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Circle Packing for Origami Design Is Hard

Erik D. Demaine, Sándor P. Fekete, and Robert J. Lang

1 Introduction

Over the last 20 years, the world of origami has been changed by the
introduction of design algorithms that bear a close relationship to, if not
outright ancestry from, computational geometry. One of the first robust
algorithms for origami design was the circle/river method (also called the
tree method) developed independently by Lang [7–9] and Meguro [12, 13].
This algorithm and its variants provide a systematic method for folding
any structure that topologically resembles a graph theoretic weighted tree.
Other algorithms followed, notably one by Tachi [15] that gives the crease
pattern to fold an arbitrary 3D surface.

Hopes of a general approach for efficiently solving all origami design
problems were dashed early on, when Bern and Hayes showed in 1996
that the general problem of crease assignment — given an arbitrary crease
pattern, determine whether each fold is mountain or valley — was NP-
complete [1]. In fact, they showed more: given a complete crease assign-
ment, simply determining the stacking order of the layers of paper was also
NP-complete. Fortunately, while crease assignment in the general case is
hard, the crease patterns generated by the various design algorithms carry
with them significant extra information associated with each crease, enough
extra information that the problem of crease assignment is typically only
polynomial in difficulty. This is certainly the case for the tree method of
design [3].

Designing a model using the tree method (or one of its variants) is a
two-step process: the first step involves solving an optimization problem
where one solves for certain key vertices of the crease pattern. The sec-
ond step constructs creases following a geometric prescription and assigns
their status as mountain, valley, or unfolded. The process of construct-
ing the creases and assigning them is definitely polynomial in complexity;
but, up to now, the computational complexity of the optimization was not
established.

There were reasons for believing that the optimization was, in principle,
computationally intractable. The conditions on the vertex coordinates in
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the optimization can be expressed as a packing problem, in which the
packing objects are circles and “rivers, (which are curves of constant width)
of varying size. It is known that many packing problems are, in fact, NP-
hard, and our intuition suggested that this might be the case for the tree
method optimization problem.

In this paper, we show that this is, in fact, the case. The general tree
method optimization problem is NP-hard. In the usual way with such
problems, we show that any example of 3-Partition can be expressed as
a tree method problem. At the same time, we show that deciding whether
a given set of circles can be packed into a rectangle, an equilateral triangle,
or a unit square are NP-hard problems, settling the complexity of these
natural packing problems. On the positive side, we show that any set of
circles of total area 1 can be packed into a square of edge length 4√

π
=

2.2567 . . .

2 Circle-River Design

The basic circle-river method of origami has been described in [3, 9]; we
briefly recapitulate it here. As shown in Figure 1, one is presented with a
polygon P ′, which represents the paper to be folded, and an edge-weighted
tree, T , which describes the topology of the desired folded shape. The
design problem is to find the crease pattern that folds P ′ (or some con-
vex subset) into an origami figure whose perpendicular projection has the
topology of the desired tree T and whose edge lengths are proportional to
the edge weights of T . The coefficient of proportionality m between the
dimensions of the resulting folded form and the specified edge weights is
called the scale of the crease pattern. The optimization form of the prob-
lem is to find the crease pattern that has the desired topology and that
maximizes the scale m.

Formally, the problem can be expressed as follows. There is a one-to-
one correspondence between leaf nodes {ni} of the tree T and leaf vertices
{vi} of the crease pattern whose projections map to the leaf nodes. We
denote the edges of T by {ej} with edge weights w(ej). For any two leaf
nodes ni, nj ∈ T , there is a unique path pi,j between them; this allows us
to define the path length li,j between them as

li,j ≡
∑

ek∈pi,j

w(ek). (1)

We showed previously [9] that a necessary condition for the existence
of a crease pattern with scale m was that for all leaf vertices,

|vi − vj | ≥ mli,j , (2)
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Figure 1: Schematic of the problem. (a) P ′ is the paper to be folded. (b) T
is an edge-weighted tree that describes the desired shape. (c) A solution to
the optimization problem, showing creases and the ordering graph on the
facets. (d) An x-ray view of the folded form. (e) A visual representation
of the folded form.
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Figure 2: A star tree and two possible solutions for the leaf vertices. Each
solution corresponds to a packing of the circles centered on the leaf vertices.

and subsequently, that with a few extra conditions, Equation 2 was suffi-
cient for the existence of a full crease pattern (and we gave an algorithm for
its construction). The largest possible crease pattern for a given polygon
P ′, then, can be found by solving the following problem:

optimize m subject to

{

|vi − vj | ≥ mli,j for all i, j
vi ∈ P ′ for all i

. (3)

There is a simple physical picture of these conditions: if we surround
each vertex by a circle whose radius is the scaled length of the edge incident
to its corresponding leaf node and, for each branch edge of the tree, we
insert into the crease pattern a curve of constant width (called a river)
whose width is the scale length of the corresponding edge, then Equation 3
corresponds exactly to the problem of packing the circles and rivers in a
non-overlapping way so that the centers of the circles are confined to the
polygon P ′ and the incidences between touching circles and rivers match
the incidences of their corresponding edges in the tree T .

