
Dissection with the Fewest Pieces is Hard,

Even to Approximate

Je�rey Bosboom1, Erik D. Demaine1, Martin L. Demaine1, Jayson Lynch1,
Pasin Manurangsi2?, Mikhail Rudoy1, and Anak Yodpinyanee1??

1 Computer Science and AI Laboratory, Massachusetts Institute of Technology
32 Vassar St., Cambridge, MA 02139, USA

{jbosboom,edemaine,mdemaine,jaysonl,mrudoy,anak}@mit.edu
2 University of California, Berkeley, CA 94720, USA

pasin@berkeley.edu

Abstract. We prove that it is NP-hard to dissect one simple orthogonal
polygon into another using a given number of pieces, as is approximating
the fewest pieces to within a factor of 1 + 1/1080− ε.

1 Introduction

We have known for centuries how to dissect any polygon P into any other polygon
Q of equal area, that is, how to cut P into �nitely many pieces and re-arrange
the pieces to form Q [7,13,14,2,11]. But we know relatively little about how
many pieces are necessary. For example, it is unknown whether a square can be
dissected into an equilateral triangle using fewer than four pieces [6,8, pp. 8�
10]. Only recently was it established that a pseudopolynomial number of pieces
su�ces [1].

In this paper, we prove that it is NP-hard even to approximate the mini-
mum number of pieces required for a dissection, to within some constant ratio.
While perhaps unsurprising, this result is the �rst analysis of the complexity of
dissection. We prove NP-hardness even when the polygons are restricted to be
simple (hole-free) and orthogonal. The reduction holds for all cuts that leave the
resulting pieces connected, even when rotation and re�ection are permitted or
forbidden.

Our proof signi�cantly strengthens the observation (originally made by the
Demaines during JCDCG'98) that the second half of dissection�re-arranging
given pieces into a target shape�is NP-hard: the special case of exact packing
rectangles into rectangles can directly simulate 3-Partition [5]. E�ectively, the
challenge in our proof is to construct a polygon for which any k-piece dissection
must cut the polygon at locations we desire, so that we are left with a rectangle
packing problem.

Due to the lack of space, we omit the proofs of some lemmas from this current
version of our paper. For missing proofs, see the full version of this paper [3].
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2 The Problems

2.1 Dissection

We begin by formally de�ning the problems involved in our proofs, starting with
k-Piece Dissection, which is the central focus of our paper.

De�nition 1. k-Piece Dissection is the following decision problem:
Input: two polygons P and Q of equal area, and a positive integer k.
Output: whether P can be cut into k pieces such that these k pieces can be

packed into Q (via translation, optional rotation, and optional re�ection).

To prevent ill-behaved cuts, we require every piece to be a Jordan region
(with holes): the set of points interior to a Jordan curve e and exterior to k ≥ 0
Jordan curves h1, h2, . . . , hk, such that e, h1, h2, . . . , hk do not meet. There are
two properties of Jordan regions that we use in our proofs. First, Jordan regions
are Lebesgue measurable; we will refer to the Lebesgue measure of each piece
as its area. Second, a Jordan region is path-connected. For brevity, we refer to
path-connected as connected throughout the paper.

Next we de�ne the optimization version of the problem,Min Piece Dissec-

tion, in which the objective is to minimize the number of pieces.

De�nition 2. Min Piece Dissection is the following optimization problem:
Input: two polygons P and Q of equal area.
Output: the smallest positive integer k such that P can be cut into k pieces

such that these k pieces can be packed into Q.

2.2 5-Partition

Our NP-hardness reduction for k-Piece Dissection is from 5-Partition, a
close relative of 3-Partition.

De�nition 3. 5-Partition is the following decision problem:
Input: a multiset A = {a1, . . . , an} of n = 5m integers.
Output: whether A can be partitioned into A1, . . . , Am such that, for each

i = 1, . . . ,m,
∑
a∈Ai

a = p where p =
(∑

a∈A a
)
/m.

Throughout the paper, we assume that the partition sum p is an integer;
otherwise, the instance is obviously a No instance.

