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Abstract22

A door gadget has two states and three tunnels that can be traversed by an agent (player, robot,23

etc.): the “open” and “close” tunnel sets the gadget’s state to open and closed, respectively, while24

the “traverse” tunnel can be traversed if and only if the door is in the open state. We prove that it25

is PSPACE-complete to decide whether an agent can move from one location to another through26

a planar assembly of such door gadgets, removing the traditional need for crossover gadgets and27

thereby simplifying past PSPACE-hardness proofs of Lemmings and Nintendo games Super Mario28

Bros., Legend of Zelda, and Donkey Kong Country. Our result holds in all but one of the possible29

local planar embedding of the open, close, and traverse tunnels within a door gadget; in the one30

remaining case, we prove NP-hardness.31

We also introduce and analyze a simpler type of door gadget, called the self-closing door. This32

gadget has two states and only two tunnels, similar to the “open” and “traverse” tunnels of doors,33

except that traversing the traverse tunnel also closes the door. In a variant called the symmetric34

self-closing door, the “open” tunnel can be traversed if and only if the door is closed. We prove that35

it is PSPACE-complete to decide whether an agent can move from one location to another through36

a planar assembly of either type of self-closing door. Then we apply this framework to prove new37

PSPACE-hardness results for several 3D Mario games and Sokobond.38
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3:2 Proving PSPACE-hardness via Planar Assemblies of Door Gadgets

1 Introduction43

Puzzle video games are rife with doors that block the player’s passage when closed/locked.44

To open such a door, the player often needs to collect the right key or keycard, or to press45

the right combination of buttons or pressure plates, or to solve some other puzzle. Many46

of these game features in sufficient generality imply that the video game is NP-hard or47

PSPACE-hard, according to a series of metatheorems starting at FUN 2010 [7, 10,11].48

An intriguing twist is to use doors as a framework for proving hardness of video games that49

do not “naturally” have doors, but have some mechanics that suffice to simulate doors via a50

gadget. The first use of a local “door gadget” was by Viglietta to prove Lemmings PSPACE-51

complete at FUN 2014 [12]. This door gadget is a portion of a level design containing three52

directed paths that the player can traverse: a “traverse” path that can be traversed if and53

only if the door is open, a “close” path that forces the door to close, and an “open” path that54

allows the player to open the door if desired. Viglietta [12, Metatheorem 3] proved that such55

a door gadget, together with the ability to wire together door entrance/exit ports according56

to an arbitrary graph (including crossovers for a 2D game like Lemmings), where the player57

has the choice of how to traverse the graph, suffice to prove PSPACE-hardness of deciding58

whether an agent can move from one location to another. At the same FUN, Aloupis et59

al. [1] used this door framework to prove Legend of Zelda: Link to the Past and Donkey60

Kong Country 1, 2, and 3 PSPACE-complete [1]. At the next FUN, Demaine et al. [6] used61

this door framework to prove Super Mario Bros. PSPACE-complete. All of these proofs62

feature a crossover gadget for wiring paths between door gadgets.63

The motion-planning-through-gadgets framework of [4, 5] (initiated at FUN 2018) for-64

malizes the idea of moving one or more agents through a graph of local gadgets, where each65

gadget has local state and traversal paths whose traversal affects that gadget’s state (only).66

In the 1-player unbounded setting considered here, past work analyzed gadgets that are67

1. deterministic, meaning that when an agent enters a gadget at any location, it has a68

unique exit location and causes a unique state change;69

2. reversible, meaning that every such traversal can be immediately undone, both in terms70

of agent location and gadget state change; and71

3. k-tunnel, meaning that the 2k entrance/exit locations can be paired up such that, in72

any state, traversal paths only connected paired locations (in some direction).73

Restricted to deterministic reversible k-tunnel gadgets, Demaine et al. [5] characterized74

which gadget sets make motion planning of an agent from one location to another PSPACE-75

complete: whenever the gadget set contains a gadget with interacting tunnels, meaning76

that traversing some traversal path changes (adds or removes) the traversability of some77

other traversal path (in some direction). Furthermore, they proved the same characterization78

when the gadgets are connected in a planar graph, obviating the need for a crossover gadget.79

Door gadgets naturally fit into this motion-planning-through-gadgets framework. (Indeed,80

they were one of the inspirations for the framework.) Notably, however, the door gadget81

used in [1, 6, 12] is neither deterministic (the open path can open the door or not, according82

to the player’s choice) nor reversible (the paths are all directed in fixed directions), so the83

existing characterization and planarity result do not apply.84

In this paper, we develop a specialized motion-planning-through-doors framework, com-85

pleting another subspace of the motion-planning-through-gadgets framework. Our framework86

applies to a variety of different door gadgets, including the door gadget of [1, 6, 12]. In all87

cases, a door gadget has two states and three disjoint traversal paths: “traverse”, “close”, and88

“open”. Each path may be individually directed (traversable in one direction) or undirected89
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(traversable in both directions). In addition, the open traversal path may have identical90

entrance and exit locations, meaning that its traversal changes the door’s state but does91

not move the agent (breaking the k-tunnel assumption). In this way, we can require that92

traversing the open and close traversal paths force the door’s state to open and closed,93

respectively, but still effectively allow the player to make a choice of whether to open the94

door (by skipping or including the open traversal, which leaves the agent in the same location95

either way).96

In Section 2, we introduce two more families of door gadgets. A self-closing door has97

two states but only two traversal paths: “open” and “self-close”. The self-close traversal is98

possible only in the open state, and it forcibly changes the state to closed. As before, each99

traversal path can be either directed or undirected; and the open traversal forces the state to100

open, but we allow the open traversal path to have identical start and end locations, which101

effectively allows optional opening. A symmetric self-closing door has two states and102

two traversal paths: “self-open” and “self-close”. The self-open/close traversal is possibly103

only in the closed/open state, respectively, and it forcibly changes the state to open/closed,104

respectively. (This definition is fully symmetric between “open” and “close”.) Each traversal105

path can be either directed or undirected, but we no longer allow optional traversal.106