A special case arises when there are no rivers, i.e., in the case of a star
tree with only a single branch node, as illustrated in Figure 2. In this
case there are no rivers, and the optimization problem reduces to a single
packing of circles, one for each leaf node, whose radius is given by the
length of the edge incident to the corresponding node.

Thus, several problems in origami design can be reduced to finding
an optimum packing of some number of circles of specified radii within a
square (or other convex polygon). Several examples of such problems (and
their solutions) are described in [10].

We now show that this circle-packing problem is NP-complete.
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3 Packing and Complexity

Problems of packing a given set of objects into a specific container appear in
a large variety of applied and theoretical contexts. Many one-dimensional
variants are known to be NP-complete, e.g., Bin Packing, where the ob-
jective is to pack a set of intervals of given lengths into as few unit-sized
containers as possible. A special case of Bin Packing that is still NP-
hard is 3-Partition, where an instance is given by 3n numbers xi with
1/4 < xi < 1/2, and

∑

3n

i=1
xi = n. Clearly, n unit-sized containers suffice

for packing the object, iff there is a partition of the xi into n triples that
each have combined weight 1; hence the name 3-Partition. An important
property of the problem is that it is strongly NP-complete: it remains hard
even if there is only a constant number of different values xi [6].

Like their one-dimensional counterparts, higher-dimensional packing
problems tend to be hard. Typically, the difficulty arises from compli-
cated container shapes (e.g., a non-simple polygon to be filled with a large
number of unit squares), or complicated objects (e.g., rectangles of many
different sizes to be filled into a square, which is a generalization of Bin

Packing.) This does not mean that packing simple objects into simple
containers is necessarily easy: for some such problems it is not even known
whether they belong to the class NP. One example is the problem Pal-

let Loading of deciding whether n rectangles of dimensions a× b can be
packed into a larger rectangle of dimensions A × B, for positive integers
n, a, b, A,B: it is open whether the existence of any feasible solution im-
plies the existence of a packing that can be described in space polynomial
in the input size log n + log a + log b + log A + log B, as the two different
orientations of the small rectangles may give rise to complicated patterns.
(See Problem #55 in The Open Problems Project, [4].)

None of these difficulties arises when a limited number of simple shapes
without rotation, in particular, different squares or circles are to be packed
into a unit square. Leung et al. [11] managed to prove that the problem
Square Packing of deciding whether a given set of squares can be packed
into a unit square is an NP-complete problem. Their proof is based on a
reduction of the problem 3-Partition mentioned above: any 3-Partition

instance Π3p can be encoded as an instance Πsp of Square Packing, such
that Πsp is solvable iff Π3p is, and the encoding size of Πsp is polynomial
in the encoding size of Π3p. Membership in NP is not an issue, as coor-
dinates of a feasible packing are integers of description size polynomial in
the encoding size of Πsp.

In the context of circle/river origami design, we are particularly inter-
ested in the problem of Circle Packing: given a set of n circles of a
limited number of different sizes, decide whether they can be packed into
a unit square. More precisely, we are interested in Circle Placement:
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given a set of n circles, place the circle centers on the paper, such that the
overall circle layout is non-overlapping. Clearly, this feels closely related to
Square Packing, so it is natural to suspect NP-completeness. However,
when packing circles, another issue arises: tight packings may give rise to
complicated coordinates. In fact, the minimum size Cn of a Cn×Cn square
that can accommodate n unit circles is only known for relatively moderate
values of n; consequently, the membership of Circle Packing in NP is
wide open. (At this point, n = 36 is the largest n for which the exact value
of Cn is known; see [14] for the current status of upper and lower bounds
for n ≤ 10, 000.)

Paradoxically, this additional difficulty has also constituted a major
roadblock for establishing NP-hardness of Circle Packing, which requires
encoding desired combinatorial structures as appropriate packings: this is
hard to do when little is known about the structure of optimal packings.