Garey and Johnson [9] originally proved NP-completeness of 3-Partition, a
problem similar to 5-Partition except that 5 is replaced by 3. In their book [10],
they show that 4-Partition is NP-hard; this result was, in fact, an interme-
diate step toward showing that 3-Partition is NP-hard. It is easy to reduce
4-Partition to 5-Partition and thus show it also NP-hard.3

Our reduction would work from 3-Partition just as well as 5-Partition. The
advantage of the latter is that we can analyze the following optimization version.

3 Given a 4-Partition instance A = {a1, . . . , an}, we can create a 5-Partition

instance by setting A′ = {na1, . . . , nan, 1, . . . , 1} where the number of 1s is n/4.



De�nition 4. Max 5-Partition is the following optimization problem:

Input: a multiset A = {a1, . . . , an} of n = 5m integers.

Output: the maximum integer m′ such that there exist disjoint subsets
A1, . . . , Am′ of A such that, for each i = 1, . . . ,m′,

∑
a∈Ai

a = p where p =
5
n

(∑
a∈A a

)
.

2.3 Gap Problems

We show that our reductions have a property stronger than approximation
preservation called gap preservation. Let us de�ne the gap problem for an opti-
mization problem, a notion widely used in hardness of approximation.

De�nition 5. For an optimization problem P and parameters β > γ (which
may be functions of n), the GapP [β, γ] problem is to distinguish whether the
optimum of a given instance of P is at least β or at most γ. The input instance
is guaranteed to not have an optimum between β and γ.

If GapP [β, γ] is NP-hard, then it immediately follows that approximating P
to within a factor of β/γ of the optimum is also NP-hard. This result makes gap
problems useful for proving hardness of approximation.

3 Main Results

Now that we have de�ned the problems, we state our main results.

Theorem 1. k-Piece Dissection is NP-hard.

We do not know whether k-Piece Dissection is in NP (and thus is NP-
complete). We discuss the di�culty of showing containment in NP in Section 7.

We also prove that the optimization version,Min Piece Dissection, is hard
to approximate to within some constant ratio:

Theorem 2. There is a constant εMPD > 0 such that it is NP-hard to approxi-
mate Min Piece Dissection to within a factor of 1 + εMPD of optimal.4

Both results are based on essentially the same reduction, from 5-Partition

for Theorem 1 or from Max 5-Partition for Theorem 2. We present the com-
mon reduction in Section 4. We then prove Theorem 1 and Theorem 2 in Sec-
tions 5 and 6 respectively.

Restricting the kinds of polygons given as input, the kinds of cuts allowed,
and the ways the pieces can be packed gives rise to many variant problems.
Section 7 explains for which variants our results continue to hold.

4 The best εMPD we can achieve is 1/1080− ε for any ε ∈ (0, 1/1080).



4 The Reduction

This section describes a polynomial-time reduction from 5-Partition to k-
Piece Dissection and states a lemma crucial to both of our main proofs later
in the paper. The proof of the lemma is deferred to the full version.

Reduction from 5-Partition to k-Piece Dissection. Let A = {a1, . . . , an}
be the given 5-Partition instance and let p = 5

nΣa∈Aa denote the target sum.
Let ds = 12(maxa∈A a+ p) and dt = (n− 1)ds+Σa∈Aa+2maxa∈A a. We create
a source polygon P consisting of element rectangles of width ai and height 1
for each ai ∈ A spaced ds apart, connected below by a rectangular bar of width
Σa∈Aa+(n5−1)dt and height δ =

1
10Σa∈Aa+2(n

5−1)dt
. The �rst element rectangle's

left edge is �ush with the left edge of the bar; the bar extends beyond the last
element rectangle. Our target polygon Q consists of n

5 partition rectangles of
width p and height 1 spaced dt apart, connected by a bar of the same dimensions
as the source polygon's bar. The �rst partition rectangle's left edge and last
partition rectangle's right edge are �ush with the ends of the bar. The illustration
of both polygons are given in Figure 1. Both polygons' bars have the same area
and the total area of the element rectangles equals the total area of the partition
rectangles, so the polygons have the same area. Finally, let the number of pieces
k be n.

· · ·

a1 a2 an
ds

· · ·

p p p
dt

Fig. 1. The source polygon P (above) and the target polygon Q (below) are shown
(not to scale). Length dt is longer than the distance between the leftmost edge of the
leftmost element rectangle and the rightmost edge of the rightmost element rectangle.

