
Tight Bounds for Dynamic Convex Hull Queries (Again)

Erik D. Demaine Mihai Pǎtraşcu
MIT Computer Science and Artificial Intelligence Laboratory,

32 Vassar St., Cambridge, MA 02139, USA,
{edemaine,mip}@mit.edu

ABSTRACT
The dynamic convex hull problem was recently solved in
O(lg n) time per operation, and this result is best possible
in models of computation with bounded branching (e.g., al-
gebraic computation trees). From a data structures point
of view, however, such models are considered unrealistic be-
cause they hide intrinsic notions of information in the input.

In the standard word-RAM and cell-probe models of com-
putation, we prove that the optimal query time for dynamic
convex hulls is, in fact, Θ

`
lg n

lg lg n

´
, for polylogarithmic up-

date time (and word size). Our lower bound is based on
a reduction from the marked-ancestor problem, and is one
of the first data structural lower bounds for a nonorthogo-
nal geometric problem. Our upper bounds follow a recent
trend of attacking nonorthogonal geometric problems from
an information-theoretic perspective that has proved cen-
tral to advanced data structures. Interestingly, our upper
bounds are the first to successfully apply this perspective
to dynamic geometric data structures, and require substan-
tially different ideas from previous work.

Categories and Subject Descriptors
E.1 [Data Structures]

General Terms
Algorithms, Performance, Theory

Keywords
dynamic convex hull, bounded precision, word RAM

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’07, June 6–8, 2007, Gyeongju, South Korea.
Copyright 2007 ACM 978-1-59593-705-6/07/0006 ...$5.00.

1. INTRODUCTION

1.1 Putting the “computational” in computa-
tional geometry

A central issue in computational geometry is the discrep-
ancy between the idealized geometric view of limited ob-
jects with infinite precision, and the realistic computational
view that everything is represented by (finitely many) bits.
The geometric view is inspired by Euclidean geometric con-
structions from circa 300 BC, effectively modeled by the
real RAM and related models for lower bounds (e.g., lin-
ear/algebraic decision/computation trees), and often the
simplest model in which to design geometric algorithms.
The computational view matches the reality of (digital) com-
puters as we know them today and as set forth by Turing in
1936 [26]. Neither view is likely to disappear anytime soon.

A wealth of research attempts to bridge this gap automat-
ically, e.g., by simulating boolean operations over algebraic
computations using guaranteed-sufficient finite-precision ap-
proximations [7, 18, 19, 28], or by allowing approximate ge-
ometric solutions that preserve desired topological features
[15, 23]. In general, these approaches attempt to simulate
the geometric view on a binary computer while minimizing
the sacrifice in time and/or accuracy. Such automatic ap-
proaches intrinsically view finite precision as a curse, even
though it can also be a benefit: if all intermediate results
and outputs must be of finite precision, then so must be the
input. In many situations, the required precision of the in-
termediate results and outputs can be bounded in terms of
the input precision, leading to algorithms designed specifi-
cally for finite precision [25].

But to go one step further, finite precision can make a
problem even easier than its infinite-precision counterpart.
This phenomenon has been exploited heavily in nongeomet-
ric (one-dimensional) algorithms and data structures, with
one of the early examples being the Fast Fourier Transform.
For an example closer to home, many geometric problems
(e.g., convex hull, Voronoi diagrams, planar point location)
require first sorting the input. In the infinite-precision ge-
ometric view where inputs can only be manipulated alge-
braically and then compared, sorting and hence these geo-
metric problems require Ω(n lg n) time.

But sorting finite-precision values is far easier. In prac-
tice, radix sort is ubiquitous, even for geometric data: it
sorts numbers over a polynomial universe in linear time. In
theory, there is no superlinear lower bound and the best gen-
eral algorithm runs in O(n

√
lg lg n) expected time [16]. The

model of computation for these sorting algorithms (includ-

{edemaine,mip}@mit.edu

ing radix sort) is the word RAM, a natural finite-precision
analog of the real RAM in which values of the same precision
as the input values can be manipulated in a few basic ways
in constant time per operation.1 Once the input is sorted,
some geometric problems (e.g., convex hull) become trivial
to solve in O(n) additional time.

To simplify the discussion, this paper makes the practical
and standard transdichotomous assumption that the num-
ber of bits of precision, w, is Θ(lg n). In fact, our upper
bounds will work for any precision matching the word size,
and the Ω(lg n/ lg lg n) lower bounds work even with preci-

sion O(lg n) and word size w = lgO(1) n.
How does finite precision affect the optimal running times

of other geometric problems? This question has been stud-
ied mainly in the context of orthogonal problems [21, 11], to
which one-dimensional techniques are relatively straightfor-
ward to adapt. A recent pair of papers in FOCS 2006 [9, 24]
are the first to obtain speedups for an inherently nonorthog-
onal problem: for (static) planar point location on an input
of size n with w-bit precision, they achieve a query time

of min
n

lg n
lg lg n

,
q

w
lg w

o
. More recent work [10] from STOC

2007 further improves the case of bulk queries for m points

to a total time of m · 2O(
√

lg lg n) + O(n). This running time
is better than m lgε n + O(n) for all ε > 0. This result can
be applied to obtain algorithms with the same time bound
(in expectation) for convex hulls, Voronoi diagrams, Delau-
nay triangulations, bulk nearest-point queries, trapezoidal
decomposition, and triangulating polygons with holes.

This early work opens the door for studying other classic,
nonorthogonal problems in computational geometry directly
in the finite-precision framework that dominates the rest
of theoretical computer science. Until this year, it seemed
plausible that only orthogonal problems could be solved
more quickly than their infinite-precision counterparts. Now
we can study the interplay between computation and in-
formation (in the sense of information theory, Kolmogorov
complexity, and communication complexity) in a truly geo-
metric setting. We stress that the name of the game here is
not developing fancy “bit tricks” to exploit word-level paral-
lelism, but rather studying how geometric information such
as points and lines can be decomposed in algorithmically
useful ways.

1.2 Our results
We make the first advance in the finite-precision frame-

work for a dynamic problem, namely, dynamic planar convex
hull. From a computational geometry perspective, this prob-
lem is the dynamic generalization of the most basic geomet-
ric computation on n points. From a theoretical computer
science perspective, dynamic convex hull is equally funda-
mental because it includes the extremely natural problem of
dynamic linear programming.

We prove matching upper and lower bounds on the op-
timal query time, assuming updates (point insertion and
deletion) run in polylogarithmic time. Specifically, the op-
timal running time of almost all queries considered before
is Θ

`
lg n

lg lg n

´
. The sole exception is the gift-wrapping query

(walking the hull), which requires only Θ(1) time. We show
how to achieve these optimal bounds for some of the most

1The basic operations are typically arithmetic (+, −, ·, /)
and bitwise operations (and, or, xor, shift). Unlike the
real RAM, algebraic roots are forbidden.

important queries, namely hull membership and linear pro-
gramming (extreme-point queries), in O(lg n lg lg n) time per
update. More generally (and actually more challengingly),
we show how to achieve the optimal query bound for all
previously considered queries in O(lg2 n) time per update.

