ε. This means
that at least one of ‖C(x1) − p‖ ≤ ε or ‖C(x2) − p‖ ≤ ε is
true. If ‖C(x1) − p‖ ≤ ε, then, by the triangle inequality,

‖C(x1)‖ − ‖p‖ ≤ ε. This implies that d̂min − d ≤ ε so the
algorithm stops. Similarly for the other possibility. 2

From this proposition, we can conclude that closest-
point stops after at most O(1/ε) loop iterations because
only O(1/ε) sample points at least ε apart can fit in [0, 1],
and in each iteration of the loop, the algorithm always sam-
ples one new point in an interval of width at least 2ε.

3.4 Ellipse Lemma

To analyze closest-point, we will make use of one geo-
metric fact in three incarnations:

C(x1)
C(x4)

C(x2)

O

q

p

d

d− a

d + a

Figure 3: Ellipse Lemma

Ellipse Lemma. Let 0 ≤ x1 ≤ x2 ≤ x3 ≤ x4 ≤ 1. Also,

let d, a ∈ �
with 0 < a < d. If closest-possible(x1, x2) ≤

d, closest-possible(x3, x4) ≤ d, and ‖C(x2)‖ ≥ d + a, then

closest-possible(x1, x4) ≤ d− a.

Proof: See Figure 3. We may assume without loss of gen-
erality that x2 = x3, because if closest-possible(x3, x4) ≤ d,
then closest-possible(x2, x4) ≤ d. Let p be the intersec-
tion of the circle ‖v‖ = d − a and the ray from the origin
through C(x2). Obviously, ‖p‖ = d − a. We will show
that ‖C(x1) − p‖ ≤ x2 − x1 and ‖C(x4) − p‖ ≤ x4 − x2.
This will prove that p ∈ EC(x1, x4), and therefore closest-
possible(x1, x4) ≤ d− a.

Because closest-possible(x1, x2) ≤ d, there is a point q
such that ‖q‖ ≤ d and ‖C(x1)− q‖+‖q−C(x2)‖ ≤ x2−x1.
We may set the axes so that C(x2) is on the y axis. So let
C(x2) = (0, y). Then y ≥ d + a and p = (0, d − a). Now
if q = (xq, yq), then ‖q − C(x2)‖ = � x2

q + (y − yq)2 and

‖q − p‖ = � x2
q + (yq − (d− a))2. Because ‖q‖ ≤ d, yq ≤ d,

we have (yq − (d− a))2 ≤ ((d + a)− yq)
2 ≤ (y− yq)

2, which
means that ‖q − p‖ ≤ ‖q − C(x2)‖. Using this, the triangle
inequality, and the construction requirement of q, we get:

‖C(x1)− p‖ ≤ ‖C(x1)− q‖+ ‖q − p‖ ≤
≤ ‖C(x1)− q‖+ ‖q − C(x2)‖ ≤ x2 − x1

The argument that ‖C(x4)− p‖ ≤ x4 − x2 is symmetric. 2

When generalizing this lemma from
� 2 to

� d , we consider
separately the planes through O, C(x1), C(x2) and through
O, C(x2), C(x4).

We will use the Ellipse Lemma in three different places in
the analysis, so we prove three simple corollaries:

Ellipse Lemma (1). Let [x1, x] and [x, x2] be intervals.

Let 0 < ε < d. If closest-possible(x1, x2) ≥ d − ε and

‖C(x)‖ ≥ d, then closest-possible(x1, x) ≥ d−ε/2 or closest-
possible(x, x2) ≥ d− ε/2 or both.

Proof: Suppose for contradiction that this is not the case:
that we have closest-possible(x1, x) < d − ε/2 and closest-
possible(x, x2) < d − ε/2. Let d′ be the larger of closest-
possible(x1, x) and closest-possible(x, x2). We have d′ <
d − ε/2. Now let a = d − d′ and apply the Ellipse Lemma
to [x1, x], [x, x2], d′ and a to get closest-possible(x1, x2) ≤
d′ − a. But d′ − a = 2d′ − d < d− ε, which contradicts the
assumption that closest-possible(x1, x2) ≥ d− ε. 2

Ellipse Lemma (2). Let [x1, x2] and [x3, x4] be intervals

with x3 ≥ x2. Let 0 < ε/2 < d. If closest-possible(x1, x2) ≤
d, closest-possible(x3, x4) ≤ d, and ‖C(x2)‖ > d+ ε/2, then

closest-possible(x1, x4) < d− ε/2.