Reduction from Max 5-Partition to Min Piece Dissection. The optimiza-
tion problem uses the same reduction as the decision problem, except that we
do not specify k for the optimization problem.

The idea behind our reduction is to force any valid dissection to cut each
element rectangle o� the bar in its own piece.5 When δ is small enough, the
resulting packing problem is a direct simulation of 5-Partition.

5 Because k = n, a1 will remain attached to the bar, forcing it to be the �rst el-
ement rectangle placed in the �rst partition rectangle. Because the order of and
within partitions does not matter, this constraint does not a�ect the 5-Partition
simulation.



Intuitively, each dissected piece should contain only one element rectangle.
Our reduction sets ds large enough that any piece containing parts of two element
rectangles does not �t in a partition rectangle. At the same time, we pick dt large
enough that no piece can be placed in more than one partition rectangle. Thus
one could plausibly prove that each element rectangle must be in its own piece.

Unfortunately, we were unable to prove that each element rectangle must
be in its own piece. For each element rectangle, we de�ne the trimmed element
rectangle corresponding to each element rectangle as the rectangle resulting from
ignoring the lower 4δ of the element rectangle's height; see Figure 2. In other
words, for each ai, the corresponding trimmed element rectangle is the rectangle
that shares the upper left corner with the element rectangle and is of width ai
and height 1− 4δ.

ai

4δ

1− 4δ

Fig. 2. The ith trimmed element rectangle.

While we could not prove that each element rectangle is in its own piece, we
can prove the corresponding statement about trimmed element rectangles:

Lemma 1. If P can be cut into pieces that can be packed into Q, then each of
these pieces intersect with at most one trimmed element rectangle.

The proofs of both of our main theorems use this lemma. The intuition behind
the proof of this lemma is similar to the intuitive argument for why each element
rectangle should be in its own piece. As the details of the proof are not central
to this paper, we defer the proof of this lemma to the full version.

5 Proof of NP-hardness of k-Piece Dissection

Before we prove Theorem 1, we state the result from [10] for 5-Partition:

Theorem 3 ([10]). 5-Partition is NP-hard.6

We now prove Theorem 1.

6 As stated earlier, the result from [10] is for 4-Partition, but 4-Partition is easily
reduced to 5-Partition; see Section 2.



Proof (of Theorem 1). We prove that the reduction described in the previous
section is indeed a valid reduction from 5-Partition. The reduction clearly
runs in polynomial time. We are left to prove that the instance of k-Piece
Dissection produced by the reduction is a yes instance if and only if the input
5-Partition is also a yes instance.

(5-Partition =⇒ k-Piece Dissection) Suppose that the 5-Partition in-
stance is a yes instance. Given a 5-Partition solution, we can cut all but the
�rst element rectangle o� the bar and pack them in the partition rectangles
according to the 5-Partition solution. The piece containing the �rst element
rectangle must be placed at the very left of the �rst partition rectangle, but we
can reorder the partitions in the 5-Partition solution so that the �rst element
is in the �rst partition. As a result, the k-Piece Dissection instance is also a
yes instance.

( k-Piece Dissection =⇒ 5-Partition) Suppose that the k-Piece Dissec-

tion instance is a yes instance, i.e., P can be cut into k pieces that can then
be placed into Q. By Lemma 1, no two trimmed element rectangles are in the
same piece. Because there are n = k such rectangles, each piece contains exactly
one whole trimmed element rectangle. Because these pieces can be packed into
Q, we must also be able to pack all the trimmed element rectangles into Q (with
some space in Q left over).

Let Bi be the set of all trimmed element rectangles (in the packing con�g-
uration) that intersect the ith partition rectangle. From our choice of dt, each
trimmed element rectangle can intersect with at most one partition rectangle.
Moreover, no trimmed element rectangles �t entirely in the bar area, so each
of them must intersect with at least one partition rectangle. This means that
B1, . . . , Bn/5 is a partition of the set of all trimmed element rectangles. Let Ai
be the set of all integers in A corresponding to the trimmed element rectangles
in Bi. Observe that A1, . . . , An/5 is a partition of A.