In contrast, all previous data structures for dynamic pla-
nar convex hull assume infinite precision and are therefore
limited to running queries in Θ(lg n) time. The original
such data structure, of Overmars and van Leeuwen [22],
introduced the idea of recursively representing the convex
hull, leading to a Θ(lg2 n) update time while supporting all
queries. Eighteen years later, Chan [8] had the breakthrough
idea of using techniques from decomposable search prob-
lems [4], reducing the update time to Θ(lg1+ε n) but limiting
the set of supported queries to those that are decomposable
(e.g., forbidding line-stabbing queries). This approach was
subsequently improved to update times of Θ(lg n lg lg n) [5]
and finally Θ(lg n) [6, 17]. The last bound, Θ(lg n), is opti-
mal for updates in the infinite-precision real RAM, assuming
queries take O(n1−ε) time [6].

1.3 Techniques
Our most sophisticated upper bound starts from the clas-

sic dynamic convex hull structure due to Overmars and van
Leeuwen [22]. The first idea is to convert the binary tree
in this structure into a tree with branching factor Θ(lgε n),
so that its height is Θ

`
lg n

lg lg n

´
. The many years of failed

attempts at sublogarithmic planar point location suggest,
however, that it is impossible to solve any nontrivial query
by spending Θ(1) time per node in such a tree. For exam-
ple, determining which child to recurse into for a tangent
query boils down to planar point location in a subdivision
of complexity Θ(lgε n), which we do not know how to solve
in o

`
lg lg n

lg lg lg n

´
time.

Instead, by carefully exploiting the partial information
that a query learns about its answer, we show that the
time a query spends to determine which child to visit is pro-
portional to the knowledge it learns about the answer. By
charging the time cost to the information progress, we can
use an amortization argument to show that expensive nodes
are rare and thus bound the overall query cost to O

`
lg n

lg lg n

´
.

This type of insight did not appear in the static problems
solved in previous work; thus dynamic geometric problems
(which we are the first to consider) seem fundamentally dif-
ferent and particularly interesting.

Our simpler upper bound starts from the decomposable-
search approach introduced by Chan [8] and refined by
Brodal and Jacob [5]. In this structure, it seems impos-
sible to support the most difficult decomposable query, tan-
gent, in the optimal time bound Θ

`
lg n

lg lg n

´
. Essentially, the

trade-off we could make between a node’s query cost and
the information it reveals relies on an essentially explicit
representation of the convex hull as in the Overmars-van
Leeuwen structure. Representing the convex hull as the
hull of O

`
lg n

lg lg n

´
overlapping convex hulls, as in the Brodal-

Jacob structure, restricts us to optimal implementation of
linear-programming queries, which can be viewed as tangent
queries for points at infinity. So although the update time
is better in this case, the techniques required for optimal
query bounds actually become less interesting.

Our results therefore illustrate a refined sense of the
difficulty of various queries about dynamic planar convex
hulls. The challenge with tangent queries is that the input

has two geometric degrees of freedom (the coordinates of
the query point); thus we call the query two-dimensional.
On the other hand, linear programming is essentially one-
dimensional, the input being defined by a single directional
coordinate. This distinction is what makes both linear-
programming and tangent queries possible in Θ

`
lg n

lg lg n
) time

in the explicit structure but only linear-programming queries
possible in the decomposable structure. Our information-
theoretic lens therefore highlight an even stronger contrast
between the original Overmars-van Leeuwen structure and
the more modern structures based on decomposable search:
the latter structures are not informationally efficient. It thus
remains open to break the Θ(lg2 n) barrier (again) while
achieving informationally efficient two-dimensional queries.

Our lower bounds are based on a reduction from the clas-
sic marked ancestor problem [1], where queries are known to
require Ω

`
lg n

lg lg n

´
time when mark/unmark updates run in

lgO(1) n time. The strength of this result is that it holds on
the all-powerful cell-probe model [27], which just measures
the intrinsic information required to answer a query, without
worrying about how the answer would actually be computed
from this information. Of course, such lower bounds apply
to the word RAM as well.

2. QUERY TAXONOMY
Formally, the dynamic planar convex hull problem is to

maintain a dynamic set of points, S, subject to insertion
and deletion of points and a number of potential queries
summarized in Figure 1.2 We classify queries by the number
of (continuous) degrees of freedom in their input:

• Zero-dimensional queries, where the input is the dis-
crete set S:

1. Gift wrapping : Given a vertex of the convex hull,
report the two adjacent vertices of the hull. This
is the one query that can be supported in Θ(1)
time, and we show how to do so given update time
O(lg2 n). (As far as we know, this simple result
was not observed before, although it is easy to ob-
tain by applying standard tree-threading and per-
sistence techniques to the Overmars-van Leeuwen
structure.)

2. Hull membership: Test whether a point is on the
convex hull. This query is one of two basic queries
for which we prove an Ω

`
lg n

lg lg n

´
lower bound, and

we show how to achieve this bound given update
time O(lg n lg lg n).

• One-dimensional queries, which we can support in
O

`
lg n

lg lg n

´
given update time O(lg n lg lg n):

1. Linear programming (a.k.a. extreme-point
queries): Report the extreme point of the set S
in a given direction.

2. Line decision: Given a line `, test whether it
intersects the convex hull. Although this query
might seem two-dimensional, in fact it is a de-
cision version of linear-programming queries: it
tests whether the extreme points in the direction

2We assume for simplicity of exposition that all x coordi-
nates in S are distinct, as are all y coordinates in S.

perpendicular to ` are on opposite sides of `. This
query is the second of two basic queries for which
we prove an Ω

`
lg n

lg lg n
) lower bound.

3. Vertical line stabbing : Given a vertical line that
intersects the convex hull, report the two edges it
cuts.

4. Containment : Report whether a point q is con-
tained in the interior of the convex hull. This
query is a decision version of vertical line stab-
bing, because we only need to test that q is
between the two edges that intersect the verti-
cal line. This query is more general than hull
membership: applying this query to a perturba-
tion (away from the center of mass) determines
whether the point is on the hull.

• Two-dimensional queries, which we can support in
O

`
lg n

lg lg n

´
given update time O(lg2 n):

1. Tangent : Given a point q outside the convex
hull, report the two tangents of the hull that pass
through q. This query is more general than linear
programming, because linear programming can
be reduced to tangents of points at infinity. This
query is also more general than containment: we
can assume that the point is outside the hull, find
its tangents, and then verify that the tangents are
correct (by running linear-programming queries
perpendicular to the tangents).

2. Line stabbing (a.k.a. bridge finding): Given a line
that intersects the convex hull, report the two
edges that it cuts.