Proof: Let a = ‖C(x2)‖ − d so a > ε/2. Now apply the
Ellipse Lemma to [x1, x2], [x3, x4], d, and a to get closest-
possible(x1, x4) ≤ d− a < d− ε/2. 2

Ellipse Lemma (3). Let [x1, x] and [x, x2] be intervals

and let 0 < ε/2 < d. If closest-possible(x1, x2) ≥ d − ε/2
and ‖C(x)‖ > d + ε/2, then closest-possible(x1, x) > d or

closest-possible(x, x2) > d or both.

Proof: Suppose that closest-possible(x1, x) ≤ d and closest-
possible(x, x2) ≤ d. Apply the Ellipse Lemma(2) to get that
closest-possible(x1, x2) < d − ε/2, which is a contradiction.
2

3.5 OPT

We define the OPT of a problem instance to be the num-
ber of samples that the best possible algorithm makes on
that instance. In our analysis, we use the fact that OPT
is equal to the size of the smallest proof set, which follows
from Proposition 4. Note that OPT depends on C and ε,
but we write OPT or OPT(ε) instead of OPT(C, ε) when
the arguments are clear. For the analysis of closest-point
with ε < dmin we need the following estimate: for any curve
C, OPT(ε/2) = O(OPT(ε)). We prove this by starting with
a proof set for ε, inserting a new sample point in between
every pair of sample points in the proof set, and using the
Ellipse Lemma with a continuity/connectedness argument
to show that we can force the result to be a proof set for
ε/2.

Proposition 6. If ε < dmin, for any problem instance

(C, ε), OPT(C, ε/2) ≤ 2OPT(C, ε).

Proof: Consider a proof set P of size OPT(ε). Let xi be the
ith smallest element of P . Because P is a proof set, closest-
possible(xi, xi+1) ≥ dmin − ε. Now let

A = {x ∈ [xi, xi+1] | closest-possible(xi, x) ≥ dmin − ε/2}
B = {x ∈ [xi, xi+1] | closest-possible(x, xi+1) ≥ dmin − ε/2}

By the Ellipse Lemma(1), A ∪ B = [xi, xi+1]. Also, be-
cause closest-possible(xi, xi) = ‖xi‖ ≥ dmin and closest-
possible(xi+1, xi+1) = ‖xi+1‖ ≥ dmin, A 6= ∅ and B 6= ∅.
Because closest-possible is continuous in both variables, A is
closed relative to [xi, xi+1], being the preimage of the closed
set {t | t ≥ dmin − ε} under t = closest-possible(xi, x) with
respect to the second variable. Similarly, B is closed relative
to [xi, xi+1]. Because [xi, xi+1] is connected, A ∩ B 6= ∅, so
let x ∈ A∩B. This means closest-possible(xi, x) ≥ dmin−ε/2
and closest-possible(x, xi+1) ≥ dmin− ε/2. So for every pair
of adjacent samples in P , we can insert a new sample x be-
tween them (x may, of course, coincide with one of the sam-
ples already in P , in which case we ignore it) so that in the
resulting set, closest-possible(xj , xj+1) ≥ dmin − ε/2 for all
j. Thus, we will have inserted at most an additional |P | − 1
elements. In order to make the result a proof set, we may
need to insert one more element, x such that ‖C(x)‖ = dmin.
This will make the result into a proof set for ε/2 with 2|P |
elements. 2

3.6 Phases

We split an execution of closest-point into two phases
and analyze each phase separately, giving an upper bound on
the number of curve samples. The phases are a construction
for the analysis only; the algorithm does not know which
phase it is in. The algorithm starts out in Phase 1, and
switches to Phase 2 when all of the ellipses around intervals
stored in Q are no closer than dmin − ε/2 to the origin.
The distance from the ellipses in Q to the origin can only
grow (as ellipses close to the origin are replaced by ellipses
farther away), so once the algorithm enters Phase 2, it can
never leave it. Let P be a proof set for ε/2 whose size is
OPT(ε/2). We show that in each phase, the number of
samples is O(|P | log(ε−1/|P |)). We will want the following
easy fact:

Proposition 7. Let ai for 1 ≤ i ≤ |P | be positive real

numbers. If we have � |P |
i=1 ai ≤ ε−1, then � |P |

i=1 log ai ≤
|P | log(ε−1/|P |).

