
Finding a Divisible Pair∗

Stelian Ciurea† Erik D. Demaine‡ Corina E. P̌atraşcu§ Mihai Pǎtraşcu‡

Abstract

Our problem is the natural algorithmic version of a classic mathematical result: any(n+1)-subset of{1, . . . , 2n} contains
a pair of divisible numbers. How do we actually find such a pair? If the subset is accessible only through a membership oracle,
we show a lower bound of4

3
n − O(1) and an almost matching upper bound of

`
4
3

+ 1
24

´
n + O(1) on the number of queries

necessary in the worst case.

1 Introduction

A natural formalization of our problem is in an oracle model: the(n + 1)-subset is not known to the algorithm, and is only
accessible through membership queries asked to the oracle. The main results of this paper will be a lower bound of4

3n−O(1)
on the number of queries necessary in the worst case, and an almost matching upper bound of

(
4
3 + 1

24

)
n + O(1). We believe

the upper bound can be improved to match the lower bound, but we were unable to do that.
We begin with the folklore proof of the existence of a divisible pair, which immediately implies an algorithm makingO(n)

queries.

Theorem 1. For anyS ⊂ {1, . . . , 2n}, |S| = n + 1, there exista, b ∈ S such thata dividesb.

Proof. For every odd numberq ∈ {1, 3, 5, . . . , 2n − 1}, let Bq = {q · 2i | 0 ≤ i ≤ log2bn/qc} – that is, a bin with all
power-of-two multiples ofq. Since every number is in the bin generated by its largest odd divisor, we haveBq ∩ Br = ∅ and⋃

Bq = {1, . . . , 2n}. There are exactlyn such bins, so at least one bin must contain two elementsa, b ∈ S. By construction of
the bins,a andb are a divisible pair.

This proof is quite strong: it not only tells us that a divisible pair exists, but that one exists in which one number is a
power-of-two multiple of the other! We note that this immediately gives an algorithm which makes at most3

2n+O(1) queries.
This is because odd numbers greater thann need never be considered. Indeed, these numbers have no multiple below2n, so
they cannot be part of a pair where the two numbers differ by a power of two factor.

2 A Good Lower Bound

In this section, we prove a lower bound of4n/3 − O(1) on the number of queries necessary in the worst case. The strategy of
the adversary is simple. The first query to every pair(x, 2x), with x ∈ {2n/3 + 1, . . . , n}, receives a positive answer. As long
as the adversary has a choice, i.e. it has not already declaredn − 1 numbers to be out of the set, the second query made to a
pair receives a negative answer. Numbers greater thann which are not part of such a pair are always included in the set, so an
algorithm which knows the adversary need not ask about these. Numbers below2n/3 arein principle not included in the set.
However, the very last one probed might be included in the set, if the adversary has already declaredn − 1 values to be out of
the set.

The lower bound comes from analyzing the number of queries needed to fix the divisible pair. Once the pair is fixed, an
optimal algorithm need not actually query the two numbers in the pair. First note that our adversary never generates a divisible
pair unless it has already declaredn−1 numbers to be out of the set. Indeed, before this inevitable moment, no number smaller

∗This material originally appeared as part of the paper “Finding a Divisible Pair and a Good Wooden Fence” by the same authors, published in the
Proceedings of the 3rd International Conference on Fun with Algorithms (FUN 2004).

†Universitatea Lucian Blaga, Sibiu, Romania;stelian.ciurea@ulbsibiu.ro
‡MIT, Computer Science and Artificial Intelligence Laboratory;edemaine@mit.edu
§Harvard University, Department of Mathematics;patrascu@fas.harvard.edu

1

than2n/3 is included in the set (so numbers aboven which are always included have no divisors in the set), and only one
number from each special pair is declared to be in.

Therefore, a divisible pair is not fixed, unlessn − 1 queries have already received a negative answer. However, at most
2n/3 of these can come from positions1, . . . , 2n/3. Therefore, at leastn/3− 1 must come from one of the special pairs. Now
remember that the first query touching a special pair always receives a positive answer. So in addition to then − 1 negative
answers, the adversary must also have givenn/3− 1 positive answers.

Theorem 2. Finding a divisible pair requires at least43n−O(1) queries in the worst case.