We claim that A1, . . . , An/5 is indeed a solution for 5-Partition. Assume for
the sake of contradiction that A1, . . . , An/5 is not a solution, that is,

∑
a∈Ai

a 6= p
for some i. Because

∑
a∈A a = p(n/5), there exists j such that

∑
a∈Aj

a > p.

Because all a ∈ A are integers and p is an integer,
∑
a∈Aj

a ≥ p+ 1.
Consider the jth partition rectangle. De�ne the extended partition rectangle

as the area that includes a partition rectangle, the bar area directly below it,
and the bar δ/2 to the left and to the right of the partition rectangle. Figure 3
shows an extended partition rectangle enclosed in thick edges. (Ignore the shaded
rectangle for the moment.)

Consider any trimmed element rectangle in the packing con�guration that
intersects with this partition rectangle. We claim that each such trimmed element
rectangle must be wholly contained in the extended partition rectangle.

Consider the area of the trimmed element rectangle outside the partition
rectangle and the bar below it. If this is not empty, this must be a right triangle
with hypotenuse on the extension down to the bar of a vertical side of the
partition rectangle (see Figure 3). The hypotenuse of this triangle is of length at



p

1

δ

δ

2

δ

2

Fig. 3. The area enclosed by thick edges is the extended partition rectangle correspond-
ing to this partition rectangle. In this con�guration, the trimmed element rectangle,
shown as the shaded area, is partially outside of the partition rectangle and the bar
below it. This external area is a right triangle with hypotenuse on the extension of a
vertical edge of the partition rectangle (shown as the dotted line segment), which is of
length δ.

most δ, so the height of the triangle (perpendicular to the hypotenuse) is at most
δ/2. Thus, the triangle must be in the extended partition rectangle. Thus the
whole trimmed element rectangle must be in the extended partition rectangle,
as claimed.

The area of the extended partition rectangle is p+ pδ + δ2 < p+ 1/2. How-
ever, the total area of the trimmed element rectangles contained in this area is∑
a∈Aj

a(1 − 4δ) =
∑
a∈Aj

a − 4δ
∑
a∈Aj

a ≥ (p + 1) − 4δ
∑
a∈Aj

a > p + 1/2,
which is a contradiction.

Thus we conclude that A1, . . . , An/5 is a solution to 5-Partition, which
implies that the 5-Partition instance is a yes instance as desired. 2

6 Proof of Inapproximability of Min Piece Dissection

In this section, we show the inapproximability of Min Piece Dissection via a
reduction from the intermediate problem Max 5-Partition, whose inapprox-
imability result is described in the following lemma.

Lemma 2. There is a constant αM5P > 1 such that GapMax-5-Partition[n(1 −
ε)/5, n(1/αM5P + ε)/5] is NP-hard for any su�ciently small constant ε > 0.7

7 The best αM5P we can achieve here is 216/215.



Lemma 2 implies that it is hard to approximateMax 5-Partition to within
an αM5P− ε ratio for any su�ciently small ε > 0. The proof of Lemma 2 largely
relies on the reduction used to prove NP-hardness of 4-Partition in [10], but
we apply our modi�ed reduction on the inapproximability result of 4-Uniform
4-Dimensional Matching by Hazan, Safra, and Schwartz [12]. We defer the
proof of this lemma to the full version. Here we focus on the gap preservation of
the reduction, which implies Theorem 2.

Lemma 3. There is a constant αMPD > 1 such that the following properties
hold for the reduction described in Section 4:

� if the optimum of the Max 5-Partition instance is at least n(1−ε)/5, then
the optimum of the resulting Min Piece Dissection instance is at most
n(1 + ε/5); and

� if the optimum of the Max 5-Partition instance is at most n(1/αM5P +
ε)/5, then the optimum of the resulting Min Piece Dissection is at least
n(αMPD + ε/5).

Because it is NP-hard to distinguish the two cases of the input Max 5-

Partition instance, it is also NP-hard to approximateMin Piece Dissection

to within an αMPD − ε ratio for any su�ciently small constant ε > 0. Thus,
Lemma 3 immediately implies Theorem 2. It remains to prove Lemma 3:

Proof (of Lemma 3). We will show that both properties are true when we choose
αMPD to be 1 + (1− 1/αM5P)/5.