Proof: By the arithmetic-geometric mean inequality, we

have |P |

� �
|P |
i=1 ai ≤ � |P |

i=1
ai

|P |
≤ ε−1

|P |
. Taking the logarithm of

both sides gives us � |P |
i=1

log ai

|P |
≤ log(ε−1/|P |). Multiplying

both sides by |P | gives us the desired result. 2

3.7 Phase 1

Proposition 8. If closest-possible(x1, x2) < dmin − ε/2,
then P must have a point in the open interval (x1, x2).

Proof: For contradiction, suppose that P has no point in
(x1, x2). This means that P has two consecutive points,
x′

1 and x′
2, such that [x1, x2] ⊆ [x′

1, x
′
2]. So EC(x1, x2) ⊆

EC(x′
1, x

′
2) and therefore, closest-possible(x1, x2) ≥ closest-

possible(x′
1, x

′
2), which means that closest-possible(x′

1, x
′
2) <

dmin − ε/2. Hence, P cannot be a proof set for ε/2. 2

Let J = [x1, x2] ⊆ [0, 1] be an interval that is subdivided
in Phase 1. This implies that closest-possible(x1, x2) <
dmin − ε/2 so by Proposition 8, P must have a point in

(x1, x2). This means that any interval that is subdivided in
Phase 1 contains a point of P .

We need to count the samples in this phase. We achieve
this by classifying every subdivision as either a “split” or a
“squeeze”. A subdivision is a split if both resulting intervals
contain points from P and a squeeze if one of the result-
ing intervals has no points from P . Because the number of
splits cannot be more than |P | − 1, we only need to count
squeezes. If J is an interval in Q at some point in the exe-
cution of Phase 1, let S(J) be the number of squeezes that
have happened to intervals containing J and let L(J) be the
length of J . We want the following invariant:

Proposition 9. If at some point during Phase 1 of the

algorithm, the intervals that intersect P are J1, J2, . . . , Jk,

then � k

i=1 2S(Ji)L(Ji) = 1.

Proof: We proceed by induction on the number of subdi-
visions. At the start of the execution of closest-point,
S([0, 1]) = 0 and L([0, 1]) = 1 so the base case is clearly
true. Suppose an interval Ji is split into Ji1 and Ji2. Be-
cause no new squeezes have occurred, S(Ji1) = S(Ji2) =

S(Ji) and L(Ji1) = L(Ji2) = L(Ji)/2. So 2S(Ji)L(Ji) =

2S(Ji1)L(Ji1)+ 2S(Ji2)L(Ji2) and the sum is not changed. If
the interval Ji is squeezed into Ji1, then S(Ji1) = 1 + S(Ji)

and L(Ji1) = L(Ji)/2 so 2S(Ji)L(Ji) = 2S(Ji1)L(Ji1) and
the sum is not changed in this case either. 2

Proposition 10. There are O(|P | log(ε−1/|P |)) samples

in Phase 1.

Proof: As noted above, we only need to count the squeezes.
By Proposition 9, at the end of Phase 1, if J1, . . . , Jk con-
tain points of P , then � k

i=1 2S(Ji)L(Ji) = 1. But because
no interval of length ε or less ever appears, L(Ji) > ε so

� k

i=1 2S(Ji) < ε−1 and k ≤ |P |. Using Proposition 7, we

get � k

i=1 S(Ji) ≤ k log(ε−1/k) = O(|P | log(ε−1/|P |)). Ev-

ery squeeze increases � k

i=1 S(Ji) by 1 and no operation
ever decreases it, so the number of squeezes is at most
O(|P | log(ε−1/|P |)). 2

3.8 Phase 2

If in Phase 2 a point x is sampled for which ‖C(x)‖ ≤
dmin + ε/2, the algorithm stops. Because we are giving an
upper bound on the running time, we may assume that every
point sampled is farther than dmin + ε/2 from the origin.

If closest-possible(xi, xi+1) > dmin, then [xi, xi+1] will
never be chosen for subdivision. This is because an inter-
val around a point that is dmin away from the origin has its
ellipse at distance at most dmin from the origin and will be
chosen over [xi, xi+1]. Thus, let us call an interval [xi, xi+1]
alive if closest-possible(xi, xi+1) ≤ dmin and call it dead oth-
erwise. No dead interval is ever subdivided.