The main result of this paper is to describe an NP-hardness proof of
Circle Placement, based on a reduction of 3-Partition; it is straight-
forward to see that this also implies NP-hardness of Circle Packing.
In the following section, we will describe the key idea of using symmetric
3-pockets for this reduction: a triple of small “shim” circles Ci1 , Ci2 , Ci3

and a medium-sized “plug” circles can be packed into such a pocket, iff
the corresponding triple of numbers xi1 , xi2 , xi3 add up to at most 1. In
the following sections, we show how symmetric 3-pockets can be forced
for triangular paper (Section 5), for rectangular paper (Section 6), and
for square paper (Section 7). The technical details for the proof of NP-
hardness are wrapped up in Section 8 and Section 9, in which we sketch
additional aspects of filling undesired holes in the resulting packings, ap-
proximating the involved irrational coordinates, and the polynomial size of
the overall construction. On the positive side, we show in Section 10 that
circle packing becomes a lot easier if one is willing to compromise on the
size of the piece of paper: we prove that any given set of circles of total
area at most 1 can easily and recursively be packed into a square of edge
length 4√

pi
= 2.2567 . . .

4 Symmetric 3-Pockets

Our reduction is based on the simple construction shown in Figure 3. It
consists of a symmetric 3-pocket as the container, which is the area bounded
by three congruent touching circles.

Into each pocket, we pack a medium-sized circle (called a plug) that fits
into the center, and three small identical circles (called shims) that fit into
the three corners left by the plug. Straightforward trigonometry (or use of
Proposition 8.1) shows that for a pocket formed by three unit circles, the
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Figure 3: A symmetric 3-pocket with plug and shims.

corresponding size is 2/
√

3 − 1 = 0.1547... for the plug; the value for the

shims works out to 1/(5 +
√

3 + 2
√

7 + 4
√

3 = 0.07044....
Clearly, this packing is unique, and the basic layout of the solution does

not change when the plug is reduced in size by a tiny amount, say, ε =
1/N for a suitably big N , while each shim is increased by a corresponding
amount that keeps the overall packing tight. This results in a radius of rp

for each plug, and a radius of rs for each shim.
Now consider the numbers xi for i = 1, . . . , 3n, constituting an instance

of 3-Partition. We get a feasible partition iff all triples (i1, i2, i3) are

feasible, i.e.,
∑

3

j=1
xij

= 1. By introducing x′
i = 1/3 − xi and using

∑

3n

i=1
xi = n, it is easy to see that a partition is feasible iff

∑

3

j=1
x′

ij
≤ 0

for all triples (i1, i2, i3). Note that a 3-Partition instance involves only
a constant number of different sizes, so there is some δ > 0 such that any
infeasible triple (i1, i2, i3) incurs

∑

3

j=1
x′

ij
≥ δ. By picking N large enough,

we may assume δ > ε.
As a next step, map each xi to a slightly modified shim Si by picking

the shim radius to be ri = rs − x′
i/N

2. We will make use of the following
elementary lemma; see Figure 4

Lemma 4.1 Consider an equilateral triangle ∆ = (v1, v2, v3) bounded by
the lines ℓ1, ℓ2, ℓ3 through the triangle edges e1, e2, e3. For an arbitrary
point p, let dj be the distance of p from ℓj. Define yj = dj, if p is on the
same side of ℓj as ∆, and yj = −dj if p is separated from ∆ by ℓj. Then
∑

3

j=1
yj is independent of the position of p.

Proof: Consider the three triangles (v1, v2, p), (v2, v3, p), (v3, v1, p).
Their areas are d3/2, d1/2, d2/2, hence y1/2 + y2/2 + y3/2 is always equal
to the area of ∆, i.e., a constant. �
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Figure 4: For an equilateral triangle, the sum of distances from the three
sides is a constant.

The crucial argument for our reduction is the following.

Lemma 4.2 A set of three shims Si1 , Si2 , Si3 and a plug P of radius rp

can be packed into a 3-pocket, iff
∑

3

j=1
x′

ij
≤ 0, i.e., if (i1, i2, i3) is feasible.

Proof: Refer to Figure 5. Let c be the center point of the pocket.
For each of the three corners of the pocket, consider the two tangents T 1

ij

and T 2

ij
between an unmodified shim of radius rs and the touching pocket

boundary; let 2φ ∈]0, π[ be the angle enclosed by those two tangents. (If
the pocket was an equilateral triangle, we would get φ = π/6; the exact
value for pockets with circular boundaries can be computed, but the exact
value does not matter.)