In Section 3, we prove that planar 1-player motion planning is PSPACE-complete for107

every door gadget, for every local combinatorial planar embedding of every type door gadget108

except for one (which we only prove NP-hard). Thus, all that is needed to prove a new game109

PSPACE-hard is to construct any single supported door gadget, and to show how to connect110

the door entrances/exits together in a planar graph. In particular, the crossover gadgets111

previously constructed for Lemmings [12, Figure 2(e)], Legend of Zelda: Link to the Past and112

Donkey Kong Country 1, 2, and 3 [1, Figures 28 and 20], and Super Mario Bros. [6, Figure 5]113

are no longer necessary for those PSPACE-hardness proofs: they can now be omitted. (See114

Section 4 for details.) Our result should therefore make it easier in the future to prove 2D115

games PSPACE-hard. Because of their reduced conceptual complexity — only two traversal116

paths, which behave essentially identically for symmetric self-closing doors — we have found117

it even easier to prove games PSPACE-hard by building self-closing door gadgets.118

In the full version of the paper we prove that every door is universal, meaning that any119

one of them can simulate all gadgets in the motion-planning-through-gadgets framework120

of [4, 5]. This provides the first examples of fully universal gadgets.121

In Section 4, we illustrate this approach by proving PSPACE-hardness for one 2D game,122

Sokobond, and several different 3D Mario games: Super Mario 64, Super Mario 64 DS,123

Super Mario Sunshine, Super Mario Galaxy, and Captain Toad: Treasure Tracker (and124

the associated levels in Super Mario 3D World). Additional applications to Super Mario125

Galaxy 2 and Super Mario 3D Land/World are presented in the full version of the paper.126

These reductions consist of just one gadget, a symmetric self-closing door, along with easy127

methods for connecting these gadgets. For the 3D games, the main benefit is the simplicity128

of the symmetric self-closing door: crossovers are generally easy in the 3D games, though129

conveniently we still do not need to explicitly build them.130

2 Self-Closing Doors131

In this section, we introduce different kinds of self-closing doors and show that 1-player132

motion planning is PSPACE-hard for them.133

FUN 2020
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2.1 Terminology134

A self-closing door is a 2-state gadget that has a tunnel that closes itself when traversed135

(the self-closing tunnel), a tunnel/port that reopens said tunnel (the opening tunnel/port),136

and no other ports. We will talk about two major kinds of self-closing door. A normal137

self-closing door is a self-closing door where the open path/tunnel is always open. A138

symmetric self-closing door is a self-closing door where the open path/tunnel is a tunnel139

and also closes itself when traversed. As with doors, these can be directed, undirected, or140

mixed, and a normal self-closing door can also be open-required or open-optional. An141

‘X’ on a tunnel indicates that the tunnel closes itself when traversed. A dotted line indicates142

a closed tunnel and a solid line indicates an open tunnel. For normal self-closing doors, the143

open path/tunnel will be colored green. Figure 1 shows some self-closing doors.144

Figure 1 Left: An undirected open-required normal self-closing door. Right: A directed open-
optional normal self-closing door. Bottom: A mixed symmetric self-closing door.

2.2 PSPACE-hardness of Self-Closing Doors145

In this section we show PSPACE-hardness for 1-player motion planning with any of the146

self-closing doors. We do so by showing undirected self-closing doors can simulate diodes,147

and self-closing doors without open-optional tunnels can simulate ones with open-optional148

tunnels. We then prove the main Theorem 2.3 which gives PSPACE-hardness of the directed,149

open-optional, normal self-closing door by simulating a directed, open-optional door gadget.150

I Lemma 2.1. In 1-player motion planning, any normal or symmetric self-closing door can151

simulate an open-optional self-closing door.152

Proof. In the case of an open-optional normal self-closing door, we are done. In the case153

of an open-required normal self-closing door, we do the same thing we did for the proof for154

Theorem 3.6. In the case of a symmetric self-closing door, we pick a tunnel to be the opening155

tunnel and do what we did for Theorem 3.6. This simulates an open-optional self-closing156

door. J157

I Lemma 2.2. 1-player motion planning with the undirected open-optional normal self-closing158

door can simulate a directed open-optional normal self-closing door.159

Proof. We can simulate a diode by wiring 2 undirected open-optional normal self-closing160

doors as shown in Figure 4. The player can enter from the left, open the left self-closing161

door, traverse it, and do the same for the right self-closing door. The player cannot enter162

from the right. If the player tries to open the left self-closing door and then leave, the player163
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still cannot enter from the right. If the player tries to open the right self-closing door and164

then leave, they will not be able to leave. So this simulates a diode. We can wire a diode to165

each side the self-closing tunnel to get a directed self-closing tunnel which can be applied to166

make the undirected self-closing door directed. J167

I Theorem 2.3. 1-player motion planning with the directed open-optional normal self-closing168

door is PSPACE-hard.169

Proof. We can simulate a diode by wiring the opening port to the input end of the self-closing170

tunnel. The player can open the self-closing tunnel then traverse it, but cannot go the other171

way because the self-closing tunnel is directed. Then we show that we can duplicate the open172

port and the self-closing tunnel as in Figure 2. We then actually triplicate the open port and173

duplicate the self-closing tunnel, and wire them up to simulate the directed open-optional174

door as shown in Figure 3, for which PSPACE-hardness is known. J175

sim

Figure 2 The directed open-optional normal self-closing door can simulate a version of itself with
the opening port and the self-closing tunnel duplicated. Note that the opening port duplicator is
planar.

Chaining the simulations in Lemmas 2.1 and 2.2 with Theorem 2.3 we obtain PSPACE-176

hardness for all variations.177

I Corollary 2.4. 1-player motion planning with any normal, symmetric, or open-optional178

normal self-closing door is PSPACE-hard.179

FUN 2020
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Figure 3 Simulation of the directed open-
optional door. Green wires correspond to the
opening port; blue wires correspond to the traverse
tunnel; and red wires correspond to the closing
tunnel. Note that the player has no reason to not
open the gadget after traversing the blue wire.