Our O(lg2 n) structure supports all queries efficiently. Our
O(lg n lg lg n) structure only supports decomposable-search
queries, like all previous structures with o(lg2 n) update
times. However, there is an additional discrepancy: our
latter structure cannot support hull-membership queries or
containment queries. Although these problems are essen-
tially zero- and one-dimensional, respectively, these prob-
lems are not decomposable, so cannot be handled directly.
The only reason that they can be supported by the decom-
posable structures of [8, 5, 6, 17] is that they are reducible to
a set of tangent queries, which are decomposable. Because
our decomposable structure cannot support two-dimensional
queries like tangent, we do not know how to support these
nondecomposable special cases.

3. FAST QUERIES WITH
O(lg2 N) UPDATES

In this section, we show how to support updates in
O(lg2 n) time, and queries in O(lg n

lg lg n
). In this extended ab-

stract, we focus on tangent queries; support for line-stabbing
queries is similar. Recall that these two queries are harder
than all the others. Our data structure builds on top of the
one by Overmars and van Leeuwen [22]. We now quickly
sketch this classic data structure, skipping all implementa-
tion details which are treated as a black box by our modifi-
cations.

The data structure of [22] is a binary tree, in which every
node v contains the set of points Sv in a certain vertical slab.
Let left(v) and right(v) be the children of v. The node v

two-dimensionalzero-dimensional one-dimensional

line decision

containment

linear programming

vertical stabbing

tangent

line stabbinghull membership

gift wrapping

Θ(1) time Θ
(

lg n
lg lg n

)
time

Figure 1: Dynamic planar convex hull queries and their optimal time bounds (assuming polylogarithmic
update). The queries in the top row are all decomposable; the queries in the bottom row are not. Arrows
indicate reducibility between queries: generalization → specialization. Vertically aligned queries are also
dual to each other.

stores a vertical line, splitting Sv into Sv = Sleft(v)∪Sright(v),
with min{|Sleft(v)|, |Sright(v)|} = Ω(|Sv|). The children split
the sets recursively, down to singleton sets in the leaves.
Maintaining this partition is equivalent to maintaining a
balanced binary search tree with values stored only in the
leaves.

Although Overmars and van Leeuwen developed their
structure before the invention of persistence [13], it is easier
to see its workings using persistent catenable search trees.
Every node v stores a list of the nodes on the convex hull Hv

of Sv, represented as a (partially) persistent binary search
tree. Then, a query can be answered in logarithmic time
based on the hull stored at the root. By standard tree-
threading techniques, we can also support gift-wrapping
queries in O(1) time.

To maintain this hull dynamically, note that Hv is defined
by a convex subchain of Hleft(v) and one from Hright(v), plus
two new edges (bridges) that join them. It is shown in [22]
that the bridges can be computed in O(lg |Sv|) time through
binary search. Then, because the binary search trees stor-
ing the hulls are persistent and catenable, the information
at every node can be recomputed in O(lg n) time. Thus,
updates cost O(lg2 n).

3.1 Dealing with Slow Point Location
An obvious idea for improving query time to O

`
lg n

lg lg n

´
is to store the hulls as (persistent, catenable) B-trees, for
some B = lgε n. One would then try to deal with B points
in O(1) time (through word packing), so a search could be
completed in O(logB n) time. It turns out (see below) that
the subproblem that must be solved at each node is point
location among O(B) segments.

Unfortunately, as mentioned already, this direct approach
only works in the one-dimensional context. For point loca-
tion, it is not known how to handle any superconstant B
in O(1) time, and, indeed, this is believed to be impossi-
ble. Recent improvements to point location on the RAM [9]
provide O(lg B

lg lg B
) search time at each node. The total query

time would be O(lg n
lg B

· lg B
lg lg B

) = O(lg n
lg lg lg n

), an exponentially
weaker improvement than what we hope for.

To obtain our improvement, one must refine the fusion
tree paradigm to hull fusion: querying a node of the B-tree
(a hull-fusion node) is allowed to take superconstant time,
but averaged over all O(logB n) nodes that are considered,
we spend constant time per node. This follows from an

information-progress argument: if querying one node is slow,
it is because we have made a lot of progress in understanding
the query, and therefore this cannot happen too often.

Our basic tool for point location subqueries is the follow-
ing fact, which was the central component of the recent data
structure by Chan [9]. We sketch the proof for completeness.

Fact 1. [9] Consider a vertical slab {xL, . . . , xR} × [u],
and B ≤ w segments between points (xL, `i) and (xR, ri),
where `1 ≤ · · · ≤ `B and r1 ≤ · · · ≤ rB, and `i, ri are
rational. Assuming that (∀)i, `i+1 − `i ≥ `B−`1

2w/B and ri+1 −
ri ≥ rB−r1

2w/B , then in time O(B) we can construct a data
structure that supports point location in constant time.

Proof: First, we map the segments (and later the query) to

the universe [2w/B]2, using a projective transformation and
rounding. Due to the vertical separation of the segments,
the answer to the query can only change by one segment,
which can be fixed in constant time. In this universe, we
need O(w/B) bits per segment and query, so we can pack
all |T | ≤ B segments in O(1) words, and use parallelism to
find the answer in constant time. For full details, see [9]. 2

As opposed to [9], which uses this fact to obtain a worst-
case running time of O(lg m/ lg lg m) for point location
among m arbitrary segments, we are interested in the fol-
lowing adaptive bound:

Corollary 2. Consider a vertical slab {xL, . . . , xR} ×
[u], and B ≤ w segments between points (xL, `i) and
(xR, ri), where `1 ≤ · · · ≤ `B and r1 ≤ · · · ≤ rB,
and `i, ri are rational. In O(B2) time, we can con-
struct a data structure, such that a query for a point
between segments i and i + 1 is supported in time

O
“
1 + B

w

“
lg `B−`1

`i+2−`i−1
+ lg rB−r1

ri+2−ri−1

””
.

Proof: We select a subset of the segments T ⊂ [B], by
starting with T = {1} and applying the following procedure
repeatedly. If i = max T , insert into T the lowest j > i
such that `j − `i ≥ (`B − `1)/2w/B and rj − ri ≥ (rB −
r1)/2w/B . When we can’t insert any more segments, we
forcibly insert the topmost segment B, and stop. By Fact 1,
we can perform point location among segments in T \ {B}
in constant time, so by one additional we can handle T in
constant time. We then recurse between any two consecutive
segments in T .

ZP (pi, pj)

pi+1

pi

pj+1

pj

P

Figure 2: The Zorro ZP (pi, pj) is the shaded region.

In each step, either the left or right span of the remaining
segments decreases by a factor of 2w/B . After

B

w

„
lg

`B − `1
`i+2 − `i−1

+ lg
rB − r1

ri+2 − ri−1

«
steps, the subset we are left with cannot include both seg-
ments i − 1 and i + 2, because either the left or right span
is too small. In each step, we eliminate at least the bottom-
most and topmost segment, so we get to the answer in at
most 2 additional recursions. 2

We can think of lg(`B − `1) + lg(rB − r1) as the entropy
of the search region. If the above data structure takes time
t for a query, the entropy decreases by at least w

B
(Ω(t)− 1)

bits. Thus, we can hope that the sum of the running
times for logB n applications of the lemma is bounded by
O(logB n + lg u/ w

B
) = O(logB n + B), implying a running

time of O(lg n/ lg lg n) for, say, B =
√

lg n. This intuition
will indeed prove to be correct, but we need to carefully an-
alyze the geometry of the problem, and show that the infor-
mation progress is maintained as we query various vertical
slabs at various hull-fusion nodes.

