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ABSTRACT
Motivated by making signs with depth from bendable but

thick sheet material such as metal or plastic, we analyze 2.5D
structures manufacturable from a rectangular sheet by orthog-
onal cuts and folds (parallel to the sheet’s edges). We provide
a practical universality algorithm for folding arbitrary pixelated
2.5D surfaces using many parallel cuts, which also supports sub-
pixel features in one dimension. We develop two fonts that enable
textual signs within this family of designs, and show real-world
constructions from aluminum/polypropylene composite panels.
We also study what is possible with just one cut, proving a neces-
sary condition and developing a third font under this restriction.
Keywords: origami, kirigami, fonts

1. INTRODUCTION
Origami engineering with thick material is well-studied, with

the typical goal of modifying zero-thickness designs to compen-
sate for material thickness [1–4]. In this paper, we explore new
origami/kirigami design algorithms that output simple enough
patterns that they can be implemented directly in thick mate-
rial, with little or no compensation. Specifically, we explore the
following design goals:

1. The target shape is a 2.5D surface, given by a height (𝑧)
function over a rectangle in the 𝑥𝑦 plane. We require that
each horizontal facet is realized by material, and that the
folded material does not realize any horizontal facets above
the target surface. (The vertical facets can be realized or not
by material.) In particular, for 2.5D signage, we have in mind
that the height function takes on values of just 0 and 1, with
height 0 receding in the background and height 1 forming
a foreground “outdented” image — or the reverse for an
“indented” image.

†Joint first authors
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2. All folds are orthogonal, meaning the creases are parallel
to one of the sides of the rectangle of material, and they
are always folded by an integer multiple of 90◦. Thus each
crease is folded either 90◦ or 180◦, and in either the mountain
or valley direction.

3. The number of layers of material at any facet, and especially
at any crease, is small — ideally, 1. In particular, we aim for
creases to never meet at vertices.

4. To make the above constraints feasible, we allow cuts or
slits in the material. Like creases, we require all cuts to be
orthogonal. In addition, for strength, we aim to use relatively
few and short cuts.

1.1 Practical Universality
Our main algorithmic result (in Section 2) establishes univer-

sality: an arbitrary pixelated 2.5D surface can be realized under
the above constraints, with just one layer of material everywhere.
The key idea is to make parallel cuts in the shorter direction, leav-
ing strips of material to freely fold along the surface. Figure 1
shows an example. In fact, this method supports subpixel features
in one dimension, parallel to the cuts: each strip can fold up and
down at arbitrary positions, not just at pixel boundaries. While
the algorithm is straightforward, the advantage of this approach is
that the designs are very simple, enabling practical construction
out of thick material. Figure 4 in Section 2.2 shows real-world ex-
amples of signs made from aluminum/polypropylene composite
panels using this technique, proving its practicality.

By contrast, past work on folding arbitrary or orthogonal
surfaces [5–7] involves more complex, nonorthogonal crease pat-
terns with multiple overlapping layers of material. The major
difference is that our solution also involves cuts. One somewhat
closer result to ours is that orthogonal surfaces can be made by
folding just along orthogonal creases [8], but this solution uses
non-rectangular paper and stacks up to four overlapping layers.
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(a) Folded geometry.

(b) Crease–cut pattern. Cuts in black, 90◦ moun-
tain creases in red, 90◦ valley creases in blue.

FIGURE 1: OUR 2.5D UNIVERSAL ALGORITHM APPLIED TO A
CHARACTER FROM TOMOHIRO NISHIKADO’S SPACE INVADERS,
RELEASED BY TAITO IN 1978.