3 A Good Upper Bound

It can be seen that we cannot hope to beat the3n/2 barrier by searching only for power-of-two multiples. However, it might
seem that a strategy that probes all multiples of an element can do even worse than3n/2, since it foregoes even the basic
guarantee of not touching odd numbers greater thann. Surprisingly, a naive algorithm which probes alli’s in increasing order,
and for everyi in the set probes all its multiples, has relatively good performance. We can prove that this algorithm does at
most

(
4
3 + 1

12

)
n + O(1) queries, and we can exhibit a family of inputs on which this bound is tight. All the ideas necessary to

prove this will also appear in the proofs of this section.
In this section, we analyze a simple improvement to this strategy. The algorithm considers all numbersi in increasing order.

Usually, i is probed, and if it is in the set, its multiples are also probed. However, ifi > 3n/2 and its single multiple2i has
previously been probed and received a negative answer, there is no point in queryingi. We will show that the performance of
this improved algorithm is

(
4
3 + 1

24

)
n + O(1), which almost matches our lower bound.

For the purpose of the analysis, we break the execution of this algorithm into two stages. The first stage lasts as long as
i ≤ 2n/3. We begin with the case when the algorithm finishes during the first stage, i.e. withi ≤ 2n/3. In this case, we show
the algorithm does at most4n/3+O(1) queries. The algorithm can ask at mostn− 1 queries which receive a negative answer,
so we must prove that at mostn/3 + O(1) queries can receive a positive answer. At most one query for a number greater than
2n/3 can receive a positive answer, because such a number is only probed when one of its divisors is in the set, so we stop
after the first positive answer. On the other hand, at mostn/3 + 1 queries from the range{1, . . . , 2n/3} can receive a positive
answer. Indeed, by fact 1 a(n/3+1)-subset of{1, . . . , 2n/3} contains a divisible pair, so if we have receivedn/3+1 positive
answers, we have also found a divisible pair.

Now assume that the algorithm finishes only in the second stage. In this case, all numbers between1 and2n/3 are probed.
Let T be the set of such numbers which received a positive answer, and letN be the set of probed numbers which received a
negative answer during the first stage. Given this, exactlyn − 1 − |N | numbers are outside the set and not yet discovered. For
everyi > 2n/3, we only probei if 2i has not been probed already. Thus, eitheri and2i are both in the set and the algorithm
stops, or we discover one new number that is outside the set (and possibly also one that is in the set). Thus, the number of
queries done in the second stage is at most2 + 2(n− 1− |N |) = 2n− 2|N |. The total number of queries must then be at most
|T | + |N | + 2n − 2|N | = 2n − (|N | − |T |). We will show below that|N | ≥

(
2
3 −

1
24

)
n + |T |, which immediately implies

our desired bound.
To prove our bound on|N |, first note thatN contains exactly2n/3 − |T | numbers from{1, . . . , 2n/3}. Let M = N ∩

{2n/3 + 1, . . . , 2n}. Our bound is equivalent to|M | ≥ 2|T | − n
24 . First note thatM contains all multiples greater than2n/3

of numbers fromT , and in particular all power-of-two multiples. There are2 power-of-two multiples for every number in
T ∩ {1, . . . , n/2} and one for the rest ofT . However, for every number inT betweenn/2 + 1 and2n/3, M must also contain
its triple. Thus, we have identified two multiples belonging toM for every number fromT . No two numbers fromT can have
a power-of-two multiple in common, since they would be divisible, and the algorithm would stop during the first stage. Thus,
the only double counting can come from triples, namely when3x = 2iy with somey ∈ T, x ∈ T ∩ {n/2 + 1, . . . , 2n/3}.
Clearly,3x ∈ {3n/2 + 3, . . . , 2n}, so2i−1y ∈ {3n/4 + 1, . . . , n}. In addition,2iy must be a multiple of three, so2i−1y must
also be a multiple of three. Finally,2i−1y must be even, becausey ≤ 2n/3, soi ≥ 2. Thus,2i−1y must be a multiple of6 in
the range{3n/4 + 1, . . . , n}. Since there are onlyn/24 such possibilities, and each one defines at most one double-counted
multiple, we obtain|M | ≥ 2|T | − n/24, which completes our proof.

Theorem 3. In the worst case,
(

4
3 + 1

24

)
n + O(1) queries are sufficient to find a divisible pair.

2

