
Data Structures for Halfplane Proximity Queries
and Incremental Voronoi Diagrams

Boris Aronov1?, Prosenjit Bose2??, Erik D. Demaine3? ? ?, Joachim
Gudmundsson4, John Iacono1? ? ?, Stefan Langerman5†, and Michiel Smid2

1 Department of CIS, Polytechnic University, Brooklyn, NY, USA
2 School of Computer Science, Carleton University, Ottawa, ON, Canada

3 Computer Science and Artificial Intelligence Lab, MIT, Cambridge, MA, USA
4 National ICT Australia, Sydney, Australia

5 Départment d’ Informatique, Université Libre de Bruxelles, Brussels, Belgium

Abstract. We consider preprocessing a set S of n points in the plane
that are in convex position into a data structure supporting queries of
the following form: given a point q and a directed line ` in the plane, re-
port the point of S that is farthest from (or, alternatively, nearest to) the
point q subject to being to the left of line `. We present two data struc-
tures for this problem. The first data structure uses O(n1+ε) space and
preprocessing time, and answers queries in O(21/ε log n) time. The sec-
ond data structure uses O(n log3 n) space and polynomial preprocessing
time, and answers queries in O(log n) time. These are the first solutions
to the problem with O(log n) query time and o(n2) space.

In the process of developing the second data structure, we develop
a new representation of nearest-point and farthest-point Voronoi dia-
grams of points in convex position. This representation supports inser-
tion of new points in counterclockwise order using only O(log n) amor-
tized pointer changes, subject to supporting O(log n)-time point-location
queries, even though every such update may make Θ(n) combinatorial
changes to the Voronoi diagram. This data structure is the first demon-
stration that deterministically and incrementally constructed Voronoi
diagrams can be maintained in o(n) pointer changes per operation while
keeping O(log n)-time point-location queries.

1 Introduction

Line simplification is an important problem in the area of digital cartography
[6,9,13]. Given a polygonal chain P , the goal is to compute a simpler polygo-
nal chain Q that provides a good approximation to P . Many variants of this
problem arise depending on how one defines simpler and how one defines good

? Research supported in part by NSF grant ITR-0081964 and by a grant from US-Israel
Binational Science Foundation.

?? Research supported in part by NSERC.
? ? ? Research supported in part by NSF grants CCF-0430849 and OISE-0334653.

† Chercheur qualifié du FNRS

approximation. Almost all of the known methods of approximation compute dis-
tances between P and Q. Therefore, preprocessing P in order to quickly answer
distance queries is a common subproblem to most line simplification algorithms.

Of particular relevance to our work is a line simplification algorithm proposed
by Daescu et al. [7]. Given a polygonal chain P = (p1, p2, . . . , pn), they show how
to compute a subchain P ′ = (pi1 , pi2 , . . . , pim

), with i1 = 1 and im = n, such
that each segment [pij pij+1] of P ′ is a good approximation of the subchain of P
from pij to pij+1 . The amount of error is determined by the point of the subchain
that is farthest from the line segment [pij

pij+1]. To compute this approximation
efficiently, the key subproblem they solve is the following:

Problem 1 (Halfplane Farthest-Point Queries). Preprocess n points p1, p2,
. . . , pn in convex position in the plane into a data structure supporting the fol-
lowing query: given a point q and a directed line ` in the plane, report the point
pi that is farthest from q subject to being to the left of line `.

Daescu et al. [7] show that, with O(n log n) preprocessing time and space,
these queries can be answered in O(log2 n) time. On the other hand, a näıve
approach achieves O(log n) query time by using O(n3) preprocessing time and
O(n3) space. The open question they posed is whether O(log n) query time can
be obtained with a data structure using subcubic and ideally subquadratic space.

In this paper, we solve this problem with two data structures. The first, rel-
atively simple data structure uses O(n1+ε) preprocessing time and space, and
answers queries in O(21/ε log n) time. The second, more sophisticated data struc-
ture uses O(n log3 n) space and polynomial preprocessing time, and answers
queries in O(log n) time. Both of our data structures apply equally well to half-
plane farthest-point queries, described above, as well as the opposite problem of
halfplane nearest-point queries—together, halfplane proximity queries.