(Max 5-Partition =⇒Min Piece Dissection) Suppose that the inputMax

5-Partition instance has optimum at least n(1− ε)/5. Let A1, . . . , Am′ be the
optimal partition where m′ ≥ n(1− ε)/5. We cut P into pieces as follows:

1. First, we cut every element rectangle except the �rst one from the bar.
2. Next, let the indices of the elements in A− (A1∪A2∪· · ·∪Am′) be i1, . . . , il

where 1 ≤ i1 < i2 < · · · < il ≤ n.
3. For each i = 1, . . . , n/5 − m′, let j be the smallest index such that ai1 +
· · · + aij ≥ ip. Cut the piece corresponding to aij vertically at position
ip−

(
ai1 + · · ·+ aij−1

)
from the left. (If the intended cut position is already

the right edge of the piece, then do nothing.)

To pack these pieces into Q, we arrange all pieces whose corresponding el-
ements are in partitions in the optimal Max 5-Partition solution, then pack
the remaining pieces into the remaining partition rectangles using the additional
cuts made in step 3. We leave the piece containing the �rst element rectan-
gle (and the bar) at its position in P , but this does not constrain our solution
because the other pieces and the partitions can be freely reordered.

The number of cuts in step 1 is n−1 and in step 3 is at most n/5−m′ ≤ εn/5.
Thus the total number of cuts is at most n− 1 + εn/5, so the number of pieces
is at most 1 + (n− 1 + εn/5) = n(1 + ε/5) as desired.



a1 a2 an

· · ·

ai1 ai2 ai3 ai4 ail

p p

· · ·

Fig. 4. An illustration of how the source polygon P is cut. The cuts from step 1 are
shown as dashed lines on the top �gure; every element rectangle except the �rst one is
cut from the bar. On the bottom, the cuts from step 3 are demonstrated. We can think
of the cutting process as �rst arranging ai1 , . . . , ail consecutively and then cutting at
p, 2p, . . . .

(Min Piece Dissection =⇒ Max 5-Partition) We prove this property in
its contrapositive form. Suppose that the resulting Min Piece Dissection has
an optimum of k < n(αMPD + ε/5). Let us call these k pieces R1, . . . , Rk.

For each i = 1, . . . , k, let R′i denote the intersection between Ri with the
union of all trimmed element rectangles. By Lemma 1, each trimmed element
rectangle can intersect with only one piece. This means that each R′i is a part of
a trimmed element rectangle. (Note that R′i can be empty; in this case, we say
that it belongs to the �rst trimmed element rectangle.)

Consider R′1, . . . , R
′
k. Because each of them is a part of a trimmed rectangle

and there are n trimmed rectangles, at most k − n trimmed rectangles contain
more than one of the R′i. In other words, there are at least n− (k− n) = 2n− k
indices i such that R′i is a whole trimmed element rectangle. Without loss of
generality, suppose that R′1, . . . , R

′
2n−k are entire trimmed element triangles.

We call a partition rectangle a good partition rectangle if it does not intersect
with any of R′2n−k+1, . . . , R

′
n in the packing con�guration. From our choice of

dt, each R
′
i which is part of a trimmed element rectangle can intersect with at

most one partition rectangle. As a result, there are at least n/5− (k − n) good
partition rectangles.

For each good partition rectangle O, let AO be the subset of all elements of A
corresponding to R′is that intersect O. (Because O is a good partition rectangle,
each R′i that intersects O is always a whole trimmed element rectangle.)

We claim that the collection of TO's for all good partition rectangles O is a
solution to the Max 5-Partition instance. We will show that this is indeed a
valid solution. First, observe again that, because each R′i intersects with at most
one partition rectangle, all AO's are mutually disjoint. Thus, we now only need
to prove that the sum of elements of AO is exactly the target sum p.



Suppose for the sake of contradiction that there exists a good partition rect-
angle O such that

∑
a∈AO

a 6= p. Consider the following two cases.

Case 1:
∑
a∈AO

a > p.