Proposition 11. If ε < dmin, then when the closest-
point enters Phase 2, there are O(|P |) alive intervals.

Proof: Let the alive intervals at the start of Phase 2 be
[x1, y1], [x2, y2], . . . , [xk, yk]. From the assumption above,
‖C(xi)‖ > dmin + ε/2 and ‖C(yi)‖ > dmin + ε/2. Because
the intervals are alive, closest-possible(xi, yi) ≤ dmin. This
means that we can apply the Ellipse Lemma(2) to [xi, yi] and

[xi+1, yi+1] to get closest-possible(xi, yi+1) < dmin−ε/2. By
Proposition 8, P has a point in (xi, yi+1). Because at most
two segments of the form (xi, yi+1) can overlap, and each
one has at least one point of P , there must be at most 2|P |
of these segments. 2

Now suppose we subdivide an interval [x1, x2] into [x1, x]
and [x, x2]. Because the algorithm is in Phase 2, closest-
possible(x1, x2) ≥ dmin − ε/2. By our assumption above,
‖C(x)‖ > dmin + ε/2. Applying the Ellipse Lemma(3),
we get that either closest-possible(x1, x) > dmin or closest-
possible(x, x2) > dmin (or both). This implies that when the
interval is subdivided, at most one of the resulting intervals
can be alive.

Proposition 12. If ε < dmin, then closest-point per-

forms at most O(|P | log(ε−1/|P |)) samples in Phase 2.

Proof: Let l1, l2 . . . , lk be the lengths of the alive intervals
at time t. Define p(t) = � k

i=1 log2(2li/ε). Because no in-
terval of length 2ε or less is ever subdivided, li > ε and so
each term in the sum is at least 1. At every subdivision,
an alive interval is replaced with at most one alive interval
of half the length; therefore, each subdivision decreases p(t)
by at least 1. This implies that the total number of sub-
divisions cannot be greater than p(t0) where t0 is the time
when the algorithm enters Phase 2. Now consider the sit-
uation at time t0. The total length of the alive intervals is
at most 1, so we have � k

i=1 2li/ε ≤ 2ε−1. Applying Propo-
sition 7 to this inequality and to the definition of p(t0), we
get p(t0) ≤ k log(2ε−1/k). By Proposition 11, k = O(|P |),
so we get p(t0) = O(|P | log(ε−1/|P |)), which means there
are at most that many samples of C in phase 2. 2

3.9 Analysis Conclusion

Theorem 1. If on a problem instance with ε < dmin,

we let n = OPT(ε) log(ε−1/OPT(ε)), algorithm closest-
point uses O(n) samples and O(n log n) additional time,

where the constant in the O notation is independent of the

instance.

Proof: Combining Propositions 10, 12, and 6, we get that
the number of samples the algorithm makes is O(n). Be-
cause the samples are stored in a priority queue, which may
be implemented as a heap, it takes O(log n) time to insert
or extract a sample. Hence the algorithm uses O(n log n)
time for the heap operations. 2

This theorem does not hold for dmin ≤ ε because then
the condition a < d would not be satisfied when we invoke
the Ellipse Lemma. The best conclusion we can make about
the running time of closest-point when dmin ≤ ε is that
the number of samples is O(1/ε). Below we prove that it is
impossible to do better with respect to OPT.

4. LOWER BOUNDS

4.1 Worst-Case Lower Bound

As mentioned in the introduction, in the worst case, we
cannot do better than the trivial algorithm:

Figure 4: An example C for the adaptive lower bound for n = 24 and k = 4.

Theorem 2. For any ε > 0, there is a problem instance

of nearest-point-on-curve on which any algorithm requires

Ω(ε−1) samples.

Proof: Suppose we are given ε. Let C be the constant
“curve”, C(x) = p for all x ∈ [0, 1] with ‖p‖ > ε. Now, for
any interval [x1, x2] ⊆ [0, 1], EC(x1, x2) is a circle centered
at p whose radius is (x2 − x1)/2. This means that in any
proof set, every two points are less than 2ε−1 apart in the
parameter space, so the OPT for this problem is Θ(ε−1). 2

4.2 Adaptive Lower Bound

We prove that closest-point is optimal with respect to
the number of samples of C.