Figure 4 Undirected open-optional normal
self-closing door simulating a diode

3 Planar Doors180

In this section, we adapt the door framework of [1, Section 2.2] (a cleaner presentation of the181

framework from [12]) into the motion-planning-through-gadgets framework. We then improve182

upon those results by showing most variations on the door gadget remain PSPACE-hard183

in the planar case. We also show that 1-player planar motion planning with any normal or184

symmetric self-closing door is PSPACE-hard.185

3.1 Terminology186

We define a door to be a gadget with an opening port or tunnel, a traverse tunnel, and187

a closing tunnel, and each of the tunnels may be directed or undirected. The opening188

port/tunnel opens the traverse tunnel, and the closing tunnel closes the traverse tunnel.189

Throughout this paper, the opening port/tunnel will be colored green, the traverse tunnel190

will be colored blue, and the closing tunnel will be colored red. In addition, a solid traverse191

tunnel represents an open door, and a dotted traverse tunnel represents a closed door. A192

directed door is a door where all tunnels are directed. An undirected door is a door where193

all tunnels are undirected. A door that is neither undirected nor directed is a mixed door .194

An open-required door is a door with an opening tunnel, and an open-optional door is195

one with an opening port. A directed open-required door, an undirected open-required door,196

and a mixed open-optional door are shown in Figure 5.197

In 2D, we care about the arrangement of ports in a gadget. For planar motion planning198

problems we want a planar system of gadgets, where the gadgets and connections are drawn199

in the plane without crossings. Planar gadgets also specify a clockwise ordering of their ports,200

although we consider rotations and reflections of a gadget to be the same. A single gadget201

type thus corresponds to multiple planar gadget types, depending on the choice of the order202

of locations. For a planar system of gadgets, the gadgets are drawn as small diagrams with203

points on their exterior coorisponding to their ports and connections are drawn as paths204

connecting the points corresponding to the ports without crossing gadget interiors or other205

connections.206
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Closed Open Closed Open

Closed Open

Figure 5 Left: A directed open-required door. Right: An undirected open-required door. Bottom:
A mixed open-optional door.

3.2 PSPACE-hardness for Planar Self-Closing Doors207

For completeness, we give a proof that the planar directed open-optional normal self-closing208

door is PSPACE-hard. This result was also given in [2].209

I Theorem 3.1. 1-player planar motion planning with the directed open-optional normal210

self-closing door is PSPACE-hard.211

Proof. Since Theorem 2.3 shows PSPACE-completeness in the non-planar case, it will suffice212

to build a crossover gadget. First, we wish to duplicate the opening ports as in the prior213

proof. We show how to do so in Figure 2. Note that this time we cannot directly duplicate214

the self-closing tunnel as the construction from Theorem 2.3 uses crossovers. We can also215

simulate a diode as proven in Theorem 2.3 since the construction is planar. We use these216

to simulate a pair of self-closing doors where the opening ports alternate which door they217

open, shown in Figure 6. If the agent enters from port 1 or 4, they will open door E or F,218

respectively, and then leave. If the agent enters from port 2, they can open doors A, B, and219

C. Assume they then traverse door B. If they then open door E, they would have to traverse220

door C, maybe open F, and get stuck. So instead of opening door E, the agent traverses221

door A, ending up back at port 2 with no change except that door C is open. Entering port222

2 or 3 gives the opportunity to open door C without being forced to take a different path,223

so leaving door C open does not help. So instead of traversing door B, the agent traverses224

door C. The agent is then forced to go right and can open door F. Then they are forced to225

traverse door B. If the agent opens door E, they will be stuck, so the agent traverses door A226

instead and returns to port 2, leaving door F open. Similarly, if the agent enters from port 3,227

the only useful thing they can do is open port E and return to port 3.228

Using this, we then simulate a directed crossover as in Figure 7 which are able to229

simulate an undirected crossover, removing the planar restriction and reducing this problem230

to Theorem 2.3. In the simulation of a directed crossover, the agent must open the left tunnel231

of a gadget and then open both tunnels of the other one, forcing them to cross over, since232

the only path forward goes through the left tunnels of both gadgets. J233

I Theorem 3.2. 1-player planar motion planning with any normal or symmetric self-closing234

door is PSPACE-hard.235

FUN 2020



3:8 Proving PSPACE-hardness via Planar Assemblies of Door Gadgets

sim

D

E

C

F

B

A

1

2

3

4

6

5

7

8

Figure 6 Directed open-optional normal self-closing door simulating the gadget on the right,
where solid opening ports control the top self-closing tunnel and dotted opening ports control the
bottom self-closing tunnel. The gadgets and external ports are labelled to help with the proof.

sim

Figure 7 Directed open-optional normal self-closing door simulating a crossover.

Proof. Any normal or symmetric self-closing door can simulate a diode as shown in Fig-236

ure 8(a–f). Then we can simulate the directed open-optional normal self-closing door as237

shown in Figure 9(a–d). Finally we apply Theorem 3.1 to show PSPACE-hardness. J238
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 8 Six types of self-closing doors simulat-
ing diodes. Filled-in arrows indicate directions that
are required to exist, and outlined arrows indicate
optional directions. Case (a) is the same as Figure 4.

(a) (c)

(b) (d)

Figure 9 Four types of directed self-
closing doors simulating the directed open-
optional normal self-closing door. Filled-in
arrows indicate directions that are required
to exist, and exactly one of the outlined
directions must exist.