As we showed in the proof of Theorem 1, each trimmed element rectangle
corresponding to a ∈ AO must be in the extended partition rectangle. By
an argument similar to the argument used in the proof of Theorem 1, the
total area of all these trimmed element rectangles is more than the area of
the extended partition rectangle, which is a contradiction.

Case 2:
∑
a∈AO

a < p.

Because every a ∈ AO and p are integers,
∑
a∈AO

a + 1 ≤ p. From the
de�nition of AO, no trimmed element rectangles apart from those in AO
intersect O. Hence the total area that trimmed element rectangles contribute
to O is at most ( ∑

a∈AO

a

)
(1− 4δ) <

∑
a∈AO

a ≤ p− 1.

This means that an area of at least 1 unit square in O is not covered by any
of the trimmed element rectangles. However, the area of the source polygon
outside of all the trimmed element rectangles is

δ

((n
5
− 1
)
dt +

∑
a∈A

a

)
+ 4δ

(∑
a∈A

a

)
< 1,

which is a contradiction.

Hence, the solution de�ned above is a valid solution. Because the number of
good partition rectangles is at least n/5− (k−n) > n/5−n(αMPD + ε/5− 1) =
n(1/αM5P − ε)/5, the solution contains more than n(1/αM5P − ε)/5 subsets,
which completes the proof of the second property. 2

7 Variations and Open Questions

Table 1 lists variations of k-Piece Dissection and whether our proofs of NP-
hardness and inapproximability continue to hold. Because it is obvious from the
proofs, we do not give detailed explanations as to why the proofs still work (or
do not work) in these settings. Speci�cally:

1. Our proofs remain valid when the input polygons are restricted to be simple
(hole-free) and orthogonal with all edges having integer length.8

2. Our results still hold under any cuts that leave each piece connected and
Lebesgue measurable.

3. Our proofs work whether or not rotations and/or re�ections are allowed
when packing the pieces into Q.



Table 1. Variations on the dissection problem.

Variation on Variation description Do our results hold?

Input Polygons

Polygons must be orthogonal YES
Polygons must be simple (hole-free) YES
Edges must be of integer length YES

Polygons must be convex NO

Cuts Allowed

Cuts must be straight lines YES
Cuts must be orthogonal YES

Pieces must be simple (hole-free) YES
Pieces may be disconnected NO

Packing Rules
Rotations are forbidden YES
Re�ections are forbidden YES

While we have proved that the k-Piece Dissection is NP-hard and that
its optimization counterpart is NP-hard to approximate, we are far from settling
the complexity of these problems and their variations. We pose a few interesting
remaining open questions:

� Is k-Piece Dissection in NP, or even decidable? We do not know the
answer to this question even when only orthogonal cuts are allowed and
rotations and re�ections are forbidden. In particular, there exist two-piece
orthogonal (staircase) dissections between pairs of rectangles which seem to
require a cut comprised of arbitrarily many line segments [7, p. 60].
If we require each piece to be a polygon with a polynomial number of sides,
then problem becomes decidable. In fact, we can place this special case in
the complexity class ∃R, that is, deciding true sentences of the form ∃x1 :
· · · : ∃xm : ϕ(x1, . . . , xm) where ϕ is a quanti�er-free formula consisting
of conjunctions of equalities and inequalities of real polynomials. To prove
membership in ∃R, use x1, . . . , xm to represent the coordinates of the pieces'
vertices in P and Q. Then, use ϕ to verify that the pieces are well-de�ned
partitions of P and Q and that each piece in P is a transformation of a piece
in Q; these conditions can be written as polynomial (in)equalities of degree
at most two. ∃R is known to be in PSPACE [4].

� Is k-Piece Dissection still hard when one or both of the input polygons
are required to be convex?

� Can we prove stronger hardness of approximation, or �nd an approximation
algorithm, for Min Piece Dissection? The current best known algorithm
for �nding a dissection is a worst-case bound of a pseudopolynomial number
of pieces [1].

� Is k-Piece Dissection solvable in polynomial time for constant k? Mem-
bership in FPT would be ideal, but even XP would be interesting.

Acknowledgment. We thank Greg Frederickson for helpful discussions.

8 Our reduction uses rational lengths, but the polygons can be scaled up to use integer
lengths while still being of polynomial size.
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