To support practical sign making, we develop two fonts that
enable multiword messages to be constructed as 2.5D surfaces us-
ing our universal algorithm. The first is a 3 × 5 pixel font, where
letters are aligned to an integer grid. The minimal dimensions
of this font mean that just two cuts in a rectangle suffice to make
an individual letter (separating the three columns of pixels). The
second font also uses 3 × 5 letters, but it exploits the subpixel
ability of our algorithm, using half-pixels in the vertical dimen-
sion to improve readability. Figures 2 and 3 in Section 2.1 show
these two font designs and the resulting crease–cut patterns. The
pixel font is the basis for the real-world constructions in Figure 4.
We also describe strategies for writing multiple rows of text (Sec-
tion 2.3), hiding information with puzzle fonts (Section 2.4), and
practical changeable signs with just 16 universal pieces for writ-
ing all letters and digits (Section 2.5). The reader can experiment

with these fonts using an interactive web app.1
Even within the design constraints of orthogonal creases and

cuts, where creases never meet at vertices, sequencing the folds
to avoid collisions is known to be strongly NP-complete [9, 10].
The designs output by our universality algorithm, however, have
a straightforward sequence of operations.

1.2 Few Cuts
A disadvantage of our universal design algorithm is that it

makes nearby parallel cuts, reducing the strength of the construc-
tion. For signage with text or other narrow imagery, the cuts are
relatively short, so the designs are quite practical. But this issue
motivates the study of how few cuts we can use to realize a 2.5D
surface.

As an extreme, we study the restriction to at most one or-
thogonal cut. We provide a full characterization of what 2.5D
surfaces are possible with zero cuts: essentially, the surface must
be “1.5D” because all 90◦ folds must be parallel. We then use
this to provide a partial characterization of what 2.5D surfaces
are possible with a single cut by proving a necessary condition:
essentially, any realizable surface must decompose into two 1.5D
surfaces. In particular, a 2 × 2 array of height-1 pixels extruded
from a sea of height 0 is impossible to make with just one cut.

On the positive side, we design a font where each letter can be
realized with just a single cut. This font design is more involved,
requiring the stacking of a few layers of material and folding
through up to two layers, but likely achieves higher strength.
Figure 10 in Section 3.3 shows the font design, and Figure 11
shows a real-world construction made from thick paper.

2. PRACTICAL UNIVERSALITY VIA PARALLEL CUTS
Define a 2.5D surface to be a height function ℎ(𝑥, 𝑦) ∈ R

defined over a rectangle (𝑥, 𝑦) ∈ [0, 𝑋] × [0, 𝑌 ]. We treat ℎ

as being zero outside this rectangle. Call a 2.5D surface 𝒙-
integral if it is constant over each integer unit horizontal segment
(𝑖, 𝑖 + 1) × {𝑦}, where 𝑖 is an integer. This condition is weaker
than being pixelated, i.e., constant over each integer unit square
(𝑖, 𝑖 + 1) × ( 𝑗 , 𝑗 + 1), where 𝑖 and 𝑗 are integers. Call a 2.5D
surface 𝒚-varying-by-𝑽 if it is piecewise constant in any column
{𝑥} × R, and the sum of the absolute changes in height between
adjacent constant portions is at most 𝑉 . Note that this definition
includes the absolute change between the surrounding field of
height 0 and the heights of ℎ defined at the extreme 𝑦 coordinates
0 and 𝑌 .

Theorem 1. For any 𝑥-integral 𝑦-varying-by-𝑉 2.5D surface
ℎ(𝑥, 𝑦) defined over a rectangle (𝑥, 𝑦) ∈ [0, 𝑋] × [0, 𝑌 ], there
is an orthogonal cutting and folding of a rectangle of material
[0, 𝑋] × [0, 𝑌 + 𝑉 + 𝜀] that realizes all horizontal facets of ℎ

(those parallel to 𝑥𝑦), some vertical facets of ℎ (those parallel
to 𝑥𝑧), and some more horizontal facets outside the domain of ℎ
at height 0, for any 𝜀 > 0.