3.3 PSPACE-hardness for Planar Doors239

We will show that 1-player planar motion planning with almost any door is PSPACE-hard240

by showing that 1-player planar motion planning with almost any fully directed door is241

PSPACE-hard and that mixed and undirected doors can planarly simulate at least one of242

the PSPACE-hard fully directed doors.243

We first show that mixed and undirected doors can simulate fully directed doors in244

Lemmas 3.3 and 3.4. Since undirected and partially directed doors can planarly simulate at245

least one fully directed door, it suffices to prove hardness for all fully directed doors. Next, we246

show hardness for all fully directed doors with at least one pair of crossing tunnels. We then247

show we can collapse adjacent opening ports to optional opening ports in Theorem 3.6, this248

leaves 12 fully directed doors with no crossing tunnels (Figure 10)s. These 12 doors are shown249

and named in Figure 10. Proofs for 11 of the 12 of these cases are given in Theorem 3.8.250

Finally, we show NP-hardness for the remaining Case 8: OTtocC door in Theorem 3.11.251

I Lemma 3.3. Any mixed door can planarly simulate some fully directed door which is not252

the Case 8: OTtocC door.253

Proof. Consider an arbitrary mixed door M . Since M is mixed, it has a directed tunnel. No254

FUN 2020
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tunnel changes its own traversability when crossed, so this tunnel simulates a diode. We wire255

each undirected tunnel of M through diodes at each end pointing in the same direction. This256

simulates a directed door. If M is not the door in Case 8: OTtocC, we are done. Otherwise,257

flip one set of diodes wired through an undirected tunnel of M , simulating a different directed258

door. J259

I Lemma 3.4. An undirected door can planarly simulate a fully directed door which is not260

the Case 8: OTtocC door.261

Proof. Consider an arbitrary undirected door U . We wire an external wire to a port of the262

opening port/tunnel. The player can visit the port, or if it is a tunnel, cross the tunnel both263

ways, to open the gadget. If the opening port/tunnel was a tunnel, this turns it into a port,264

making the gadget U ′. Consider the order of the ports of the opening port O, the traverse265

tunnel {T0, T1}, and the closing tunnel {C0, C1} around the edge of U ′, and label the ports266

p0, p1, p2, p3, p4. We want to show that a traverse tunnel port is adjacent to a closing tunnel267

port. Assume not. Without loss of generality, let p0 = T0. Then {p1, p4} = {T1, O}. But268

then {p2, p3} = {C0, C1}, and one of {p2, p3} must be adjacent to a traverse tunnel port, a269

contradiction. Since one of the traverse tunnel ports, say T1, is adjacent to one of the closing270

tunnel ports, say C0, we wire T1 to C0 without blocking an opening port or opening tunnel271

port. This simulates a directed open-optional normal self-closing door: The player can open272

the gadget by going to the opening port (or if it is a tunnel, by going through the tunnel273

and back). If the gadget is open, the player can go through the traverse tunnel and then the274

closing tunnel, but cannot go the other way. If the gadget is closed, the player cannot go275

either way through the traverse-tunnel-closing-tunnel path. J276

Case 1: OtTCc Case 2: OTtCc Case 3: OtTcC Case 4: OTtcC

Case 5: OtToCc Case 6: OTtoCc Case 7: OtTocC Case 8: OTtocC

Case 10: OTcCtCase 9: OTCct Case 11: OCTtc Case 12: OCtTc

Figure 10 The twelve cases of a planar directed door without internal crossings. Opening tunnels
with adjacent ports are merged into opening ports.
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I Theorem 3.5. 1-player planar motion planning with any directed door with an internal277

crossing is PSPACE-hard.278

Proof. If the opening tunnel crosses the closing tunnel, then we have a crossover because279

these tunnels are always open. If the opening tunnel crosses the traverse tunnel, then we280

start the door open and have a crossover because neither tunnel closes itself or the other.281

Otherwise, the traverse tunnel crosses the closing tunnel and the opening port/tunnel can282

simulate an opening port. Then we have four cases, as shown in Figure 11. In cases 1, 2,283

and 4, we can simulate a crossover by connecting the opening port to either the input of the284

traverse tunnel or the output of the closing tunnel to ensure that the traverse tunnel is open285

when we need to use it. (Figure 12).286

Case 3, however, is more tricky, as both of these ports are separated from the opening287

port by other ports. We use 2 copies to provide a path from the input of the traverse tunnel288

to the opening port without giving access to the close tunnel. The horizontal path of the289

crossover involves crossing from the left door to the right door, which is allowed as long as290

the left door is open. To take the vertical path, the player opens the middle door, goes down291

closing the left door, opens the right door, traverses the middle door, opens the left door (to292

keep the horizontal path open), and traverses the right door. The player can leave partway293

through this traversal, but this does nothing useful. So all doors with internal crossings can294

simulate crossovers, removing the planarity constraint. J295

Case 1 Case 2 Case 3 Case 4

Figure 11 The four cases where the traverse tunnel crosses the closing tunnel but the opening
port/tunnel does not cross either and can thus simulate a port.

Case 1 Case 2 Case 4Case 3

Figure 12 All four cases of the traverse tunnel crossing the closing tunnel can each simulate a
crossover.

I Theorem 3.6. In 1-player motion planning, any door can simulate its corresponding296

open-optional door.297

Proof. In case of a door that is not already open-optional, we wire one end of the open298

tunnel to the other end and wire some point on this loop externally as shown in Figure 13.299

This turns the open tunnel into an open port. J300

FUN 2020
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sim

Figure 13 An open-required door simulates its corre-
sponding open-optional door. Outlined arrows indicate op-
tionally allowed traversals.

Figure 14 Simulation of a diode
with an undirected door.

Before continuing, we prove another gadget, the directed tripwire lock, is PSPACE-301

complete. Recall that a tripwire lock is a 2-state 2-tunnel gadget with an undirected tunnel302

that is traversable in exactly 1 state and an undirected tunnel that toggles the state of the303

gadget [4]. The directed tripwire lock is similar except that its tunnels are directed.304

I Lemma 3.7. 1-player planar motion planning with the parallel directed tripwire-lock is305

PSPACE-hard.306

A proof can be found in the full version of the paper.307

For directed doors, there are only the cases without internal crossings left. If the opening308

port/tunnel is a tunnel and its ports are adjacent, we easily simulate an opening port,309

reducing the number of cases to consider. There are twelve cases, shown in Figure 10. We310

name these cases based on the cyclic order of ports, with exits-only having lowercase letters.311