Now consider the shim motion arising by modifying rs by x′
ij

/N2, while
keeping the shim tightly wedged into the corner. This moves its center point
pij

along the bisector b between T 1

ij
and T 2

ij
. Let c = 1/ sin φ. Considering

the first-order expansion of the shim motion, we conclude that pij
moves

by c × x′
ij

/N2 + Θ(1/N4) along b, to a position qj .
Finally, refer to Figure 6 and consider the possible placement of a plug

after placing the modified shims Si1 , Si2 , Si3 into the the three corners;
this requires finding a point within the pocket that has distance at least
rp + rs − x′

ij
/N2 from each pij

. For this purpose, consider the circle Cij

8
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Figure 5: Changing the size of a shim.
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Figure 6: Finding a feasible placement for the plug.
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∆

Figure 7: The existence of a feasible placement for the plug depends on
the sum of distances of c from the sides of ∆. (Distances are not drawn to
scale so that circles and tangents can be distinguished; in reality, they are
much closer.)

of radius rp + rs − x′
ij

/N2 around each pij
. As shown in Figure 7, let tij

be the tangent to Cij
at the point closest to c; let dij

be the distance of c
to tij

. If we define yij
= dij

for c is outside of Cij
, and yij

= −dij
for c is

inside of Cij
, then yij

= −((c+1)×x′
ij

/N2 +Θ(1/N4)). Now consider the
set ∆ of points separated by ti1 from pi1 , ti2 from pi2 , ti3 from pi3 . Making
use of Lemma 4.1, we conclude that ∆ is a nonempty isosceles triangle, iff
∑

yij
≥ 0, i.e., iff

∑

x′
ij

/N2 −Θ(1/N4) ≤ 0. Given that
∑

x′
ij

> 0 implies
∑

x′
ij

≥ δ > 1/N , we conclude that
∑

x′
ij

≤ 0 implies the existence of a
feasible packing.

Conversely, consider
∑

x′
ij

> 0. Given that each ti1 has a distance

Θ(1/N2) from c, we observe that the corners of the triangle formed by
ti1 , ti2 , ti3 are within Θ(1/N4) from Ci1 , Ci2 , Ci3 . However, because of
∑

x′
ij

≥ δ > 1/N , we conclude that any point of ∆ is at least Θ(1/N3)
from being feasible. This implies that there is no feasible placement for the
plug, concluding the proof.

�
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Figure 8: The unique packing of (k + 2)(k + 1)/2 unit circles into an equi-
lateral triangle of edge length 2k leaves k2 identical symmetric 3-pockets.

5 Triangular Paper

For making use of Lemma 4.2 and completing the reduction, we need to
define a set of circles (called rocks) that can only be packed in a way that
results in a suitable number of 3-pockets. In the case of triangular paper,
this is relatively easy by making use of a result by Graham [5].

Proposition 5.1 An equilateral triangle of edge length 2k has a unique
packing of (k + 2)(k + 1)/2 unit circles; this uses a hexagonal grid pattern,
placing circles on the corners of the triangle.

This creates
∑k

i=1
(2i − 1) = k2 symmetric 3-pockets. After handling

some issues of accuracy and approximation (which are discussed in Sec-
tion 9), we get the desired result.

Theorem 5.2 Circle/river origami design for triangular paper is NP-hard.

As a corollary, we get

Corollary 5.3 It is NP-hard to decide whether a given set of circles can
be packed into an equilateral triangle.

6 Rectangular Paper

Similar to triangular paper, it is easy to force a suitable number of symmet-
ric 3-pockets for the case of rectangular paper, see Figure 9: disregarding
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Figure 9: Packing 2k unit circles into a rectangle of dimensions 2k− 1 and√
3 leaves 2k − 2 identical symmetric 3-pockets.

symmetries, 2k unit circles can only be packed into an 2k−1 by
√

3 rectan-
gle in the manner shown. This creates 2k − 2 symmetric 3-pockets, which
can be used for the hardness proof.

Because the input created for encoding an instance Π3p of 3-Partition

needs to be a set of rationals whose size is bounded by a polynomial in the
encoding size of Π3p, the irrational numbers needs to be suitably approxi-
mated without compromising the overall structure. This will be discussed
in Section 9. As a consequence, we get

Theorem 6.1 Circle/river origami design for rectangular paper is NP-
hard.

This yields the following easy corollary.