3.2 Quantifying Geometric Information
For simplicity, we will only try to determine the right

tangent, and assume it lies in the upper convex hull. Left
tangents and the lower hull can be handled symmetrically.

We denote an upper convex chain P by its list of ver-
tices from left to right: P = 〈p1, p2, . . . , pm〉 where x(pi) <
x(pi+1) for all i. Define the exterior exterior(P) of an upper
convex chain P to be the region bounded by the chain and
by the two downward vertical rays emanating from p1 and
pm that includes points above the chain. In other words, the
exterior exterior(P) of P consists of all points left, above, or
right of P .

Given an upper convex chain P and indices 1 ≤ i < j <
m, the Zorro ZP (pi, pj) is the region of points exterior to P ,
strictly right of the ray from pi+1 to pi, and nonstrictly left of
the ray from pj+1 to pj . Thus the Zorro is bounded by these
two rays and by the subchain pi, pi+1, . . . , pj , as illustrated
in Figure 2. Note that the Zorro is an object in the infinite
real plane, not on the grid.

The following fact justifies our interest in this definition:

Fact 3. Let q be a point exterior to an upper convex
chain P . Then q is in the Zorro ZP (pi, pj) if and only
if the answer to the right tangent query for q in P is in
{pi+1, . . . , pj}.

Proof: By definition, for each k with i + 1 ≤ k ≤ j, the
region of points whose right tangent query answers pk is

a cone emanating from pk with bounding rays from pk to
pk−1 and from pk+1 to pk. This cone is precisely the Zorro
ZP (pk−1, pk). Two adjacent such cones, ZP (pk−1, pk) and
ZP (pk, pk+1), share a bounding ray from pk+1 to pk. Thus
their union is ZP (pk−1, pk+1), so by induction, the union
over all k is ZP (pi, pj). Therefore this Zorro is precisely the
region of points whose right tangent query answers one of
pi+1, . . . , pj . 2

We also establish a few basic facts that will be useful later:

Fact 4. Given a point q guaranteed to be exterior to an
upper convex chain P , we can test whether q is in the Zorro
ZP (pi, pj) in O(1) time.

Proof: Though the Zorro’s boundary is potentially com-
plicated, if q is known to be outside the polygon, it suffices
to test the side of q relative to the lines pi+1pi, pjpj+1, and
pipj (the dashed lines in Figure 2). 2

Fact 5. For any upper convex chain P and any in-
dices 1 ≤ i < j < k < m, we have the decomposi-
tion: ZP (pi, pk) = ZP (pi, pj) ∪ ZP (pj , pk) and ZP (pi, pj) ∩
ZP (pj , pk) = ∅.

Proof: Disjointness follows from Fact 3. The union prop-
erty follows from taking the union of adjacent Zorro cones
as argued in the proof of Fact 3. 2

Because Zorros describe the structure of our search prob-
lem, we want to define a quantitative measure that al-
lows us to make the information progress argument out-
lined above. It turns out that information progress is only
need (and, actually, only true) for a region of the Zorro.
We define the left slab of ZP (pi, pj) as the vertical slab
between x = 0 and x = x(pi+1). The left vertical extent
L(ZP (pi, pj)) is the length of the subsegment of the verti-
cal line x = 0 intersected by ZP (pi, pj). The right vertical
extent R(ZP (pi, pj)) is the length of the subsegment of the
vertical line x = x(pi+1) intersected by the Zorro.

Definition 6. The entropy of a Zorro ZP (pi, pj) is:

H(ZP (pi, pj)) = lgL(ZP (pi, pj)) + lgR(ZP (pi, pj)).

We now establish the following monotonicity property
about Zorros “contained” in other Zorros:

Fact 7. For an upper convex chain P and indices 1 ≤
i ≤ i′ < j′ ≤ j < m, we have ZP (pi′ , pj′) ⊆ ZP (pi, pj) and
H(ZP (pi′ , pj′)) ≤ H(ZP (pi, pj)).

Proof: Refer to Figure 3. Fact 5 immediately implies that
ZP (pi′ , pj′) ⊆ ZP (pi, pj). This geometric containment im-
plies L(ZP (pi′ , pj′)) ≤ L(ZP (pi, pj)), because ZP (pi′ , pj′)∩
{x = 0} ⊆ ZP (pi, pj) ∩ {x = 0}. The segments at the inter-
section with x = x(pi+1) are similarly contained. Further-
more, x(pi′+1) ≥ x(pi+1). Because we are working with an
upper chain, moving to the right can only decrease vertical
extents, so R(ZP (pi′ , pj′)) ≤ R(ZP (pi, pj)). 2

Finally, we need to analyze Zorros with respect to a subset
of the original chain, because in one step, we plan to analyze
only B points out of the hull. The following fact follows
from monotonicity of slopes along a convex chain, similarly
to previous facts:

L(ZP (pi′ , pj′))

pi

pj+1

pj

P

pi′

ZP (pi, pj)

ZP (pi′ , pj′)
pj′

L(ZP (pi, pj))

Figure 3: The Zorro ZP (pi′ , pj′) is contained in
ZP (pi, pj).

Fact 8. For an upper convex chain S and a subse-
quence P ⊆ S of m vertices, and for indices 1 < i < j < m,
we have:

ZP (pi, pj−1) ∩ exterior(S) ⊆ ZS(pi, pj) ⊆ ZP (pi−1, pj),

H(ZP (pi, pj−1)) ≤ H(ZS(pi, pj)) ≤ H(ZP (pi−1, pj)).

3.3 The Data Structure
We first reinterpret the results of Corollary 2 in the

language of Zorros. The reason we insist to relate the
query time to the entropy of ZP (pk−1, pk+2), instead of
ZP (pk, pk+1) is that we will need some slack when switching
between Zorros with respect to P , and Zorros with respect
to the whole convex hull (see Fact 8).

Lemma 9. Given an upper convex chain P =
〈p1, p2, . . . , pB〉, in time BO(1) we can build a data
structure that answers queries of the following form:
given indices 1 < i < j < B − 1, and given a point
q guaranteed to be within the Zorro ZP (pi, pj) and its
left slab, find an index i < k < j such that q is in the
Zorro ZP (pk, pk+1). The running time of the query is
t = O

`
1 + B

w

`
H(ZP (pi, pj))−H(ZP (pk−1, pk+2))

´´
.

Proof: We build the structure for every choice of i and
j, incurring an O(B2)-factor penalty in construction time.
For some fixed i and j, we need to solve a point loca-
tion problem in the left slab of ZP (pi, pj), with the seg-
ments given by the intersection of the slab with the rays
pi+1pi, pi+2pi+1, . . . , pj+1pj . A Zorro ZP (pk, pk+1) is actu-
ally the wedge between two consecutive rays.