I Theorem 3.8. 1-player planar motion planning with any directed door without internal312

crossings except the Case 8: OTtocC door is PSPACE-hard.313

Proof. We divide into multiple cases. Note the cases are numbered according to Figure 10,314

not in the order they are addressed in this proof.315

Case 2: OTtCc, Case 10: OTcCt, and Case 12: OCtTc doors. In all these doors the316

opening port/tunnel is a port, and the traverse tunnel output is adjacent to the closing317

tunnel input. Thus, we can simulate a directed open-optional self-closing door by wiring the318

traverse tunnel output to the closing tunnel input and by attaching a wire to the open port,319

and these wires do not cross each other. Then this reduces to Theorem 3.2.320

Case 1: OtTCc door. can simulate the directed version of the tripwire lock, as shown321

in Figure 15. We will refer to the gadgets numbered left to right. The lock is simply the322

traverse tunnel on door 1. In the two simulated states we will either have doors 1 and 3 open323

or door 2 open. If door 2 is open, when traversing the tripwire tunnel we can go through324

the traverse tunnel allowing us to open doors 1 and 4. With door 4 now open, we can go325

through its traverse tunnel opening door 3, and then closing door 4 on the way out. This326

leaves us with doors 1 and 3 open. Going through the tripwire tunnel again closes door 1327

but allows us to go through the traverse tunnel of door 3, allowing us to open door 2. Doors328

3 and 4 are then closed on the way out. There are states where we could fail to open all329

of these doors while traversing the close tunnel, but this will leave the gadget with strictly330

less traversability and thus the agent will never want to take such a path. Thus the Case 1:331

OtTCc door is PSPACE-complete by Lemma 3.7.332
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sim =

1 2
2 1

2

Figure 15 The Case 1: OtTCc door simulates the parallel directed tripwire lock. In addition, the
state diagram of the directed tripwire lock. Arrows are drawn directly on wires to represent diodes.

Case 3: OtTcC door. This door can simulate a directed open-optional normal self-closing333

door (Figure 16). If the agent enters from port O (the opening port), they can open doors 2334

and 3. If they then leave, they have accomplished nothing because door 2 was already open,335

and door 3 can be opened from port O anyway and cannot be traversed from port T0 or T1336

as we will see later. So they close door 2 instead. Then they can open door 1 and they are337

forced to traverse door 3. The agent can then reopen door 2 and return to port O. Now all338

the doors are open. If the agent then enters from port T0, then they are forced to close door339

3. They can then open door 1 (useless), and then they are forced to traverse door 2 and close340

door 1, leading to port T1. The agent could not have taken this path initially because door 1341

was closed, and they cannot take it again without visiting port O because they just closed342

door 1.

O

T0

T1

1

2 3

Figure 16 Simulation of a self-closing door with the Case 3: OtTcC door. The simulation starts
in the closed state. Ports and gadgets are labelled.

343

Case 4: OTtcC door. A proof of this case can be found in the full paper.344

Case 6: OTtoCc door. This door can simulate a directed open-optional normal self-closing345

door (Figure 17). If the agent enters from port O, they are forced to close door 3. If the agent346

then traverses door 2, they are forced to open door 3 and return to port O, accomplishing347
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nothing. So the agent has no other option but to close door 1. If the agent tries to open door348

2, they get stuck, so they instead open door 1. Continuing the loop involving door 1 does349

nothing, so the agent then traverses door 2, opens door 3, and returns to port O. Now door350

1 is open. If the agent enters from port T0, then they are forced to close door 2, traverse351

door 1, and close door 1. Reopening door 1 puts the agent back into the situation of being352

forced to close door 1, so the agent instead opens door 2 and traverses door 3 to port T1.353

The agent could not have taken this path initially since door 1 was closed, and they cannot354

take it again without visiting port O because they closed door 1.

O

T0

T1

1 2

3

Figure 17 Simulation of a self-closing door with the Case 6: OTtoCc door. The simulation starts
in the closed state. Ports and gadgets are labelled.

355

Case 5: OtToCc door. This door can simulate the Case 6: OTtoCc door, which has been356

covered, by effectively flipping the traverse tunnel. (Figure 18). Door 1 is the gadget that357

we flip the traverse tunnel of. If the agent enters from port T0, they must open door 2, the358

close door 2. If door 1 is open and the agent then traverses it, they are back to a previous359

position with nothing changed. Instead, the agent opens door 3. If the agent then closes360

door 3, they get stuck because door 2 is closed. So they must close door 2 (again) or traverse361

door 3. These actions lead to the same situation. If the agent opens door 3 (again), they are362

back to the same situation that occurred after opening door 3 the first time. If door 1 is363

open, the agent then traverses door 1. Then they must open door 2. Closing door 2 leads to364

a previous situation, so the agent then traverses door 3. If the agent then traverses door365

1 (again), they must open door 2 (again), leading to a previous situation. So they instead366

open door 3. Closing door 2 and traversing door 3 lead to different previous situations, so367

the agent then closes door 3, and then is forced to traverse door 2 to port T1, leaving all the368

doors unchanged. If door 1 is not open, then the agent is unable to leave.369

T0

T1

1

2
3

Figure 18 Simulation of the Case 6: OTtoCc with the Case 5: OtToCc door. The traverse tunnel
of the leftmost gadget is effectively flipped.



J. Ani, J. Bosboom, E.D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch 3:15

Case 7: OtTocC door. This door can simulate a directed open-optional normal self-closing370

door (Figure 19). If the agent enters from port O, they must open door 1, then close door371

2. If the agent then closes door 3, they get stuck because door 2 is closed. The agent can372

traverse door 1 and leave via port O, but they can also open and then traverse door 3 and373

then do the same thing, which is advantageous. So the agent opens and traverses door 3,374

then traverses door 1 to port O. Now door 1 is open, door 2 is closed, and door 3 is open. If375

the agent enters from port T0, they must close door 1, then open door 2, then traverse door376

3. Opening door 3 and then traversing it is a no-op, and door 1 is closed, so the agent closes377

door 3 and then must traverse door 2 to port T1. This leaves door 1 closed, door 2 open,378

and door 3 closed. The agent could not have taken this path initially because door 3 was379

closed, and cannot take it again without visiting port O first for the same reason.380

O

1

T1

2

3

T0

Figure 19 Simulation of a self-closing door with the Case 7: OtTocC door.