Corollary 6.2 It is NP-hard to decide whether a given set of circles can
be packed into a given rectangle.

7 Square Paper

Setting up a sufficient number of symmetric 3-pockets for square paper is
slightly trickier: there is no infinite family of positive integers n, for which
the optimal patterns of packing n unit circles into a minimum-size square
are known. As a consequence, we make use of a different construction;
without loss of generality, our piece of paper is a unit square.

As a first step, we use four large circles of radius 1/2, creating a sym-

metric 4-pocket, as shown in Figure 10. Now a circle of radius
√

2−1

2
has a

unique feasible placement in the center of the pocket, leaving four smaller
auxiliary pockets, as shown.

Now we use 12 identical “plug” circles and four slightly smaller “fix-
ation” circles, such that three plugs and one shim have a tight packing
as shown in the figure. For these it is not hard to argue that not more
than three plugs fit into an auxiliary pocket, ensuring that precisely three

12
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Figure 10: A gadget for creating identical triangular pockets: the shown set
of 13 circles has a unique packing into a symmetric 4-pocket. This creates
four smaller symmetric 3-pockets, indicated by arrows.

must be placed into each pocket. Moreover, it can be shown that at most
one additional shim can be packed along with the three plugs; this admits
precisely the packing shown in the figure, creating a symmetric 3-pocket
in each auxiliary pocket. In addition, we get a number of undesired asym-
metric pockets, which must be used for accommodating appropriate sets
of “filling” circles, leaving only small gaps that cannot be used for packing
the circles that are relevant for the reduction.

As shown in Figure 11, we can use a similar auxiliary construction
(consisting of 13 circles) for the 3-pockets in a recursive manner in order
to replace each symmetric 3-pocket by three smaller symmetric 3-pockets.
The argument is analogous to the one for 4-pockets. Again, additional
filling circles are used; these do not compromise the overall structure of the
packing, as the overall argument holds

Theorem 7.1 Circle/river origami design for square paper is NP-hard.

This yields the following easy corollary.

Corollary 7.2 It is NP-hard to decide whether a given set of circles can
be packed into a given square.
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Figure 11: A gadget for creating multiple identical triangular pockets: the
shown set of 13 circles has a unique packing into a symmetric 3-pocket.
This creates three smaller symmetric 3-pockets, indicated by arrows.

8 Filling Gaps

The above constructions create a number of additional gaps in the form of
asymmetric 3-pockets. Each is bounded by three touching circles, say, of
radius r1, r2, r3. By adding appropriate sets of “filler” circles that precisely
fit into these pockets, we can ensure that they cannot be exploited for
sidestepping the desired packing structure of the reduction. Computing
the necessary radii can simply be done by using the following formula.

Proposition 8.1 The radius r of a largest circle inscribed into a pocket
formed by three mutually touching circles with radii r1, r2, r3 satisfies

1/r = 1/r1 + 1/r2 + 1/r3 + 2
√

1/r1r2 + 1/r1r3 + 1/r2r3

Note that the resulting r is smaller than the smallest ri, and at least
a factor of 3 smaller than the largest of the circles. Therefore, computing
the filler circles by decreasing magnitude guarantees that all gaps are filled
in the desired fashion, and that only a polynomial number of such circles
is needed.
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9 Encoding the Input

In order to complete our NP-hardness proof for Circle Placement,
we still need to ensure that the description size of the resulting Circle

Placement instance is polynomial in the size of the input for the origi-
nal 3-Partition instance. It is easy to see from the above that the total
number of circles remains polynomial. This leaves the issue of encoding the
radii themselves: if we insist on tightness of all packings, we get irrational
numbers that can be described as nested square roots. As described in
Section 4, the key mechanisms of our construction still work if we use a
sufficiently close approximation. This allows to use sufficiently tight ap-
proximations of the involved square roots in other parts of the construction,
provided the involved computations are fast and easy to carry out. For our
purposes, even Heron’s quadratically converging method (which doubles
the number of correct digits in each simple iteration step) suffices.

10 A Positive Result

Our NP-hardness results imply that there is little hope for a polynomial-
time algorithms that computes the smallest possible triangle, rectangle or
square for placing or packing a given set of circles. However, it is possible to
guarantee the existence of a feasible solution, if one is willing to use larger
paper. In fact, we show that a square of edge length 4/

√
π = 2.2567...

suffices for packing any set of circles that have total area 1.

Theorem 10.1 Consider a set S of circles of total area 1, and a square S
of edge length 4/

√
π. Then S can be packed into S.