Dynamic Voronoi diagrams. An independent contribution of the second data
structure is that it provides a new efficient representation for maintaining the
nearest-point or farthest-point Voronoi diagram of a dynamic set of points. So
far, point location in dynamic planar Voronoi diagrams has proved difficult be-
cause the complexity of the changes to the Voronoi diagram or Delaunay triangu-
lation for an insertion can be linear at any one step. The randomized incremental
construction avoids this worst-case behavior through randomization. However,
for the deterministic insertion of points, the linear worst-case behavior cannot
be avoided, even if the points being incrementally added are in convex position,
and are added in order (say, counterclockwise). For this specific case, we give a
representation of a (nearest-point or farthest-point) Voronoi diagram that sup-
ports O(log n)-time point location in the diagram while requiring only O(log n)
amortized pointer changes in the structure for each update. So as not to over-
sell this result, we note that we do not have an efficient method of determining
which pointers to change (it takes Θ(n) time per change), so the significance of
this representation is that it serves as a proof of the existence of an encoding of
Voronoi diagrams that can be modified with few changes to the encodings while
still supporting point location queries. However, we believe that our combina-

torial observations about Voronoi diagrams will help lead to efficient dynamic
Voronoi diagrams with fast queries.

Currently, the best incremental data structure supporting nearest-neighbor
queries (one interpretation of “dynamic Voronoi diagrams”) supports queries and
insertions in O(log2 n/ log log n). This result uses techniques for decomposable
search problems described by Overmars [14]; see [5]. Recently, Chan [4] developed
a randomized data structure supporting nearest-neighbor queries in O(log2 n)
time, insertions in O(log3 n) expected amortized time, and deletions in O(log6 n)
expected amortized time.

2 A Simple Data Structure

Theorem 2. There is a data structure for halfplane proximity queries on a
static set of n points in convex position that achieves O(21/ε log n) query time
using O(n1+ε) space and preprocessing.

Our proof is based on starting from the näıve O(n3)-space data structure
mentioned in the introduction, and then repeatedly apply a space-reducing trans-
formation. We assume that either all queries are halfplane farthest-point queries
or all queries are halfplane nearest-point queries; otherwise, we can simply build
two data structures, one for each type of query.

Both the starting data structure and the reduction use Voronoi diagrams as
their basic primitive. More precisely, we use the farthest-site Voronoi diagram
for the case of halfplane farthest-point queries, and the nearest-site Voronoi
diagram for the case of halfplane nearest-point queries. When the points are in
convex position and given in counterclockwise order, Aggarwal et al. [1] showed
that either Voronoi diagram can be constructed in linear time. Answering point-
location queries in either Voronoi diagram of points in convex position can be
done in O(log n) time using O(n) preprocessing and space [11].

The proof of this and other results can be found in the full paper [2]:

Lemma 3. There is a static data structure for halfplane proximity queries on
a static set of n points in convex position, called Okey, that achieves O(log n)
query time using O(n3) space and preprocessing.

Transform 4. Given any static data structure D for halfplane proximity queries
on a static set of n points in convex position that achieves Q(n) query time
using M(n) space and preprocessing, and for any parameter m ≤ n, there is a
static data structure for halfplane proximity queries on a static set of n points
in convex position, called D-Dokey, that achieves 2 Q(n) + O(log n) query time
using dn/meM(m) + O(n2/m) space and preprocessing.

By starting with the data structure Okey of Lemma 3, and repeatedly ap-
plying the Dokey transformation of Transformation 4, we obtain the structure
Okey-Dokey-Dokey-Dokey-. . . , or Okey-Dokeyk, which leads to the following:

Corollary 5. For every integer k ≥ 1, Okey-Dokeyk−1 is a data structure for
halfplane proximity queries on a static set of n points in convex position that
achieves O(2k log n) query time using O(n(2k+1)/(2k−1)) space and preprocessing.