Case 9: OTCct door. This door can simulate a directed open-optional normal self-closing381

door (Figure 20). If the agent enters from port O, they can open door 1 and must close door382

2. If the agent later enters from port T0, then they must traverse door 1. They then can383

open door 2 (and must, since that is the only way out) and must close door 1. Then the384

agent traverses door 2 to port T1. The agent could not have taken this path initially because385

door 1 was closed, and cannot take the path again without visiting port O first for the same386

reason.387

O

T0

T1

1

2

Figure 20 Simulation of a self-closing door with the Case 9: OTCct door.

Case 11: OCTtc door. A proof of this case can be found in the full paper.388
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This covers all the planar directed doors without internal crossings except the OTtocC389

door, finishing the proof. J390

I Theorem 3.9. 1-player planar motion planning with any door except the door in Case 8:391

OTtocC is PSPACE-hard.392

Proof. This follows from Theorems 3.5, 3.8, 3.3, and 3.4, as those cover all the cases. J393

To prove NP-hardness of the last case (Case 8: OTtocC), we first prove NP-hardness394

of other useful gadgets. A NAND gadget is a directed 2-tunnel gadget where traversing395

either tunnel closes both tunnels (preventing all future traversals). There are three planar396

types of NAND gadgets, named by analogy with 2-toggles [4]: one crossing type (where the397

two tunnels cross); and two noncrossing types, parallel (where the directions are the same)398

and antiparallel (where the directions are opposite). The notion of NAND gadgets was399

introduced in [3], which proved NP-hardness using a combination of parallel and antiparallel400

NAND gadgets, “one-way” gadgets, “fork” gadgets, and “XOR” gadgets. We prove that401

NAND gadgets alone suffice:402

I Lemma 3.10. 1-player planar motion planning is NP-hard with either antiparallel NAND403

gadgets or crossing NAND gadgets.404

Proof. Figures 21 and 22 show that antiparallel NAND gadgets can simulate crossing NAND405

gadgets and vice versa. Figure 23 shows how crossing NAND gadgets can simulate parallel406

NAND gadgets. Therefore we can assume the availability of all three planar types of NAND407

gadgets.408

Figure 21 Simulation of
crossing NAND gadget by an-
tiparallel NAND gadgets.

Figure 22 Simulation of an-
tiparallel NAND gadget by cross-
ing NAND gadgets.

Figure 23 Simulation of par-
allel NAND gadget by crossing
NAND gadgets.

We follow the NP-hardness reduction from Planar 3-Coloring to Push-1-X in [3]. This409

reduction requires four types of gadgets. Their “NAND gadget” is our parallel and antiparallel410

(noncrossing) NAND gadgets, which we have. Their “XOR-crossing gadget” is a crossing411

2-tunnel gadget that breaks down (in a particular way) if both tunnels get traversed. The412

reduction guarantees that at most one tunnel in an XOR-crossing gadget will be traversed413

(because they correspond to different color assignments), so we can replace this gadget with a414

crossing NAND gadget (which even prevents both tunnels from being traversed). Their “fork415

gadget” is a one-entrance two-exit gadget such that either traversal closes the other traversal;416

we can simulate this gadget with a parallel NAND gadget by connecting together the two417

entrances. Their “one-way gadget” is a gadget that prevents traversal in one direction, but418

provides no constraint after being traversed in the other direction. Because this gadget is419

required only to block certain traversals, and each gadget gets visited only once (in particular420

because the reduction is to Push-1-X where the robot is not permitted to revisit a square), we421

can replace this gadget with a NAND gadget where one tunnel is not connected to anything.422

Therefore we have established NP-hardness using only NAND gadgets. J423
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I Theorem 3.11. 1-player planar motion planning with the door in Case 8: OTtocC is424

NP-hard.425

Proof. We show how to simulate antiparallel NAND gadgets, which is NP-hard by Lemma 3.10.426

First, Figure 24 shows how to combine two Case 8: OTtocC doors to build a door-like427

gadget with an open tunnel and two traverse–close tunnels, where traversing the open tunnel428

opens both traverse–close tunnels, and traversing either traverse–close tunnel closes the other429

traverse–close tunnel. Next, Figure 25 shows how to combine two of these gadgets to build430

an antiparallel NAND gadget. The top tunnel in the top gadget is initially closed, forcing the431

agent to open it and thus close the bottom tunnel of the bottom gadget, which is possibly432

only if the bottom tunnel of the bottom gadget was not already traversed. Because the open433

tunnel of the bottom gadget is not connected to anything, both tunnels of the bottom gadget434

will remain closed once closed. J435

Figure 24 Simulation of parallel
double-close door with the Case 8: OT-
tocC door.

Figure 25 Simulation of an antiparallel NAND
gadget with a parallel double-close door.

4 Applications436

In this section we use our results about the complexity of door gadgets to prove PSPACE-437

hardness for seven new video games: Sokobond, and several different 3D Mario games. More438

applications are in the full paper.439

Sokobond is a 2D block pushing game where the blocks are able to fuse into polyominoes.440

The Mario games considered are all 3D platformers in which the player controls Mario in an441

attempt to collect resources or reach target locations while avoiding or defeating enemies442

and environmental hazards. The player’s main actions are having Mario jump and walk443

in an approximately continuous environment. Mario also has health and ways of taking444

damage which can cause the player to lose the game. More details on the needed additional445

mechanics are given in the section for each game. Captain Toad: Treasure Tracker is a 3D446

puzzle platformer and is mechanically similar to Mario except that Toad is unable to jump.447

In addition, our planar door results simplify prior uses of a door framework. The448

Lemmings door [12, Figure 4] has an internal crossing, so Theorem 3.5 applies. The449

Donkey Kong Country 1, 2, and 3 doors [1, Figures 21–23] are the Case 10: OTcCt door,450

Case 4: OTtcC door, and internal crossing door, respectively, so Theorems 3.8 and 3.5451

applies. The Legend of Zelda: A Link to the Past door [1, Figure 30] has an internal452

crossing, so Theorem 3.5 applies. The Super Mario Bros. door [6, Figure 6] is is the Case453