Theorem 3. For any algorithm, and for any k ∈ � , and

any ε ∈ (0, 1/k), there is a problem instance with OPT =
O(k) on which that algorithm requires Ω(k log(ε−1/k)) sam-

ples.

Proof: Let ε and k be given. We will construct a problem
instance family for which k = Ω(OPT) and the number of
samples required by any algorithm is Ω(k log(ε−1/k)) on at
least one instance of that family.

Let n = ε−1/3. Divide the parameter space into n equal
regions and group them into k groups of n/k regions each. In
each group, let the curve have one spike in some region (and
be flat in the other regions of that group). Let k − 1 of the
spikes point up, and let the remaining spike point down. See
Figure 4. The origin is far below the curve and ε is less than
the height of a spike, so that the only solutions to a nearest-
point-on-curve instance of this form are on the spike pointing
down. Because an omniscient adversary may force the last
spike the algorithm examines to be the one pointing down,
and the algorithm cannot determine whether a spike points
up or down without sampling on it, the algorithm must find
every spike. Note that if x is a point in parametric space that
corresponds to the boundary between groups, C(x) does not
depend on where the spikes are chosen. Moreover, sampling
inside one of the k groups (and not on a spike) only gives
information about whether the spike in that group is to the
left or to the right of the point sampled. This implies that
the algorithm must perform a binary search on each of the
k groups. The minimum number of samples to do this is
indeed Ω(k log(n/k)).

To show that k = Ω(OPT), we note that because the
curve is piecewise linear (and parametrized at unit speed),
placing a point at every corner gives a proof set for any ε,
because that completely determines the curve. Each spike
has 3 corners and there are possibly two more endpoints, so
OPT ≤ 3k + 2. 2

4.3 Lower Bound for dmin ≤ ε

Theorem 4. For any algorithm and for any ε > 0, there

is a problem instance with dmin ≤ ε such that the algorithm

requires Ω(OPT(ε)ε−1) samples to solve it.

Proof: Because dmin ≤ ε, OPT(ε) = 1. To define C, let us
split [0, 1] into ε−1/4 intervals of width 4ε. Fix one of these
intervals, J = (x1, x1 + 4ε). For x 6∈ J , let C(x) = (0, 2.5ε).
For x ∈ J let

C(x) =

�
(0, 2.5ε − (x− x1)) for x < x1 + 2ε

(0, 2.5ε − (x1 + 4ε− x)) for x ≥ x1 + 2ε.

Informally, one of the intervals has a spike of height 2ε point-
ing at the origin. Now, at x = x1 + 2ε, C(x) = (0, ε/2), so
dmin = ε/2 and OPT = 1. The only valid outputs on such a
problem instance are points on the spike. Because sampling
the curve anywhere except J gives no information on the lo-
cation of the spike, which could be in any of ε−1/4 possible
intervals, an algorithm is forced to do a linear search that
requires Ω(ε−1) samples. 2

These lower bounds also work for randomized algorithms,
because the reductions are from linear search and binary
search, problems for which randomized algorithms can do
no better than deterministic algorithms (up to constant fac-
tors).

5. FARTHEST-POINT-ON-CURVE

It is natural to consider the symmetric problem of find-
ing a point on C whose distance to a given point is within
ε of the largest possible. It is straightforward to mod-
ify closest-point to farthest-point, which solves the
farthest-point-on-curve problem. The first two lower bounds
for nearest-point-on-curve hold for farthest-point-on-curve
as well. The analysis is also easy to carry over to farthest-
point, with one exception: the natural “inversion” of the El-
lipse Lemma is false. Figure 5 illustrates this. Nevertheless,
the algorithm running time is the same (to within a constant
factor) because we can prove a modified inverted Ellipse
Lemma. Note that farthest-possible(x1, x2) (the analogue
of closest-possible(x1, x2)) refers to the maximum distance
from a point in EC(x1, x2) to the origin. To simplify the
proof, we impose an extra condition that ‖C(xi)‖ ≤ d − a,
which was required only for i = 2 in the original lemma.