Denote by `i, . . . , `j the y coordinate of the intersections
of these rays with x = 0 (the left boundary of the slab).
Similarly denote by ri, . . . , rj the intersections with the right
boundary of the slab. Note that `i, ri are rational.

We will now use the adaptive point location data structure
of Corollary 2. If the answer is k, the query time will be

asymptotically:

t ≈ 1 +
B

w

„
lg

`j − `i

`k+2 − `k−1
+ lg

rj − ri

rk+2 − rk−1

«
= 1 +

B

w

`
lgL(ZP (`i, `j)) + lgR(ZP (`i, `j))

− lgL(ZP (`k−1, `k+2))− lg(rk+2 − rk−1)
´

≤ 1 +
B

w

`
H(ZP (`i, `j))−H(ZP (pk−1, pk+2))

´
The last inequality follows from x(pk) ≥ x(pi+1), using the
familiar observation that moving to the right reduces vertical
extents. 2

The general structure in which we will be performing
queries is a B-tree representation of an upper convex chain.
For a node v of such a B-tree, let Sv be the set of points
in v’s subtree, and Pv the set of at most B points stored in
the node v. For the sake of queries, each node is augmented
with the following information:

• an atomic heap [14] for the x coordinates of the points
in Pv.

• the structure of Lemma 9 for the convex chain given
by Pv.

3.4 Query invariants
A tangent query proceeds down a root-to-leaf path of the

B-tree, spending O(1) time at each node but also apply-
ing Lemma 9 at some of the nodes. Therefore the time
required by a query is O(logB n) plus the total time spent
in Lemma 9.

For readability, we will write Zv(a, b) for ZSv (a, b). At
each recursive step of the query, we have q ∈ Zv(a, b) where
v is the current node and a, b ∈ Sv. We write succv(b) for
the point in Sv which follows b to the right on the upper
convex chain. We also assume succv(b) ∈ Sv, to make the
Zorro well-defined. In addition, we maintain the invariant
that a, b, and succv(b) are nodes of the global upper convex
hull C as well. Thus Zv(a, b) = ZC(a, b).

At the next level of recursion, the Zorro will be some
Zv′(a

′, b′) where v′ is a child of v and a′, b′, succv′(b
′) ∈

Sv′∩C. Furthermore, we will guarantee that x(a) ≤ x(a′) <
x(b′) ≤ x(b). Hence, by Fact 7, Zv′(a

′, b′) = ZC(a′, b′) ⊆
ZC(a, b), and H(ZC(a′, b′)) ≤ H(ZC(a, b)).

The query may apply Lemma 9 at this recursive step to
a Zorro ZPv (pi, pj), locating q in a Zorro ZPv (pk, pk+1). In
this case, we guarantee further that

Zv(a, b) ⊇ ZPv (pi, pj) ∩ exterior(C)

⊇ ZPv (pk−1, pk+2) ∩ exterior(C) ⊇ Zv′(a
′, b′),

H(Zv(a, b)) ≥ H(ZPv (pi, pj))

≥ H(ZPv (pk−1, pk+2)) ≥ H(Zv′(a
′, b′)).

Now we bound the total cost incurred by Lemma 9. By
the invariants stated above, H(Z) never increases as we
shrink our Zorro Z known to contain q. Furthermore,
when we apply Lemma 9, if we spend t time, we guaran-
tee that H(Z) decreases by w

B
(Ω(t) − 1). Hence the to-

tal cost incurred by Lemma 9 is at most the maximum
total range of H(·), divided by w

b
. Because the points

are on a u × u grid, any nonzero vertical extent, mea-
sured at an x coordinate of the grid, between two lines

drawn between grid points, is between 1/u and u. Thus,
−2 lg u ≤ H(·) ≤ 2 lg u. Because w ≥ lg u, the total cost in-
curred by Lemma 9 is O(B). Therefore the total query time
is O(logB n + B) = O(lg n/ lg lg n), by choosing B = lgε n,
for any constant ε > 0.

3.5 Querying a hull-fusion node
We now describe how to implement a query using O(1)

time at each node plus possibly one application of Lemma 9,
while satisfying all of the invariants described above. First
we apply the following lemma:

Lemma 10. Given a node v with Pv = 〈p1, p2, . . . , pm〉,
given two points a and b on v’s hull where x(a) < x(b), and
given a query point q ∈ Zv(a, b)∩ exterior(C) we can find in
O(1) time one of the following outcomes:

1. An index 1 ≤ k < m − 1 such that q is in the Zorro
Zv(pk, pk+1).

2. Indices 1 < i < j < m − 1 such that q ∈ ZPv (pi, pj)
where x(a) ≤ x(pi) < x(pj+1) ≤ x(b).

Proof: We round a to the clockwise next bridge point
pi ∈ Pv, and we round b to the counterclockwise next bridge
point pj ∈ Pv. The implementation of this depends on the
representation of points, so we defer a discussion of this step
until later. We will be able to support this step in constant
time.

If i > j, then q ∈ Zv(a, b) ⊆ Zv(pj , pj+1) (Case 1).
Otherwise, 1 < i ≤ j < m. By Fact 5, Zv(a, b) =
Zv(a, pi) ∪ Zv(pi, pj−1) ∪ Zv(pj−1, pj) ∪ Zv(pj , b). In O(1)
time, we can determine which of these Zorros contains q. If
it is the first Zorro, q ∈ Zv(a, pi) ⊆ Zv(pi−1, pi) (Case 1).
If it is the second Zorro, q ∈ Zv(pi, pj−1) (Case 2). If it is
the third Zorro, q ∈ Zv(pj−1, pj) (Case 1). If it is the fourth
Zorro, q ∈ Zv(pj , b) ⊆ Zv(pj , pj+1) (Case 1). 2

Now, if we are in Case 1, say q ∈ Zv(pk, pk+1), then
we know to recurse into the recursive subchain between
pk and pk+1, corresponding to some child v′. In this
case, we want to recurse with a′ = max{a, pk} and b′ =
min{b, predv′(pk+1)} (where max and min are with respect
to x coordinates). Thus x(a) ≤ x(a′) < x(b′) ≤ x(b), sat-
isfying the guarantee above. Before recursing, however, we
check in O(1) time whether q ∈ Zv′(a

′, b′); if not, we deter-
mine the answer to the right-tangent query to be pk+1.

If we are in Case 2, say q ∈ ZPv (pi, pj) where x(a) ≤
x(pi) < x(pj+1) ≤ x(b), then there are two subcases. If
q is not in the left slab of the Zorro ZPv (pi, pj), then we
perform a successor query x(q) among the x coordinates of
the bridge points Pv to find an index i′, i < i′ ≤ j, such
that x(pi′−1) ≤ x(q) < x(pi′). Next we test in O(1) time
whether q is in the Zorro ZPv (pi′ , pj). If not, we know to
recurse in the recursive chain between pi′−1 and pi′ , and we
proceed as in Case 1. Otherwise, we determine that q is in
the left slab of ZPv (pi′ , pj), so we replace i with i′ to obtain
the other subcase.