3 Grappa Trees

Our faster data structure for halfplane proximity queries requires the manipu-
lation of binary trees with a fixed topology determined by a Voronoi diagram.
To support efficient manipulation of such trees, we introduce a data structure
called grappa trees. This data structure is a modification of Sleator and Tarjan’s
link-cut trees [16] that supports some unusual additional operations.

Definition 6. Grappa trees solve the following data-structural problem: main-
tain a forest of rooted binary trees with specified topology subject to

T = Make-Tree(v): Create a new tree T with vertex v (not in another tree).
T = Link(v, w, d,m`,mr): Given a vertex v in some tree Tv and the root w of

a different tree Tw, add an edge (v, w) to make w a child of v, merging Tv

and Tw into a new tree T . The value d ∈ {`, r} specifies whether w becomes
a left or a right child of v; such a child should not have existed previously.
The new edge (v, w) is assigned a left mark of m` and a right mark of mr.

(T1, T2) = Cut(v, w): Delete the existing edge (v, w), causing the tree T contain-
ing it to split into two trees, T1 and T2. Here one endpoint of (v, w) becomes
the root of the tree Ti that does not contain the root of T .

Mark-Right-Spine(T,m): Set the right mark of every edge on the right spine of
tree T (i.e., the edge from the root of T to its right child, and recursively
such edges in the right subtree of T) to the new mark m, overwriting the
previous right marks of these edges.

(e,m∗
` ,m

∗
r) = Oracle-Search(T,Oe): Search for the edge e in tree T . The data

structure can find e only via oracle queries: given two incident edges (u, v)
and (v, w) in T , the oracle Oe(u, v, w,m`,mr,m

′
`,m

′
r) determines in con-

stant time which of the subtrees of T − v contains x.1 (Note that edges (u, v)
and (v, w) are considered to exist in T−v, even though one of their endpoints
has been removed.) The data structure provides the oracle with the left mark
m` and the right mark mr of (u, v), as well as the left mark m′

` and the right
mark m′

r of (v, w), and at the end, it returns the left mark m∗
` and the right

mark m∗
r of the found edge e.

Theorem 7. There exists an O(n)-space constant-in-degree pointer-machine
data structure that maintains a forest of grappa trees and supports each operation
in O(log n) worst-case time per operation, where n is the total size of the trees
affected by the operation.

4 Rightification of a Tree: Flarbs

The fixed-topology binary search tree maintained by our faster data structure
for halfplane proximity queries changes in a particular way as we add sites to a
Voronoi diagram. We delay the specific connection for now, and instead define
1 Given the number of arguments, it is tempting to refer to the oracle as

O(A, B, D, G, I, L, S), but we will resist that temptation.

DB EC

A

DB EC

A

E

D

C

B

A

T

S

T ′

S ′

T ′′

Fig. 1. An example of a flarb. The anchored subtree is highlighted.

the way in which the tree changes: a tree restructuring operation called a “flarb”.
Then we bound the work required to implement a sequence of n flarbs by showing
that the total number of pointers changes (i.e., the total number of parent/left-
child and parent/right-child relationships that change) is O(n log n). Thus, for
the remainder of this section, we use the term cost to refer to (a constant factor
times) the number of pointer changes required to implement a tree-restructuring
operation, not the actual running time of the implementation. This bound on
cost will enable us to implement a sequence of n flarbs via O(n log n) link and
cut operations, for a total of O(n log2 n) time.

The flarb operation is parameterized by an “anchored subtree” which it trans-
forms into a “rightmost path”. An anchored subtree S of a binary search tree T
is a connected subgraph S of T that includes the root of T . A right-leaning path
in a binary search tree T is a path monotonically descending through the tree
levels, always proceeding from a node to its right child. A rightmost path in T
is a right-leaning path that starts at the root of T .

The flarb operation2 of an anchored subtree S of a binary search tree T is
a transformation of T defined as follows; refer to Figure 1. First, we create a
new root node r with no right child and whose left child subtree is the previous
instance of T ; call the resulting binary search tree T ′. We extend the anchored
subtree S of T to an anchored subtree S′ of T ′ by adding r to S. Now we re-
arrange S′ into a rightmost path on the same set of nodes, while maintaining the
binary search tree order (in-order traversal) of all nodes. The resulting binary
search tree T ′′ is the result of flarbing S in T .