Proof. Refer to Figure 1, which sets 𝜀 = 1. For connectivity,
we reserve a row of thickness 𝜀 at the top of the material, which
will be a small horizontal facet at height 𝑧 = 0 above the top 𝑦

1https://erikdemaine.org/fonts/cutfold/
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coordinate of the domain of ℎ. Then we cut the material into 𝑋

vertical columns of width 1, cutting at each integer 𝑥 coordinate
between 1 and 𝑋 − 1 from just below the top reserved row down
to the bottom of the material. We then crease each column as
follows: when the height remains constant for a 𝑦 distance of 𝑑,
we leave an uncreased portion of the column for a 𝑦 distance of 𝑑;
and whenever the height changes by some amount Δ, we add a
pair of folds separated vertically by |Δ|. The folds are 90◦ valley
then 90◦ mountain for Δ > 0, and 90◦ mountain then 90◦ valley
for Δ < 0. When a column has less variation than 𝑉 , there will
be a horizontal facet extending below the bottom 𝑦 coordinate of
the domain of ℎ.

These universal designs are easy to execute in a sequence of
folds that avoids collisions: for each column in any order, fold
each column’s creases in order from one end to the other.

One extension to the universality result is that we can make
a two-sided sign, defined by one nonnegative 2.5D surface (the
top) and one nonpositive 2.5D surface (the bottom). When each
column of material reaches the bottom of the top surface, we
can mountain fold it by 180◦ to go underneath and construct the
bottom surface. If both the top and bottom surfaces have faces at
height 0, then we will have two layers of material at such faces;
otherwise, we will maintain a single layer everywhere.

2.1 Fonts
We design two fonts to construct textual messages in 2.5D

signs via the universality result of Theorem 1. In both fonts, each
letter and digit is 3 units wide and 5 units tall (3×5). The first, the
pixel font in Figure 2a, is pixelated as defined above. The second,
the subpixel font in Figure 3a, is merely 𝑥-integral (as defined
above), exploiting the ability to vary the height at half-integer 𝑦
coordinates.

Each glyph can be interpreted as a 2.5D surface in two dif-
ferent ways. In the outdented form, the glyph is at height 1 while
the background is at height 0. In the indented form, the glyph
is at height 0 while the background is 1 unit high. We can fur-
ther vary both forms by changing the nonzero height from 1 to
any positive real number. Figures 2b and 3b show the resulting
crease–cut patterns for the height-1 outdented forms of the pixel
and subpixel fonts respectively. (The indented forms just have
mountains and valleys flipped.) These patterns were generated
automatically by an implementation of the universality algorithm
in CoffeeScript.

We chose a width of 3 because it means that constructing
each glyph by itself requires only two cuts, which is quite small.
(Section 3 considers the minimum possibility of one cut.) Of
course, when we combine multiple letters together to form a
word or row of words, we end up with more cuts, namely 4 per
letter as shown in Figures 2b and 3b.

2.2 Experiments
Figure 4 shows the physical results of two experiments con-

structing real-world signs with the word “FOLD” using the pixel
font, in both the outdented and indented forms. (The experiment
was done before we designed the subpixel font.)

(a) 3 × 5 pixel font design.

(b) Crease–cut patterns for outdented form, A–Z and 0–9.

FIGURE 2: 3 × 5 PIXEL FONT DESIGN AND HOW TO FOLD IT.
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(a) 3×5 subpixel font design, which uses half-squares in the vertical
dimension.

(b) Crease–cut patterns for outdented form, A–Z and 0–9.

FIGURE 3: 3 × 5 SUBPIXEL FONT DESIGN AND HOW TO FOLD IT.

(a) Outdented.

(b) Indented.

(c) Crease–cut pattern for outdented form.

FIGURE 4: REAL-WORLD CONSTRUCTIONS OF “FOLD” US-
ING OUR UNIVERSAL ALGORITHM AND 3 × 5 PIXEL FONT,
IN OUTDENTED AND INDENTED FORMS. THE MATERIAL IS A
1.2MM 3-LAYER COMPOSITE PANEL CONSISTING OF A 0.8MM
POLYPROPYLENE CORE SANDWICHED BETWEEN TWO LAYERS
OF 0.2MM ALUMINUM (SOLD AS HYLITE BY 3A COMPOSITES).
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The material is Hylite from 3A Composites, a 1.2mm 3-layer
composite panel consisting of a 0.8mm polypropylene core sand-
wiched between two layers of 0.2mm aluminum. We milled the
material using a CNC machine (Zund G-3 L-2500) with router
module (RM-A) equipped with a 2mm end mill (R502). More
specifically, we double face milled the crease pattern, cutting the
valleys on top, flipping the material, and then cutting the moun-
tains. (Proper alignment between the two passes is particularly
easy on the Zund by cutting registration holes in the first pass of
cutting valleys, and orienting relative to these holes in the second
pass of cutting reflected mountains.) We engraved the creases to
a depth of 0.6mm, which cuts through the front 0.2mm aluminum
layer and half of the 0.8mm polypropylene core. The polypropy-
lene core then easily bends into the crease, and the back aluminum
layer deforms plastically to hold the shape, with minimal bending
strain.