So now suppose q is in the left slab of the Zorro ZPv (pi, pj)
where x(a) ≤ x(pi) < x(pj−1) ≤ x(b). We can apply
Lemma 9 to obtain a Zorro ZPv (pk, pk+1) containing q. By
Fact 8, ZPv (pk, pk+1) ∩ exterior(C) ⊆ Zv(pk, pk+2). By
Fact 5, Zv(pk, pk+2) = Zv(pk, pk+1) ∪ Zv(pk+1, pk+2). In
O(1) time, we can determine which of these three Zorros

contains q, and recurse in the corresponding child v′ as in
Case 1 with Zorro Zv′(a

′, b′).
Finally we prove the guarantees about Zorro containment

and entropy monotonicity. By Fact 8, we have:

ZPv (pi, pj) ∩ exterior(C) ⊆ Zv(pi, pj+1),

H(ZPv (pi, pj)) ≤ H(Zv(pi, pj+1)).

Because x(a) ≤ x(pi) < x(pj+1) ≤ x(b), Zv(pi, pj+1) ⊆
Zv(a, b), and by Fact 7, H(Zv(pi, pj+1)) ≤ H(Zv(a, b)).
Thus, H(ZPv (pi, pj)) ≤ H(Zv(a, b)) as desired. On the
other hand, by Fact 8:

Zv(pk, pk+2) ⊆ ZPv (pk−1, pk+2),

H(Zv(pk, pk+2)) ≤ H(ZPv (pk−1, pk+2)).

By Fact 7 and because x(pk) ≤ x(a′) < x(b′) ≤ x(pk+2),
we have Zv′(a

′, b′) ⊆ Zv(pk, pk+2) ⊆ ZPv (pk−1, pk+2) and
H(Zv′(a

′, b′)) ≤ H(Zv(pk, pk+2)) ≤ H(ZPv (pk−1, pk+2)) as
desired.

3.6 Updates
It remains to describe how we maintain a B-tree with the

upper convex hull, as used by the query. A straightforward
approach is to only modify the representation of the con-
vex hulls at each node of the Overmars-van Leeuwen struc-
ture, storing these as persistent catenable B-trees. Because
we do not use parent pointers, we can use standard persis-
tence techniques [13]. Unfortunately, however, a catenable
B-tree rebuilds O(logB n) nodes per update. Rebuilding a

node takes BO(1) time, because we must rebuild the associ-
ated data structure of Lemma 9. Finally, the Overmars-van
Leeuwen structure performs O(lg n) splits and joins, so the
total update time is O(lg2 n B

lg B
) = O(lg2+ε n).

To reduce updates to O(lg2 n), we abandon persistence,
and build the query B-tree in close parallel to the Overmars-
van Leeuwen tree. This has a similar flavor to the original
approach of Overmars and van Leeuwen [22], which was de-
veloped before persistence was known.

Each node of the Overmars-van Leeuwen tree discovers
one bridge (because we are only dealing with the upper hull),
and two bridge points that define it. We compress the bridge
points from all nodes on lg B − 2 consecutive levels of the
Overmars-van Leeuwen tree into one node of our B-tree.
This means a B-tree node will store 2 · (2 · 2lg B−2 − 1) =
B − 2 < B points. The depth will be O(lg n/ lg B). Note,
however, that this “B-tree” is not necessarily balanced with
respect to the values it stores (the nodes on the hull), but
is balanced with respect to the original set of points, closely
following the balance of the Overmars-van Leeuwen tree.

An update can only change bridge points on a root-to-
leaf path in the Overmars-van Leeuwen tree. This means
that only O(logB n) nodes of the B-tree are changed, and
we can afford to rebuild the associated structures for all of
them. This takes time logB n · BO(1) = lg1+ε n, which is a
lower-order term.

Finally, we must discuss how points are represented to
allow the constant-time operations we have assumed. This
is not hard to achieve by maintaining a label with each point.
Searching for a point can then be done by comparing against
the labels of the bridge points stored in a node of the B-tree.
We can use an additional atomic heap for the labels to make
this constant time.

4. FAST QUERIES WITH NEAR LOGA-
RITHMIC UPDATE TIME

Brodal and Jacob [5] prove a general reduction from a dy-
namic convex hull data structure that, on O(lg4 n) points,
supports queries in Q(n) time and updates in U(n) time,
into a dynamic convex hull data structure that, on n points,
supports queries in Q(n) · lg n

lg lg n
, updates in U(n) · lg n

lg lg n
and

deletes in O(lg n lg lg n) time. The reduction works for de-
composable queries. We will show how to build the polyloga-
rithmic structure that supports linear-programming queries
in O(1) time and updates in O((lg lg n)2) time, which re-
sults in a dynamic convex hull data structure that supports
linear-programming queries in O(lg n/ lg lg n) time and up-
dates in O(lg n lg lg n) time.

4.1 Data structure
Our data structure maintains the upper convex hull of

k = O(log4 n) points using four components:

1. A (binary) Overmars-van Leeuwen structure [22],
where each node represents the upper convex hull of its
descendant points, as the concatenation of a subchain
from the convex hull of each child, and two bridges.

2. One atomic heap [14] storing all slopes that appear in
the hulls of the nodes of the Overmars-van Leeuwen
structure. There are k′ = O(k) such slopes. An
atomic heap supports insertions, deletions, and prede-
cessor/succesor queries on lgO(1) n values in O(1) time
per operation.

3. A list labeling structure [12, 3] maintaining O(
√

lg n)-
bit labels for each such slope such that label order
matches slope order. Unlike standard list labeling, our
labels must be explicit, without the ability to simul-
taneously update pieces of several labels via indirec-

tion. Fortunately, our label space 2O(
√

lg n) is much
larger than our object space k′ = O(lg4 n). When
the label space is polynomially larger than the object
space, we can maintain explicit labels in O(1) time
per update, e.g., using the root-to-node labels in a
weight-balanced search tree structure (BB[α] trees [20]
or weight-balanced B-trees [2]); see [3].

The lists representing the convex hull in each node have
a nontrivial implementation. First of all, they represent the
edges of the hull (in particular, their slopes), rather than the
vertices. Second, they are organized as persistent, caten-
able B-trees with branching factor B = O(

√
lg n), and thus,

height O(1). Each slope is replaced by its label of O(
√

lg n)
bits, which means that a node has O(lg n) bits of informa-
tion. We pack each node in one word. We refer to this
representation of the convex hulls as label trees.

Observe that slopes are sorted on the hull, so a label tree is
actually a search tree. Using standard parallel comparisons,
we can locate the predecessor/successor labels of a query
label in a label tree in constant time.