Theorem 8. A sequence of n flarb operations, starting from an empty tree, can
be implemented at a cost of O(log n) amortized pointer changes per flarb.

Proof. We use the potential method of amortized analysis, with a potential func-
tion inspired by the analysis of splay trees [17]. For any node x in a tree T ,
let w(x) be the modified weight of the subtree rooted at x, which is the num-
ber of nodes in the subtree plus the number of null pointers in the tree. In
2 “Flarb” is a clever abbreviation of a long technical term whose meaning we cannot

reveal for reasons we cannot comment on at the moment, perhaps simply due to lack
of space or of the aforementioned purported meaning. Note that this notion of flarb
is different from that of [3].

A B

C A

B C

Fig. 2. A zig: The thick edge be-
longs to the anchored subtree S′

and is light.

B2

Bk

C

D

FE

B1
F

B1

B2

Bk

E

DC

Fig. 3. A zag.

other words, we add dummy nodes as leaves in place of each null pointer in T ,
for the purpose of computing subtree size. Define ϕ(x) = lg w(left(x))

w(right(x)) . Clearly
|ϕ(x)| ≤ lg(2n− 1), because the smallest possible subtree contains no real nodes
and one dummy node, and the largest possible subtree contains n− 1 real nodes
and n dummy nodes. The potential of a tree T with n nodes is Φ(T) =

∑
x ϕ(x),

with the sum taken over the (real) nodes x in T . Therefore, |Φ(T)| = O(n log n).
For the purposes of the analysis, we use the following heavy-path decom-

position of the tree. The heavy path from a node continues recursively to its
child with the largest subtree, and the heavy-path decomposition is the natural
decomposition of the tree into maximal heavy paths. Edges on heavy paths are
called heavy edges, while all other edges are called light edges.

To analyze a flarb in a binary search tree T , we decompose the transformation
into a sequence of several steps, and analyze each step separately.

First, the addition of the new root node r can be performed by changing a
constant number of pointers in the tree. To implement rightification, we first
execute several simplifying steps of two types, called “zig” and “zag”,3 in no
particular order. A zig is executed whenever a light left edge is part of the
anchored subtree S′; see Figure 2. The zig operation simply involves a right
rotation on the edge in question. A zag is performed whenever there exists,
within the anchored subtree S′, a path that goes left one edge, right zero or more
edges, and then left again one edge; see Figure 3. The zag operation performs
a constant number of pointer changes to re-arrange the path in question into
a right-leaning path. The full paper [2] shows that each zig or zag has zero
amortized cost.

After all possible zigs and zags have been exhausted, we claim that the an-
chored subtree S′ must have the form shown in Figure 4. Indeed, any tree that
has no light left edge and no right-leaning path delimited by two left edges must
have this form. In particular, because the rightmost path in this tree must be
light, its length is at most lg(2n + 1).

3 Unlike most terminology in this paper, these terms are used for no particular reason.
Cf. footnote 2.

The final stretch operation, which com-
pletes the flarb, simply converts this tree
into a rightmost path by effectively concate-
nating the subsidiary right-leaning paths, in-
corporating them into the main path. Only
O(log n) actual pointer changes are required.
The potential does not increase because left
subtrees of every node shrink and right sub-
trees grow, if they change at all. Thus, the
amortized cost of the stretch is O(log n).

5 Transformations

We focus on the farthest-point case, but the
proofs apply to nearest-point too.

Fig. 4. S′ before the final stretch.
Thick light edges are light, and
thick black edges are heavy.

Transform 9. Given a grappa tree data structure supporting each operation in
O(log n) worst-case time, and given a data structure to incrementally maintain
a tree created by n flarbs with O(log n) amortized pointer changes per flarb, we
can construct an O(n log2 n)-space data structure that supports O(log n)-time
farthest-point queries on any prefix of a sequence of points in convex position in
counterclockwise order.