Visually, we find the outdented form to be quite legible, while
the indented form is more difficult to read. Finishing, painting, or
otherwise distinguishing the raised facets of the sign may improve
legibility.

2.3 Multiple Rows of Text
To stack multiple rows of text, we can follow two approaches.
In the first approach, we can apply Theorem 1 directly to

the entire 2.5D surface formed by the grid of letters. Figure 5
shows an example (generated by our CoffeeScript implementa-
tion). This solution shares cuts between the rows, and may reduce
the total material required because multiple worst-case columns
(with three raised/lowered bumps, as in the middle columns of
“E”, “S”, and “3”) are unlikely to be aligned on a vertical line.
But the construction is potentially more fragile: each column of
material acts as a cantilever beam, so making it longer might
reduce stability. On the other hand, this instability could likely
be fixed by fusing the folded material to a backing sheet or frame,
at all or some of the facets where the folding returns to height 0.

In the second approach, we can apply Theorem 1 separately
to each row, and add a horizontal cut between rows, keeping rows
connected together via a leftmost and/or rightmost column of
material. Figure 6 shows an example. This solution uses more
cuts and potentially more material (always matching the worst-
case pattern heights of Figures 2b and 3b), but each vertical cut
is shorter (the same as a single row of text), making for shorter
cantilever beams which should be more stable in practice.

2.4 Puzzle Fonts
As a fun way to communicate messages without making them

plainly readable, the crease–cut patterns of Figures 2b and 3b
serve as puzzle fonts [11–13]. These puzzle fonts follow a pattern:
the same character is always represented by the same crease–cut
pattern (unless we switch between the pixel and subpixel fonts,
but then each character is still represented by just two patterns).

We can break this pattern using the first approach to multiple
rows of text described in Section 2.3, as in Figure 5b. Now
the columns forming each letter have varying vertical shift from
column to column, depending on the number of bumps in the text
above, removing the obvious visual pattern of repetition (after
the first row of text). Furthermore, letters from the same row of

(a) Folded geometry.

(b) Crease–cut pattern.

FIGURE 5: APPLYING UNIVERSALITY THEOREM 1 DIRECTLY TO
MULTIPLE ROWS OF TEXT.
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(a) Folded geometry.

(b) Crease–cut pattern.

FIGURE 6: APPLYING UNIVERSALITY THEOREM 1 TO EACH ROW
OF TEXT INDIVIDUALLY.

text are no longer horizontally aligned, making it difficult even to
separate into rows.

2.5 Changeable Signs
Changeable signs (as frequently used in marquee signs above

movie theaters and beside churches) are typically made with one
physical part per glyph. One problem with this approach is that,
with 26 different letters in the alphabet (and 10 digits), it is easy
to run out of a particular part.

The pixel font offers a different approach: decompose each
glyph into three parts, one per column. Each part is a folded strip
of material, making up the five pixels of one column, plus an extra
square at either end for sliding into a backing frame. Figure 7
shows a simple example of how such parts can fit together into a
frame while supporting reconfiguration between different letters.
For multiple letters, the frame can include a separate hole for each
letter, or use one long hole for each row.

(a) Parts. (b) Frame. (c) “C” form. (d) “I” form.

FIGURE 7: CHANGEABLE SIGNS WITH ONE PART PER COLUMN
INSTEAD OF ONE PART PER LETTER.