4.2 Updates
When we insert or delete a point, it affects the hulls of

O(lg k) nodes in the Overmars-van Leeuwen structure. In
each of these hulls, we may create O(1) new slopes and/or
delete O(1) old slopes. We can compute these O(lg k)

changes in O(lg2 k) time using the standard Overmars-van
Leeuwen data structure. The atomic heap and the list la-
beling structures can support these changes in O(lg k) total
time. The labeling structure may update O(lg k) labels in
total, and each label appears in O(lg k) label trees. Because
we can search for a label in a label tree in constant time, we
can update the label trees in O(lg2 k) total time.

Finally, as we propagate the changes in the node hulls
according to Overmars-van Leeuwen, we update the corre-
sponding label trees using persistence, splits, and concate-
nations. The key property here is that a node can be split
at an arbitrary point, or two nodes can be concatenated,
in constant time because a node fits in a word. The total
update time is therefore O(lg2 k) = O((lg lg n)2).

4.3 Linear-programming query
Given a query direction d, we take the slope normal to d.

We search for the two adjacent slopes in the global atomic
heap. Then we find the label assigned to these slopes in the
list labeling structure, and average these two labels together
(which is possible if we double the label space). Finally we
search for the nearest two labels in the label tree of the
root. Thus we obtain the two edges of the overall (root)
convex hull whose slopes are nearest to the query slope, so
the common endpoint of these two edges is the answer to
the query.

5. LOWER BOUND
Our lower bound is based on a reduction from the marked-

ancestor problem [1]. In this problem, we have a static tree,
say, a perfect binary tree. Each node can be either marked
or unmarked. Initially all nodes are unmarked. The two
update operations are marking and unmarking a node. The
(leaf decision) query is to decide whether a given leaf has
a marked ancestor. We can also assume without loss of
generality that every leaf has at most one marked ancestor,
and trivially that the root is unmarked. Under these condi-
tions, the marked-ancestor problem has the following (tight)
lower bound: if updates run in tu time, queries require
Ω

`
lg n

lg w+lg tu

´
time. Assuming w = Θ(lg n) and tu = lgO(1) n,

we obtain a lower bound in the following form:

Theorem 11. Any data structure for maintaining a con-
vex hull subject to insertion and deletion of points in lgO(1) n
time and either hull-membership or line-decision queries re-
quires Ω(lg n/ lg lg n) amortized time per query in the cell-
probe model.

Proof: We define a mapping from a marked tree to a set
of points such that a leaf of the tree has a marked ancestor
if and only if the corresponding point is not on the convex
hull. Furthermore, we will determine a line incident to each
point such that the point is on the convex hull if and only
if the corresponding line does not intersect (the interior of)
the convex hull. Thus we simultaneously lower-bound both
hull-membership and line-decision queries.

The point set consists of three classes of points: “manda-
tory” points that define the basic nesting structure, one
point for each leaf, and one point for each marked node. The
construction is contained in an isosceles triangle of height
h0 = 1 and base angle θ0 = 45◦.

Our mapping is defined recursively. The construction for
a subtree rooted at a node x of depth i is contained in an

PrP`

T MrM`

R`
C`

T` Tr

Cr

Rr

Q` Qr

Figure 4: Recursive lower-bound construction.
Black points are mandatory; white points do not
exist; lightly colored points exist whenever the cor-
responding node is marked.

isosceles triangle T of height hi and apex angle θi. Given
the two constructions for the two children xl and xr of x,
of depth i + 1, we describe how to place them into a con-
struction for their parent x at depth i in a given triangle T
of height hi and base angle θi. Refer to Figure 4.

First, we identify the two endpoints of the base edge of T
as mandatory points. Second, we extend angular bisectors
of T at these vertices until they hit the opposite sides, say at
points P` and Pr. These points represent the two children
x` and xr of x: Pi is present if and only if xi is marked.
Because P`Pr is parallel to M`Mr, ∠M`PrP` = ∠PrM`Mr,
which is θ/2; hence, triangle M`, Pr, P` is isosceles. Third,
we compute the two angular bisectors of this isosceles tri-
angle M`, Pr, P` at the vertices M` and Pr; call their inter-
section C`. Fourth, let R` be the intersection of the angular
bisector PrC` at Pr and the angular bisector MrP` at Mr.
Fifth, let Q` be the intersection of the angular bisector M`C`

at M` and a line emanating from R` parallel to M`Pr. The
left recursive construction is placed in the isosceles triangle
Q`R`C`, where Q`R` is the base edge so Q` and R` become
the mandatory points. We repeat Steps 3–5 symmetrically
on the right-hand side, and place the right recursive con-
struction in the symmetric isosceles triangle QrRrCr.

We can define an incident line corresponding to each point
as follows. For P`, we choose P`Pr. For Q`, we choose
M`Q`C`. For R`, we choose C`R`Pr. The choices for Rr

and Pr are symmetric.
How do the aspect ratios of the triangles vary with the

depth i? Because Q`R` is parallel to M`Pr, ∠C`Q`R` =
∠C`M`Pr, which is θi/4. Hence, θi+1 = θi/4, which solves
to θi = 45◦/4i.

How do the heights of the triangles vary with the depth i?
Let c = h0/h1 denote the ratio between the heights of T`

and T when T has base angle θ0 = 45◦ and the base is
horizontal, as drawn in Figure 4. The ratio hi/hi+1 can be
computed by shrinking this figure vertically until the base
angle reduces from θ0 to θi. (Note that these length ratios
are independent of global scale and rotation.) Specifically, if
we shrink vertically by a factor of α = hi/h0, then the height
of T decreases by exactly an α factor, from h0 to hi, while
the height of T` decreases by less than an α factor because
the segment is not vertical, the vertical extent shrinks by
α, and the horizontal extent remains fixed. Hence, hi+1 ≥

αh1 = hih1/h0, i.e., hi/hi+1 ≤ h0/h1 = c. In other words,
the ratio between consecutive heights is always at most c,
so hi ≥ 1/ci.

To encode these points with Cartesian coordinates, our
error tolerance must be less than half the minimum fea-
ture size, which here is the smallest height hlg n. Because
lg(1/θi) = Θ(i) = O(lg n) and lg(1/hi) = Θ(i) = O(lg n),
we can achieve this error tolerance using O(lg n) bits per
coordinate. 2

Remark. A simpler lower-bound proof for some queries, in-
cluding linear-programming, uses duality, where the query
becomes vertical line stabbing in a convex envelope. To re-
duce from marked ancestor, we take an in-order traversal of
the nodes in the complete binary tree, and lay them out in
this order along a convex semicircle. Marking a node cor-
responds to drawing the line between the leftmost leaf and
the rightmost leaf in its subtree; then any vertical line in the
range of that subtree will hit the chord of the line intersected
with the disk.

6. CONCLUSIONS
Perhaps the most pressing theoretical question is whether

one can obtain a sublogarithmic query time with near-
logarithmic update time. As mentioned already, the de-
composition techniques of [8, 6], which are the only known
method for obtain o(lg2 n) update time, seem fundamentally
incompatible with information progress arguments.