Inverted Ellipse Lemma. Let 0 ≤ x1 ≤ x2 ≤ x3 ≤
x4 ≤ 1. Also, let d, a ∈ �

such that 0 < a < d. If

farthest-possible(x1, x2) ≥ d, farthest-possible(x3, x4) ≥ d,
and ‖C(xi)‖ ≤ d − a for i ∈ {1, 2, 3, 4}, then farthest-
possible(x1, x4) ≥ d + 3

5
a.

d + a

d − a

d

Figure 5: A counterexample to the inverted Ellipse
Lemma (ellipses are to scale)

The proof is omitted from the extended abstract. Please
see the technical report [1] for details.

Because the Inverted Ellipse Lemma has a weaker con-
clusion, in terms of the constant, than the original Ellipse
Lemma, the analogue of Proposition 6 based on the Inverted
Ellipse Lemma states that OPT(5ε/8) ≤ 2OPT(ε). This
means that in order to get that OPT(3ε/8) = O(OPT(ε)),
which we need for the analysis of Phase 2, we need to apply
the analogue of Proposition 6 three times (because (5/8)3 <
3/8).

The analysis of farthest-point-on-curve does not have the
problem that nearest-point-on-curve has when dmin ≤ ε. Ev-
ery time the Inverted Ellipse Lemma is used in the trans-
formed proof, the condition that a > d holds regardless of
the curve or ε, unlike in nearest-point-on-curve.

Theorem 5. On the farthest-point-on-curve problem in-

stance (C, ε), let n = OPT(ε) log(ε−1/OPT(ε)). Then al-

gorithm farthest-point uses O(n) samples and O(n log n)
additional time.

6. RELATIVE ERROR

We now examine modifications to our problems in which
the goal is to guarantee a relative error bound instead of
an absolute error bound. Specifically, for the nearest-point-
on-curve problem, the objective is a parameter x such that
‖C(x)‖ ≤ (1 + ε)dmin; and for farthest-point-on-curve, we
need ‖C(x)‖ ≥ dmax/(1+ε). We require that a nearest-point
(farthest-point) problem instance has dmin (dmax) nonzero,
because otherwise the problem is unsolvable. It turns out
that simple modifications to the absolute-error algorithms
analyzed above yield adaptive relative-error algorithms. For
proving an upper bound on the number of samples used by
the algorithms, we focus on the nearest-point problem; for
farthest-point, the upper bound analysis is analogous.

We start by defining a proof set for a relative-error nearest-
point problem instance. Let P be a set of samples of C that
includes 0 and 1, let UP be the distance from the nearest
point of P to the origin, and LP be the distance from the
nearest ellipse around adjacent points of P to the origin.
We say that P is a proof set for the relative-error problem
instance (C, ε) if LP > 0 and UP /LP ≤ 1 + ε. It is easy
to show the analogue to Proposition 4, that a proof set for
relative error is required for a relative-error algorithm to
guarantee correctness. So relative-error OPT is the size of
a smallest proof set, minus at most 2 to account for the fact
that including 0 and 1 may not be necessary.

To modify the absolute-error algorithm closest-point,
first note that as it executes, d̂min is an upper bound on
dmin, and the top element of Q is a lower bound on dmin. Let
us call these values U and L, respectively. The termination
condition in line 5 is that U − L ≤ ε. If we replace it by
the condition that L > 0 (to prevent division by zero) and
U/L ≤ 1 + ε, we get a relative-error algorithm.

Theorem 6. The modified algorithm for the relative-

error nearest-point-on-curve problem uses

O(OPT · log(2 + (1 + ε−1) · d−1
min/OPT))

samples.

Proof: Let εABS = ε·dmin

1+ε
. Notice that if U −L ≤ εABS, then

because L ≤ dmin ≤ U ,

U

L
≤ U

U − εABS

≤ dmin

dmin − εABS

=
1

1 − ε
1+ε

= 1 + ε.

So the relative-error algorithm with error ε terminates no
later than a hypothetical execution of the absolute-error al-
gorithm would with error εABS. By Theorem 1, we know
that such an absolute-error algorithm terminates after at
most O(OPTABS · log(2 + ε−1

ABS/OPTABS)) samples, where
OPTABS is the absolute-error OPT for εABS. We now have
an upper bound on the running time of the modified relative-
error algorithm in terms of OPTABS. To complete the proof,
we need to show a lower bound on OPT in terms of OPTABS.