Combinatorially, there are 25 = 32 different columns of five
pixels. But the pixel font of Figure 2a uses only 21 distinct
columns, which is already a savings over the 26 (or 36) if we used
a separate part for each glyph. Furthermore, because each column
can be turned upside-down, many of these parts are effectively
identical. Taking into account this symmetry, the pixel font uses
only 16 distinct columns. (In these counts, we ignore the blank
column used to separate glyphs, which we assume is part of the
backing frame instead of an actual part.) The number of distinct
parts is thus far fewer than the number of glyphs.2

Table 1 shows the distribution of part usage: the number
of times each part is used, and by which letters (in some cases,
multiple times in one letter). One part, where every pixel is
filled, gets used by every letter except five (“S”, “V”, “X”, “Y”,
and “Z”), so it clearly should be very highly stocked. At the other
extreme, parts with unique usage point to potential font tweaks
that can reduce the number of distinct parts. For example, by
modifying the rightmost column of “B” (the only instance of the
pattern □■□■□) to match the rightmost column of “D” (□■■■□),
we reduce the number of distinct parts to 15.

The last column of Table 1 shows part frequencies when we
weight each letter by its relative usage in English, as measured by
Samuel Morse (when inventing Morse code) by counting letters
in sets of printers’ type (a kind of changeable sign) [14]. This
expected distribution is roughly what we should follow when

2The same analysis with the subpixel font of Figure 3a is less impressive, requir-
ing 30 distinct parts.
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Pattern Letter usage Count Percent Morse
□■□■□ B 1 1.28% 0.50%
□■■■□ D 1 1.28% 1.38%
□□■■□ W 1 1.28% 0.63%
□■□□■ Q 1 1.28% 0.16%
□□□■■ JM 2 2.56% 1.07%
■□□■■ ZZ 2 2.56% 0.13%
■□■■■ GSS 3 3.84% 5.55%
□□■□□ HKX 3 3.84% 2.38%
□■■■■ QVV 3 3.84% 0.91%
■□■□■ BESZ 4 5.13% 6.83%
■■□■■ KRXX 4 5.13% 2.44%
□□■■■ PYYY 4 5.13% 2.41%
□□■□■ AFPR 4 5.13% 5.76%
■□□□■ CCDEGIIO 8 10.26% 15.07%
□□□□■ FJLLNTTUV 9 11.54% 13.00%
■■■■■ AABCDEFGHHĲKLM 28 35.90% 41.79%

MNNOOPQRTUUWW

TABLE 1: USAGE OF 1 × 5 PARTS IN THE PIXEL FONT OF FIG-
URE 2a, UP TO REFLECTION, SORTED BY USAGE. COLUMNS IN
ORDER: PART PATTERN ORIENTED TO BE LEXICALLY MINIMUM;
LETTERS (WITH MULTIPLICITY) USING THE PART; NUMBER OF
SUCH LETTER USES; PERCENT OF TOTAL USES OF PARTS IN
LETTERS (26 · 3 = 78); AND PERCENT OF USES WEIGHTED BY
MORSE’S LETTER FREQUENCY TABLE [14].

manufacturing a universal set of parts, but to account for variance
in the distribution of English, we should also stock extras of the
infrequent parts.

Our approach to changeable signs inspires another potential
puzzle font. Each letter of the 3 × 5 pixel and subpixel fonts of
Figures 2a and 3a uses a unique set of three columns, except for
C and I from the pixel font as illustrated in Figure 7. Thus every
letter could have their parts randomly permuted, and the intended
letters could still be reconstructed by a patient reader.

3. THEORY OF A SINGLE CUT
While the universality of Theorem 1 is powerful, the solution

makes many cuts. In this section, we study the other extreme:
what is possible with at most one cut? We fully characterize what
is possible with zero cuts (Section 3.1), and partially characterize
what is possible with one cut via a strong necessary condition
(Section 3.2). Despite this limitation, we design a font using only
one cut per letter (Section 3.3).

3.1 Zero Cuts
First we characterize what 2.5D surfaces are possible with

zero cuts and orthogonal folding; refer to Figure 8a. Define a 1.5D
surface to be a 2.5D surface where nonzero height is confined
to an orthogonal band in the 𝑥𝑦 plane (infinite in 𝑥 or 𝑦 but
not both), and the height function is constant in any orthogonal
segment across the finite dimension of the band. In particular, all
vertical faces are parallel to each other (either all 𝑥𝑧 or all 𝑦𝑧).