Proof: Refer to Figure 12. For each circle Ci of radius ri, let ni be
chosen such that γ

2ni+1 < ri ≤ γ
2ni

. Hence, replacing each Ci by a square
Si of size γ

2ni
increases the edge length by a factor of at most γ = 4/

√
π.

Now a recursive subdivision of S into sub-squares of progressively smaller
size can be used to pack all squares Si, showing that all circles Ci can be
packed.

11 Conclusions

In this paper, we have proven that even the aspect of circle packing in
circle/river origami design is NP-hard. On the positive side, we showed
that the size of a smallest sufficient square for accommodating a given set
of circles can easily be approximated within a factor 2.2567... A number
of interesting open questions remain:
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Figure 12: A quad-tree packing guarantees that any set of circles of total
area at most 1 can be packed into a square of edge length γ = 4/

√
π =

2.2567...

Figure 13: A lower-bound example for packing circles: two circles of area
1/2 require a square of edge length at least 1.362...
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• Our 2.2567-approximation is quite simple. The performance guar-
antee is based on a simple area argument. This gives rise to the
following question: what is the smallest square that suffices for pack-
ing any set of circles of total area 1? We believe the worst-case
may very well be shown in Figure 13, which yields a lower bound of
(1+

√
2)/

√
π = 1.362 . . . There are ways to improve the upper bound;

at this point, we can establish 2
√

2/
√

π = 1.5957 . . . [2].

• The same question can be posed for placing circles instead of packing
them.

• The approximation of circle packing does not produce a “clustered”
layout as required by circle/river origami design, where objects that
are close in the hierarchy should be place in close vicinity. In the
absence of rivers, we can reproduce the quad-tree packing in this
context by making use of a space-filling curve.

• On the other hand, we do not know yet how to approximate the
necessary paper size in the presence of rivers of positive width.

Acknowledgments

We thank Ron Graham for several helpful hints concerning the state of the
art on packing circles. We also thank Vinayak Pathak for pointing out a
numerical typo related to Figure 13.

References

[1] M. Bern and B. Hayes. On the complexity of flat origami. In Proceed-
ings of the 7th ACM-SIAM Symposium on Discrete Algorithms, pages
175–183, Atlanta, Ga., 1996.

[2] E. Demaine and S. P. Fekete. Worst-case bounds for dense packings.
Manuscript, 2010.

[3] E. D. Demaine and R. J. Lang. Facet ordering and crease assignment
in uniaxial bases. In R. J. Lang, editor, Origami4, pages 259 – 272.
A K Peters, 2009.

[4] E. D. Demaine, J. S. Mitchell, and J. O’Rourke. The open problems
project. http://cs.smith.edu/∼orourke/TOPP/Welcome.html, 2004.

[5] J. H. Folkman and R. L. Graham. A packing inequality for compact
convex subsets of the plane. Can. Math. Bulletin, 12:745–752, 1969.

17



i

i

i

i

i

i

i

i

[6] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[7] R. J. Lang. Mathematical algorithms for origami design. Symmetry:
Culture and Science, 5(2):115–152, 1994.

[8] R. J. Lang. The tree method of origami design. In K. Miura, editor,
Origami Science & Art: Proceedings of the Second International Meet-
ing of Origami Science and Scientific Origami, pages 73–82, Ohtsu,
Japan, 1994.

[9] R. J. Lang. A computational algorithm for origami design. In 12th
ACM Symposium on Computational Geometry, pages 98–105, 1996.

[10] R. J. Lang. Origami Design Secrets: Mathematical Methods for an
Ancient Art. A K Peters, 2003.

[11] J. Y.-T. Leung, T. W. Tam, C. S. Wing, G. H. Young, and F. Y.
Chin. Packing squares into a square. J. Parallel Distrib. Comput.,
10(3):271–275, 1990.

[12] T. Meguro. Jitsuyou origami sekkeihou [practical methods of origami
designs]. Origami Tanteidan Shinbun, 2(7–14), 1991–1992.

[13] T. Meguro. ’tobu kuwagatamushi’-to ryoikienbunshiho [’flying stag
beetle’ and the circular area molecule method]. In Oru, pages 92–95.
1994.

[14] E. Specht. The best known packings of equal circles in a square.
http://hydra.nat.uni-magdeburg.de/packing/csq/csq.html, 2010.

[15] T. Tachi. 3d origami design based on tucking molecules. In R. J. Lang,
editor, Origami4, pages 259 – 272. A K Peters, 2009.

18