Proof. We construct an incremental data structure that supports O(log n)-time
farthest-point queries on the current sequence of points, 〈p1, p2, . . . , pn〉, and
supports appending a new point pn+1 to the sequence provided that this change
maintains the invariant that the vertices remain in convex position and in coun-
terclockwise order. Thus the insertion order equals the index order and equals
the counterclockwise traversal order of a convex polygon. The data structure
runs on a pointer machine in which each node has bounded in-degree. Thus we
can apply the partial-persistence transform of [10] and obtain the ability to sup-
port farthest-point queries on any prefix of the inserted points in O(log n) time.
The space is proportional to the number of pointer changes during insertions.

We consider the ordered tree T formed by the finite segments of the farthest-
point Voronoi diagram, ignoring their precise geometry; see Figure 5. More pre-
cisely, the farthest-point Voronoi diagram [15, Section 6.3] divides the plane into
n cells by classifying each point q in the plane according to which of p1, p2, . . . , pn

is the farthest from q. The farthest-point Delaunay triangulation [12] is the dual
of the farthest-point Voronoi diagram, i.e., it triangulates the convex polygon
with vertices p1, p2, . . . , pn by connecting two vertices whenever the correspond-
ing Voronoi cells share an edge. We consider the dual tree T of this farthest-point
Delaunay triangulation of the convex polygon, i.e., the dual graph excluding the
infinite region exterior to the convex polygon. Each edge in this tree corresponds
to (a nongeometric representation of) a finite edge of the farthest-point Voronoi
diagram, which is the bisector of two of the points pi and pj that are adjacent
in the Delaunay triangulation. Each node in the tree represents a vertex in the

C5

C5

C4

C4

C3

C3

C2

C2

C1

C1

C7

C7

C8

C6

C6

v1

v2

v3

v4

v5

v6

v7

v6

v1

v2

v3

v4

v5

v7

v8

v1

v2

v3

v4

v5

v6

v7

v6

v1

v2

v3

v4

v5

v7

v8

Fig. 5. Adding vertex v8 in counterclockwise order. Top: Before. Bottom: After.
Left: Farthest-point Voronoi diagram and its dual, the Delaunay triangulation.
Right: Delaunay triangulation and its dual, the tree T with attached infinite
rays drawn as dashed lines, drawn in mirror image so that geometric left versus
right matches the order in the Voronoi diagram. The root vertex of T and its
parent edge are emboldened.

farthest-point Voronoi diagram, or equivalently a triangle in the farthest-point
Delaunay triangulation, and therefore has degree d ≤ 3, where any degree deficit
corresponds to 3− d infinite rays in the farthest-point Voronoi diagram not rep-
resented in the tree T .

We can view the tree T as a binary search tree as follows. First, we root the
tree at the node corresponding to the unique triangle in the Delaunay triangu-
lation bounded by the edge connecting the first inserted point p1 and the most
recently inserted point pn. We view the infinite ray emanating from the Voronoi
vertex as the “parent edge” of this root node, defining the notion of left child
versus right child of a node according to the counterclockwise order around the
Voronoi vertex. (Note that this order is the opposite of the order defined by
the triangulation, so in Figure 5 (right), we draw T in mirror image so that its

geometric notions of left and right match that of the Voronoi diagram.) Second,
we assign keys to nodes consistent with the in-order traversal. For each tree node
corresponding to a Delaunay triangle with vertices pi, pj , pk, where i < j < k,
we assign a key of j. In other words, we assign the median of the three vertex
labels of the Delaunay triangle to be the key of the corresponding tree node.

One way to view this key assignment is as follows. If we imagine adding
an infinite rays in place of each absent child in the tree, and add an infinite
ray in place of the absent parent of the root (the dashed lines in Figure 5,
right), matching the counterclockwise order around the Voronoi vertex, then
we decompose the plane into regions corresponding to Voronoi regions, each of
which corresponds to a single point pi. All of the nodes bounding pi’s region
correspond to triangles incident to pi. We assign the key i to the unique such
node in T that is closest to the root of T , or equivalently the least common
ancestor of such nodes, which is the inflection point between two descendant
paths that bound the region. Two exceptions are i = 1 and i = n: the vertices
incident to p1 are those on the left spine of T , and the vertices incident to pn

are those on the right spine of T .