Lemma 2. For any orthogonal folding of a rectangle of material
realizing the horizontal surfaces of a 2.5D surface (and no higher
horizontal surfaces), the surface must in fact be a 1.5D surface.

(a) 1.5D surface (defined by an x -infinite band).

(b) Possible folding.

FIGURE 8: REALIZING 1.5D SURFACES BY ORTHOGONAL FOLD-
ING AND NO CUTTING.

Proof. We can view all 180◦ folds as being applied to the material
first. Because there are no cuts and the paper is rectangular, such
folds effectively just shrink the material [9], so can be ignored.
Then the 90◦ folds cannot cross each other, so they must all be
parallel. Unlike 1.5D surfaces, such foldings may have overhang.
For example, the folding in Figure 8b realizes the 1.5D surface
in Figure 8a according to our definitions, because the additional
horizontal facets are no higher than the target surface. Taking the
upper envelope of horizontal facets from the folding (keeping just
the subfacets that are not below other horizontal facets) gives us
a 1.5D surface.

3.2 Limits of One Cut
Building on our characterization of 1.5D surfaces from zero

cuts, we next prove a necessary condition on what 2.5D surfaces
can be made with a single cut (restricting to orthogonal patterns):

Theorem 3. Every orthogonal cutting and folding of a rectangle
of material with a single partial cut (which does not disconnect
the material) realizes the upper envelope of two 1.5D surfaces.
Furthermore, the two bands defining the surfaces must intersect
in the 𝑥𝑦 plane.

Proof. Assume by symmetry that the cut is parallel to the 𝑥 axis.
Extending this cut to a full 𝑥-infinite line ℓ divides the rectangle 𝑅
of material into two uncut rectangles, 𝑅1 and 𝑅2. Restricting the
folding to each of these rectangles, we must have a 1.5D surface
by Lemma 2. By our definitions, the realized 2.5D surface ignores
lower facets, so it is the claimed upper envelope.

To see that the strips defining the bands must intersect, we
need to characterize the 180◦ folds which might allow 𝑅1 and
𝑅2 to shrink before folding. The key property is that such folds
cannot move the boundary edge of 𝑅1 that is shared by 𝑅2 (or vice
versa), because the material remains partially connected there (as
the cut is partial). Let 𝑒 denote that connection: the uncut material
along the line ℓ. After the 180◦ folds, the folded rectangles 𝑅′

1
and 𝑅′

2 still share an edge, the folded form 𝑒′ of 𝑒. No matter
how these rectangles fold into 1.5D surfaces via 90◦ folds, the
underlying strips will overlap at the 𝑥𝑦 projection of 𝑒′.

Note that the two 1.5D surfaces can be defined by two 𝑥-
infinite strips, two 𝑦-infinite strips, or one 𝑥-infinite and one 𝑦-
infinite strip, and this three-way choice is independent of whether
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the cut is parallel to the 𝑥 or 𝑦 axis. These choices leave a fair
amount of flexibility, which we will exploit in our font design.

Nonetheless, Theorem 3 implies that most 2.5D surfaces
cannot be realized with a single cut, when restricting to orthog-
onal patterns, as detailed in the corollaries below. In particular,
these results contrast our universality result with multiple cuts
(Theorem 1). More interesting is the contrast with standard re-
sults in computational origami that every 3D surface can be made
without any cuts [5, 6], but these solutions use non-orthogonal
creases. Another contrasting result is that orthogonal surfaces
can be made using orthogonal creases [8], but this solution uses
non-rectangular paper.

(a) 3 × 3. (b) 2 × 2.

FIGURE 9: 2.5D SURFACES THAT CANNOT BE MADE BY ONE
ORTHOGONAL CUT AND ORTHOGONAL FOLDS. HORIZONTAL
FACES ABOVE HEIGHT 0 ARE SHADED.