4: OTtcC door, so Theorem 3.8 applies. Therefore all of the crossover gadgets in these454
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reductions [12, Figure 2(e)], [1, Figure 20], [1, Figure 28], [6, Figure 5] are not in fact needed455

to prove PSPACE-hardness of these games.456

4.1 Sokobond457

Sokobond [9] is a 2D block pushing game where the blocks are atoms/molecules. Movement458

is discrete along a square grid. The player starts as a single atom. Each atom except He has459

some number of free electrons (H has 1, O has 2, N has 3, C has 4). When two atoms that460

both have free electrons are adjacent, they both lose a free electron and bond into a molecule.461

Molecules are rigid, so pushing an atom in a molecule results in the entire molecule moving.462

Atoms/molecules can also push each other.463

Sokobond with He atoms is trivially NP-hard as it includes Push-∗ [3]. We show464

PSPACE-hardness even without He atoms:465

I Theorem 4.1. Completing a level in Sokobond with H and O atoms is PSPACE-hard.466

Proof. We reduce from 1-player planar motion planning with a door that is not the Case 8:467

OTtocC door and use Theorem 3.9.468

Let the player start as an H atom trying to reach another H atom. We can simulate a469

door that is not the Case 8: OTtocC door as shown in Figure 26. To open the door, the470

player pulls down on the big molecule. The player can go through the traverse tunnel if and471

only if the molecule is down. When going through the closing tunnel, the player is forced to472

push up on the molecule, closing the traverse tunnel. The molecule used to simulate a door473

has no free electrons, so the level can be completed if and only if the player can reach the474

other H atom. J475

O O O O H

O

O

O

H O

Figure 26 Simulation of a door in Sokobond. The opening port is at the bottom left. The
traverse tunnel is undirected and runs between the top left and the top right. The closing tunnel is
undirected and runs between the middle right and the bottom right.

4.2 Captain Toad: Treasure Tracker476

Captain Toad: Treasure Tracker is a 3D puzzle platformer in the Mario universe, originally477

appearing as a type of level in Super Mario 3D World, and then released as a stand-alone478

game on the Wii U and ported to the 3DS and Switch. Notably, Toad can fall but not479

jump. The game contains rotating platforms controlled by a wheel which Toad must be480

adjacent to to move. The platforms move in 90◦ increments. We show PSPACE-hardness by481

constructing an antiparallel symmetric self-closing door (Theorem 2.4).482
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I Theorem 4.2. Collecting Stars in a Captain Toad: Treasure Tracker is PSPACE-hard483

assuming no level size limit.484

Proof. Figure 27 gives a top-down view of the construction. There is a U-shaped rotating485

platform at a height slightly below the high ground and far above the low ground. The486

U-shaped platform rotates counterclockwise and can be reached from the nearby high ground;487

however, the gap between the back of the U and the other side is too far for Toad to jump.488

Further, the dividing wall sits slightly above the rotating platform, preventing Toad from489

crossing. Toad is able to go onto the U platform from the high ground, activate the gear490

twice, and jump off of the U platform onto the low ground across the gap. The U platform491

is now facing the other way, allowing Toad to enter from the high ground on the other side,492

but preventing other traversals. J493

Figure 27 Top view of a simulation of a symmetric self-closing door.

4.3 Super Mario 64/Super Mario 64 DS494

Super Mario 64 is a 3D Mario game for the Nintendo 64 where Mario collects Stars from495

courses inside paintings to save the princess, who is trapped behind a painting. Super Mario496

64 DS is a remake of Super Mario 64 for the Nintendo DS (still in 3D), featuring the same497

courses as in Super Mario 64 plus new courses, as well as the ability to play as characters498

other than Mario. In this reduction, we will primarily make use of quicksand, which will499

defeat Mario if he lands in it, and the ghost enemy Boo.500

The Boo is an enemy that (with normal parameters) chases Mario if he is looking away501

from it and is less than a certain distance away. Once Mario gets too far, the Boo moves502

back to its original position. Unlike most enemies, jumping on a Boo does not kill it, but503

instead sends it a short distance forward or backward, which we will use to help Mario cross504

the quicksand. Some walls stop the Boo but it can go through certain walls that normal505

Mario cannot go through, we call these Boo-only walls. The Boo is also unable to go through506

doors. We also make use of one-way walls which Mario and the Boo can go through in one507

direction but not the other.508

For the setup, we use one Boo in Super Mario 64 DS and two Boos in Super Mario 64.509

Performing a kick while in the air sends Mario a short distance up and can normally only be510
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performed once per jump. But Mario can kick after jumping on a Boo in Super Mario 64 DS511

even if he already kicked, allowing him to jump on the same Boo. This is not true in Super512

Mario 64, so jumping on a second Boo is necessary to stall long enough to jump on the first513

Boo again.514

I Theorem 4.3. Collecting a Star in a Super Mario 64/Super Mario 64 DS course is515

PSPACE-hard assuming no course size limits.516

Proof. We reduce from 1-player motion planning with the symmetric self-closing door517

(Theorem 2.4), where the target to reach is a Star. The simulation is shown in Figure 28.518

In the setup below, Mario goes from port 1 to port 2 and opens the port 3 to port 4519

traversal by going through the door on the bottom-left and hopping on the Boo(s) to the520

top-left. Then Mario lets the Boo(s) chase him a little to turn the Boo(s), and hops on the521

Boo(s) to push it into the top-right. Finally, Mario goes through the top-left door. Mario522

cannot just jump to the other side because the distance is too far. He also cannot go into523

the traverse path because of the Boo-only wall. The Boo(s) will try to go back to its home,524

but cannot because it is stuck behind a 1-way wall and a regular wall. If Mario does not525

move the Boo(s) to the top-right, it still cannot get back to its home because of a different526

1-way wall, so Mario cannot leave the port 1 to port 2 traversal open.527

Mario goes from port 3 to port 4 by going through the top-right door and hopping on528

the Boo(s) to the bottom-right, then going through the bottom-right door. The Boo(s) will529

go back to its original position at the bottom left on its own.530

Mario cannot lure the Boo(s) away from the gadget because it is completely walled in531

except for the doors, which the Boo(s) cannot go through. J532

Ground

Quicksand

Door

1-Way Wall

Boo-Only Wall

Path

Boo

1

2 3

4

Wall

Figure 28 Simulation of a symmetric self-
closing door in Super Mario 64 DS. In Super
Mario 64, there are 2 Boos instead of 1. The
ground and quicksand are on the same vertical
level. The room is covered by a ceiling. The
hallways are too wide to wall jump across.