Another intriguing question is what the right dependence
on the precision should be. Going beyond the assumption
that w = lgO(1) n, we see that our bounds are not quite tight.
The lower bound for all queries is Ω(logw n). The upper
bounds from Section 4 are also O(logw n). However, for the
more complicated queries, our upper bounds are O(lg n

lg lg n
),

which match the lower bound only for w = lgO(1) n. The
structure of the point-location algorithms seems to make it
hard to improve the upper bound to O(logw n). A lower
bound separating the two classes of queries would be excit-
ing.

7. REFERENCES
[1] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked

ancestor problems. In Proceedings of the 39th Annual
Symposium on Foundations of Computer Science,
pages 534–544, 1998.

[2] L. Arge and J. S. Vitter. Optimal external memory
interval management. SIAM Journal on Computing,
32(6):1488–1508, 2003.

[3] M. A. Bender, R. Cole, E. D. Demaine,
M. Farach-Colton, and J. Zito. Two simplified
algorithms for maintaining order in a list. In
Proceedings of the 10th Annual European Symposium
on Algorithms, volume 2461 of Lecture Notes in
Computer Science, pages 152–164, Rome, Italy,
September 2002.

[4] J. L. Bentley and J. B. Saxe. Decomposable searching
problems i: Static-to-dynamic transformation. Journal
of Algorithms, 1(4):301–358, 1980.

[5] G. S. Brodal and R. Jacob. Dynamic planar convex
hull with optimal query time and O(log n · log log n)
update time. In Proceedings of the 7th Scandinavian

Workshop on Algorithm Theory, volume 1851 of
Lecture Notes in Computer Science, pages 57–70, 2000.

[6] G. S. Brodal and R. Jacob. Dynamic planar convex
hull. In Proceedings of the 43rd Annual IEEE
Symposium on Foundations of Computer Science,
Vancouver, Canada, November 2002.

[7] C. Burnikel, R. Fleischer, K. Mehlhorn, and
S. Schirra. Efficient exact geometric computation
made easy. In Proceedings of the 15th Annual
Symposium on Computational Geometry, pages
341–350, Miami Beach, Florida, 1999.

[8] T. M. Chan. Dynamic planar convex hull operations
in near-logarithmic amortized time. In Proceedings of
the 40th Annual IEEE Symposium on Foundations of
Computer Science, pages 92–99, 1999.

[9] T. M. Chan. Point location in o(log n) time, Voronoi
diagrams in o(n log n) time, and other
transdichotomous results in computational geometry.
In Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science, pages 333–342,
Berkeley, California, October 2006.

[10] T. M. Chan and M. Pǎtraşcu. Voronoi diagrams in

n · 2O(
√

lg lg n) time. In Proceedings of the 39th ACM
Symposium on Theory of Computing, San Diego,
California, June 2007.

[11] M. de Berg, M. van Kreveld, and J. Snoeyink. Two-
and three-dimensional point location in rectangular
subdivisions. Journal of Algorithms, 18(2):256–277,
1995.

[12] P. F. Dietz and D. D. Sleator. Two algorithms for
maintaining order in a list. In Proceedings of the 19th
Annual ACM Symposium on Theory of Computing,
pages 365–372, New York City, May 1987.

[13] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E.
Tarjan. Making data structures persistent. Journal of
Computer and System Sciences, 38(1):86–124, 1989.

[14] M. L. Fredman and D. E. Willard. Trans-dichotomous
algorithms for minimum spanning trees and shortest
paths. Journal of Computer and System Sciences,
48:533–551, 1994.

[15] L. J. Guibas and D. H. Marimont. Rounding
arrangements dynamically. International Journal of
Computatinal Geometry and Applications,
8(2):157–176, 1998.

[16] Y. Han and M. Thorup. Integer sorting in
O(n

√
log log n) expected time and linear space. In

Proceedings of the 43rd Symposium on Foundations of
Computer Science, pages 135–144, Vancouver,
Canada, November 2002.

[17] R. Jacob. Dynamic Planar Convex Hull. PhD thesis,
Department of Computer Science, University of
Aarhus, Aarhus, Denmark, February 2002.

[18] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A
core library for robust numeric and geometric
computation. In Proceedings of the 15th Annual
Symposium on Computational Geometry, pages
351–359, Miami Beach, Florida, 1999.

[19] K. Mehlhorn and S. Schirra. Exact computation with
leda real - theory and geometric applications. In
Symbolic Algebraic Methods and Verification Methods,
pages 163–172. Springer, January 2001.

[20] J. Nievergelt and E. M. Reingold. Binary search trees
of bounded balance. SIAM Journal on Computing,
2:33–43, 1973.

[21] M. H. Overmars. Computational geometry on a grid:
an overview. In Theoretical Foundations for Computer
Graphics and CAD, pages 167–184. Springer-Verlag,
1988.

[22] M. H. Overmars and J. van Leeuwen. Maintenance of
configurations in the plane. Journal of Computer and
System Sciences, 23(2):166–204, 1981.

[23] E. Packer. Iterated snap rounding with bounded drift.
In Proceedings of the 22nd Annual Symposium on
Computational Geometry, pages 367–376, Sedona,
Arizona, 2006.

[24] M. Pǎtraşcu. Planar point location in sublogarithmic
time. In Proceedings of the 47th Annual IEEE
Symposium on Foundations of Computer Science,
pages 325–332, Berkeley, California, October 2006.

[25] J. R. Shewchuk. Triangle: Engineering a 2D quality
mesh generator and Delaunay triangulator. In Applied
Computational Geometry: Towards Geometric
Engineering, volume 1148 of Lecture Notes in
Computer Science, pages 203–222. Springer-Verlag,
May 1996.

[26] A. M. Turing. On computable numbers with an
application to the Entscheidungsproblem. Proceedings
of the London Mathematical Society, Series 2,
42:230–265, August 1936.

[27] A. C. C. Yao. Should tables be sorted? Journal of the
Association for Computing Machinery, 28(3):615–628,
1981.

[28] C. Yap. Theory of real computation according to
EGC. In Proceedings of the Dagstuhl Seminar on
Reliable Implementation of Real Number Algorithms:
Theory and Practice, Lecture Notes in Computer
Science, 2006. To appear.
http://www.cs.nyu.edu/exact/doc/realtheory.pdf.

http://www.cs.nyu.edu/exact/doc/realtheory.pdf

	1 Introduction
	1.1 Putting the ``computational'' in computational geometry
	1.2 Our results
	1.3 Techniques

	2 Query Taxonomy
	3 Fast Queries with O(lg2 n) Updates
	3.1 Dealing with Slow Point Location
	3.2 Quantifying Geometric Information
	3.3 The Data Structure
	3.4 Query invariants
	3.5 Querying a hull-fusion node
	3.6 Updates

	4 Fast Queries with Near Logarithmic Update Time
	4.1 Data structure
	4.2 Updates
	4.3 Linear-programming query

	5 Lower Bound
	6 Conclusions
	7 REFERENCES -9pt