Corollary 4. No orthogonal cutting and folding of a rectangle of
material with a single cut can realize the horizontal surfaces (and
no higher horizontal surfaces) of the 2.5D surfaces in Figure 9.

Proof. Figure 9a (and various subsets of this 3×3 grid of bumps,
such as the quincunx pattern on the 5 side of a die) cannot be
decomposed into two 1.5D surfaces. Essentially, the gaps be-
tween rows/columns of bumps force any strip to end there, which
confines each strip to either a single row or column, necessitating
three strips to cover all bumps.

Figure 9b is more interesting because it can be decomposed
into two 1.5D surfaces. However, the underlying strips must then
form two rows or two columns (one row and one column would
leave one bump uncovered), so again there must be a separation
between the two strips. This contradicts that the strips must
intersect, as guaranteed by Theorem 3.

Corollary 5. The probability that a pixelated 2.5D surface over
an 𝑛 × 𝑛 square, where each pixel height is selected uniformly at
random from {0, 1}, can be realized by an orthogonal cutting and
folding of a rectangle of material with a single cut is 1/2𝑛2−𝑂 (𝑛) .

Proof. The number of different 𝑛 × 𝑛 pixel patterns is 2𝑛2 . We
argue that very few of them are possible according to Theorem 3.
Specifically, the number of possible infinite strips is 𝑂 (𝑛2), and
the number of possible 1.5D surfaces each such strip can make is
2𝑛. Thus the number of possible pixel patterns that can be made as
the upper envelope of two 1.5D surfaces is 𝑂 (𝑛22𝑛)2 = 𝑂 (𝑛44𝑛).
The probability is thus 𝑂 (𝑛44𝑛/2𝑛2 ) = 1/2𝑛2−𝑂 (𝑛) .

3.3 One-Cut Font
Figure 10 shows a 2.5D font where each letter is made by one

orthogonal cut and orthogonal folding. These designs illustrate
the surprising versatility of a single cut. The visible seams in
Figure 10a help verify that every 2.5D surface can indeed be
decomposed into two 1.5D surfaces, with a mixture of 𝑥-infinite
and/or 𝑦-infinite strips.

These designs may also be useful for practical sign making,
as they involve less cutting than the two cuts per letter from the
fonts in Figures 2 and 3. We also suspect that they lead to much
stronger structures, as the various layers help support each other.
However, the one-cut designs are more complicated to fold from
thick material: multiple layers overlap at some facets, and some
folds cross, requiring folds through multiple layers.

3.4 Experiments
Figure 11 shows the results from a simple experiment of

folding thick paper into the letters “O”, “N”, and “E”. We printed
the crease–cut pattern onto the paper, then cut and folded along
the lines by hand. We expect that a similar experiment with
metal would require modifying the folds slightly to compensate
for material thickness.

4. FUTURE WORK
On the mathematical side, the main open problem is to char-

acterize what 2.5D surfaces can be realized by orthogonal folding
and cutting with just one cut. Our necessary condition may not
be sufficient in particular because of possible collisions between
the two 1.5D surfaces.

On the engineering side, we plan to explore slumping plate
glass to create glass signage. We believe the universality algo-
rithm and fonts of Section 2 should be quite practical in this
context. By building a mold of the desired shape (e.g., by stack-
ing ceramic bricks), a properly heated strip of plate glass should
fall into the desired shape. Multiple strips needed for one or more
letters could be made and mounted individually, as in Section 2.5,
or made from a single rectangle of plate glass that is waterjet with
the appropriate cuts.
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(a) Folded geometry.

(b) Crease–cut patterns, A–Z. Cuts in black, mountain creases in red, valley creases in blue. 180◦ folds are thicker than 90◦ folds.

FIGURE 10: FONT DESIGN WITH ONE CUT PER LETTER.
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FIGURE 11: REAL-WORLD CONSTRUCTION OF “ONE” USING
OUR SINGLE-CUT FONT FROM FIGURE 10. THE MATERIAL IS 98
LB / 160 GSM WATERCOLOR PAPER (SOLD AS MI-TEINTES BY
CANSON).
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