In a relative-error proof set P , LP ≥ dmin− ε·dmin

1+ε
, because

otherwise,

UP

LP

≥ dmin

LP

>
dmin

dmin − ε·dmin

1+ε

=
1

1 − ε
1+ε

= 1 + ε.

So if we take a proof set for relative error ε and add a sample
at distance dmin from the origin, we obtain a proof set for
absolute error εABS. This proves that OPT(ε)+1 ≥ OPTABS.
On the other hand, if we have an absolute-error proof set P
for εABS, we have UP −LP ≤ εABS, so UP /LP ≤ (1+ε), which
implies that it is also a relative-error proof set for ε, and so
OPT(ε) ≤ OPTABS. Therefore, the relative-error algorithm

performs O � OPT(ε) · log � 2 + 1+ε
ε·dmin � OPT(ε) ��� samples.

2

We modify the construction used in proving Theorem 3
to prove a lower bound for the relative-error problem.

Theorem 7. For any algorithm and for any 0 < ε < 1
and k ∈ � , there is a problem instance with OPT = O(k) on

which that algorithm requires Ω(k log(ε−1)) samples to solve

the relative-error problem.

D

L

O

S

Figure 6: An example curve segment on which the
proof of Theorem 7 is based

Proof: Consider a piecewise linear curve segment as shown
in Figure 6. Because such a segment is piecewise-linear, 5
samples are sufficient to obtain all information about it. We
would like to show that for some combinations of S, L, and
D, the only solutions to the relative-error problem are on
the spike and it takes logarithmic time to find it.

In order for the only solutions to the relative-error nearest-
point problem to be on the spike, the distance from O to
the tip of the spike has to be smaller than D/(1 + ε). The
distance from the tip of the spike to O is maximized when
the spike is at one of the endpoints of the curve segment.
In this case, the distance from the tip of the spike to O is

� D2 + (L/2)2−S. So we need D > (1+ ε)(� D2 + L2/4−
S), which is equivalent to S/L > � (D/L)2 + 1/4−D/(L +
Lε). If D/L = 1

2
√

ε(2+ε)
, the inequality becomes:

S

L
> � 1

4ε2 + 8ε
+

1

4
− 1

(1 + ε)(2
√

ε2 + 2ε)
=

√
ε2 + 2ε

2ε + 2

So if we choose S = L
√

ε, the above inequality is satisfied
(because (2ε + 2)

√
ε =
√

4ε3 + 8ε2 + 4ε >
√

ε2 + 2ε).

Therefore, we can construct a curve segment of arbitrarily
small length L + 2S with the only solutions to the nearest-
point problem on a spike of size 2S, which is no more than
2L
√

ε. Sampling on the curve segment but not on the spike
only gives information whether the spike is to the left or to
the right of the point sampled. Therefore, a binary search
taking Ω(log((L + 2S)/S)) = Ω(log(1/ε)) steps is necessary
to find the spike.

To construct the curve, simply paste k copies of curve seg-
ments, as described above (they may overlap), except make
k − 1 of the spikes point away from the origin and only
one point toward it. Because the length of each curve seg-
ment can be arbitrarily small, the total length can be made
exactly 1 (and therefore, appropriately parameterized, is a
valid input). The only solutions are on the spike pointing
toward the origin. As in the argument for Theorem 3, a bi-
nary search is required to find each spike and a linear search
on the curve segments is required to find the spike pointing
toward the origin, giving a lower bound of Ω(k log(1/ε)). On
the other hand, OPT ≤ 5k.

For farthest-point, the construction is analogous to the
one above, but “flipped”. On the curve segment on which
the solution is located, the spike points away from the ori-
gin. To ensure that the only solutions are on the spike,
the distance from the tip of the spike to O has to be at least

� D2 + (L/2)2. This distance is minimized when the spike is

in the middle of the curve segment and the distance from the
tip to O is D+S. Thus, we need D+S > (1+ε) � D2 + L2/4,

which is the same as S/L > (1 + ε) � (D/L)2 + 1/4 −D/L.
Notice that the right hand side is simply (1 + ε) times the
right hand side of the analogous inequality for nearest-point.
Therefore, if D/L is as for nearest point and S = L(1+ε)

√
ε

(which is still O(L
√

ε)), the inequality is satisfied and a
binary search on each curve segment requires Ω(log(1/ε))
samples. 2

The upper and lower bounds for the relative-error problem
do not match. We leave open the problem of finding an
optimally adaptive algorithm in this setting.