Ground

Sludge with Thin Water Above

Door

1-Way Wall

Path

Lily Pad

1

2 3

4

Wall

Slit for Lily Pad

Figure 29 Simulation of a symmetric self-
closing door in Super Mario Sunshine. The slits
allow the Lily Pad to cross without allowing
bulky Mario to do so. The hallways are too
wide to wall jump across.



J. Ani, J. Bosboom, E.D. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch 3:21

4.4 Super Mario Sunshine533

Super Mario Sunshine is a 3D Mario game for the GameCube where Mario is falsely accused534

of spreading graffiti and is forced to clean it up before he can leave. Like Super Mario 64,535

this game includes one-way walls. This game features a new device, F.L.U.D.D., attached to536

Mario’s back that allows him to spray water. Lily Pads float on water; the player can ride537

a Lily Pad and cause it to move by spraying water in the opposite direction. Sludge is an538

environmental hazard which kills Mario if he touches it. The general goal of a level is to539

collect Shrine Sprites.540

I Theorem 4.4. Collecting a Shine Sprite in a Super Mario Sunshine level is PSPACE-hard541

assuming no level size limits.542

Proof. We reduce from 1-player motion planning with the symmetric self-closing door543

(Theorem 2.4), where the target to collect is a Shine Sprite. The simulation of a symmetric544

self-closing door is shown in Figure 29.545

The thin water above the sludge prevents the Lily Pad from disintegrating, while preventing546

Mario from crossing without using the Lily Pad. Mario goes from port 1 to port 2 and opens547

the port 3 to port 4 traversal by crossing the 1-way wall and riding the Lily Pad across, then548

moves the Lily Pad partially across the slit so it can be accessed from the other side. He549

cannot leak to the section between port 3 and port 4 because the slits are too thin. The550

sludge is too long to simply jump to the other side, so the Lily Pad is needed. Mario cannot551

do anything from port 2 because the 1-way wall blocks him from going to port 1. Mario goes552

from port 3 to port 4 in a similar manner. J553

4.5 Super Mario Galaxy554

Super Mario Galaxy is a 3D Mario game for the Wii where Mario goes to space. He encounters555

alien creatures along the way and collects Power Stars to restore the power of a spaceship.556

The game features downward gravity, upward gravity, sideways gravity, spherical gravity,557

cubical gravity, tubular gravity, cylindrical gravity that allows infinite freefall, W-shaped558

gravity, gravity that cannot make up its mind, and most importantly, controllable gravity.559

Dark matter disintegrates Mario when he touches it, resulting in death. The Gravity560

Switch changes the direction of gravity when spun and can be spun multiple times.561

I Theorem 4.5. Collecting a Power Star in a Super Mario Galaxy galaxy is PSPACE-hard562

assuming no galaxy size limits.563

Proof. We reduce from 1-player motion planning with the symmetric self-closing door564

(Theorem 2.4), where the target to collect is a Star. The simulation of a symmetric self-565

closing door is shown in Figure 30.566

The Gravity Switch in this construction switches gravity between down and up. Mario567

goes from port 1 to port 2 by crossing the 1-way wall and hitting the Gravity Switch on his568

way to the right. This is forced because of a pit of dark matter, and closes the port 1 to port569

2 traversal because when gravity points up, attempting the traversal would land Mario on570

dark matter. At the same time, it opens the port 3 to port 4 traversal. Mario cannot enter571

port 2 and do anything useful because flipping the Gravity Switch means falling in the pit of572

dark matter. Mario goes from port 3 to port 4 in a similar manner. J573

FUN 2020



3:22 Proving PSPACE-hardness via Planar Assemblies of Door Gadgets

Ground

Dark Matter

Gravity Area (starts pointing down)

1-Way Wall

Path

Gravity Switch

1

2

3

4

Figure 30 Simulation of a symmetric self-closing door in Super Mario Galaxy. This is a side view
and is essentially 2-dimensional.

4.6 Super Mario Odyssey574

Super Mario Odyssey is a 3D Mario game for the Switch where Mario travels to different575

kingdoms collecting Power Moons and eventually goes to the Moon. Mario has the ability576

(via his hat Cappy) to capture certain enemies and objects to use their powers, but such577

objects tend to reset position after being uncaptured, so we will not be using them here.578

We make use of a Jaxi, poison, and timed platforms. A Jaxi is a statue lion that can579

be ridden safely across poison, which is a hazard that kills Mario. A timed switch makes580

some event happen for a specific amount of time. In our reduction, timed switch X makes581

platform X appear for just long enough for Mario to make a traversal.582

I Theorem 4.6. Collecting a Power Moon in a Super Mario Odyssey kingdom is PSPACE-583

hard assuming no kingdom size limit.584

Proof. We reduce from 1-player motion planning with the symmetric self-closing door585

(Theorem 2.4), where the target to reach is a Power Moon. The simulation of a symmetric586

self-closing door is shown in Figure 31.587

Mario goes from port 1 to port 2 by pressing timed switch A, riding the Jaxi to the right,588

and traversing platform A. This opens the port 3 to port 4 traversal while closing the port 1589

to port 2 traversal. Mario cannot go to port 3 because of the wide gap, or to port 4 because590

platform B is gone. The Jaxi is required because the poison it is on is very wide. Mario591

cannot do anything useful if he tries to enter from port 2 or port 4 because the platforms592

would be gone. Mario goes from port 3 to port 4 in a similar manner. J593
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