7. CONCLUSION

The results in this paper give asymptotically tight bounds
on the absolute-error nearest-point-on-curve and farthest-
point-on-curve problems in the adaptive framework. We also
show almost tight bounds in the relative-error setting. We
believe that a similar analysis can provide insight into the
adaptive performance of algorithms for other curve prob-
lems based on Proposition 1, including those described in
[9]. We plan to carry out this analysis in the future. A
more difficult open problem is generalizing Proposition 1
from one-dimensional curves to two-dimensional surfaces in
a way that allows algorithms based on the generalization.

References

[1] Ilya Baran and Erik D. Demaine. Optimal adaptive
algorithms for finding the nearest and farthest point
on a parametric black-box curve.
arXiv:cs.CG/0307005, December 2003.
http://arXiv.org/abs/cs.CG/0307005.

[2] Julien Basch, Jeff Erickson, Leonidas J. Guibas, John
Hershberger, and Li Zhang. Kinetic collision detection
for two simple polygons. In Proceedings of the 10th

Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 102–111, 1999.
[3] Eric Berberich, Arno Eigenwillig, Michael Hemmer,

Susan Hert, Kurt Mehlhorn, and Elmar Schömer. A
computational basis for conic arcs and boolean
operations on conic polygons. In Proceedings of the

10th Annual European Symposium on Algorithms,
volume 2461 of Lecture Notes in Computer Science,
pages 174–186, Rome, Italy, September 2002.

[4] Y.M. Danilin. Estimation of the efficiency of an
absolute-minimum-finding algorithm. USSR

Computational Mathematics and Mathematical

Physics, 11:261–267, 1971.
[5] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian

Munro. Adaptive set intersections, unions, and
differences. In Proceedings of the 11th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages
743–752, San Francisco, California, January 2000.

[6] Olivier Devillers, Alexandra Fronville, Bernard
Mourrain, and Monique Teillaud. Algebraic methods
and arithmetic filtering for exact predicates on circle
arcs. Computational Geometry: Theory and

Applications, 22:119–142, 2002.
[7] Vladimir Estivill-Castro and Derick Wood. A survey

of adaptive sorting algorithms. ACM Computing

Surveys, 24(4):441–476, December 1992.

[8] Ronald Fagin, Amnon Lotem, and Moni Naor.
Optimal aggregation algorithms for middleware.
Journal of Computer and System Sciences,
66(4):614–656, 2003.

[9] Oliver Günther and Eugene Wong. The arc tree: an
approximation scheme to represent arbitrary curved
shapes. Computer Vision, Graphics, and Image

Processing, 51:313–337, 1990.
[10] Pierre Hansen and Brigitte Jaumard. Lipschitz

optimization. In Reiner Horst and Panos M. Pardalos,
editors, Handbook of Global Optimization, pages
407–494. Kluwer, 1995.

[11] Pierre Hansen, Brigitte Jaumard, and Shi-Hui Lu. On
the number of iterations of piyavskii’s global
optimization algorithm. Mathematics of Operations

Research, 16(2):334–350, May 1991.
[12] David E. Johnson and Elaine Cohen. A framework for

efficient minimum distance computation. In
Proceedings of the IEEE Conference on Robotics and

Animation, pages 3678–3683, May 1998.
[13] Christian Lennerz and Elmar Schömer. Efficient

distance computation for quadratic curves and
surfaces. In Proceedings of the 2nd Conference on

Geometric Modeling and Processing, pages 60–69,
2002.

[14] S.A. Piyavskii. An algorithm for finding the absolute
extremum of a function. USSR Computational

Mathematics and Mathematical Physics, 12:57–67,
1972.

[15] John M. Snyder. Interval analysis for computer
graphics. ACM SIGGRAPH Computer Graphics,
26(2):121–130, July 1992.

[16] J.F. Traub, G.W. Wasilkowski, and H. Woźniakowski.
Information-Based Complexity. Academic Press, New
York, 1988.

[17] Ron Wein. High-level filtering for arrangements of
conic arcs. In Proceedings of the 10th Annual

European Symposium on Algorithms, volume 2461 of
Lecture Notes in Computer Science, pages 884–895,
Rome, Italy, September 2002.