In this view, we also define the left mark of an edge to be the label of the
region to the left of the edge, and similarly for the right mark. Thus, the two
marks of an edge define the two points pi and pj whose bisector line contains
the Voronoi edge. If an edge is the left edge of its parent node, then the edge’s
right mark is simply the key of that parent, because the right edge of the parent
creates an inflection point at the parent. Similarly, if an edge is the right edge of
its parent node, then the edge’s left mark is the key of that parent. Intuitively, in
either case, if we walk up from the edge on its “underside”, then we immediately
find a local maximum in the region. On the other hand, in either case, the other
mark of the edge is the key of the parent node of the deepest ancestor edge that
has the opposite orientation (left versus right): this bending point is the first
inflection point we encounter as we walk up the tree on the “top side” of the
edge. We use a grappa tree to represent T and the left and right marks of edges.

Next we consider the effect of inserting a new point pn+1. As in the standard
incremental algorithm for Delaunay construction [8, Section 9.3], we view the
changes to the farthest-point Delaunay triangulation as first adding a triangle
p1, pn, pn+1 and then flipping a sequence of edges to restore the farthest-point
Delaunay property. The key property of the edge-flipping process is that all
flipped edges end up incident to the newly inserted point pn+1. Therefore these
changes can be interpreted in the tree as adding a new root node, whose left
child is the previous root, and then choosing a collection of nodes to move to the
right path of the new root. This collection of nodes induces a connected subtree
because the triangles involved in the flips form a connected set. (In particular,
the flipping algorithm considers the neighbors of a triangle for flipping only
if the triangle was already involved in a flip.) Thus, the changes correspond
exactly to a flarb, with the flexibility of the flarb operation encompassing the
various possibilities of which edges get flipped to maintain the farthest-point
Delaunay property. Another way to view the addition of pn+1 is directly in the

Voronoi diagram. The point pn+1 will capture the region Rn+1 for which pn+1

is the farthest neighbor. The region Rn+1 is a convex polygon. Outside Rn+1,
the Voronoi diagram is unchanged, so all edges of the new Voronoi diagram are
either bisectors of the same two points as before, or are edges of Rn+1. In T after
the flarb, Rn+1 corresponds to the right spine.

Each pointer change during a flarb operation can be implemented with one
cut and one link operation. Therefore the grappa tree implements the O(n log n)
total pointer updates from flarb operations in O(n log2 n) total pointer updates.
It remains to update the marks on the edges. By the incremental Voronoi/Delaunay
view above, the only edges for which these marks might change are the edges
incident to the new region Rn+1, i.e., the edges on the right spine. We update the
right marks on all of these edges by calling Mark-Right-Spine(T, n+1). The left
mark of each edge on the right spine is simply the key of the parent node of the
edge. During the execution of the flarb, various right paths were cut and pasted
together with cuts and links to form the final right spine. The edges on the final
right spine that were originally part of a right path in T already had a left mark
equal to the key of their parent node. Any other edges on the final right spine
were just added via links, so their left marks can be set accordingly by specify-
ing the right m` argument to Link. Thus, the total number of pointer updates
remains O(n log2 n). This concludes the space bound of the data structure.

To support farthest-point queries, it suffices to build an oracle for the grappa
tree’s Oracle-Search. Specifically, given two incident edges (u, v) and (v, w), the
oracle must determine which subtree of T−v has the answer to the farthest-point
query. Using the two marks on the two edges, two of which must be identical,
we can determine the three vertices pi, pj , and pk of the Delaunay triangle
corresponding to vertex v in T . The vertex of the Voronoi diagram corresponding
to v lies at the intersection of the three perpendicular bisectors between these
three vertices of the Delaunay triangle. We draw three rays from this Voronoi
vertex to each of the three corners of the Delaunay triangle. These three rays
divide the plane into three sectors, and the Voronoi regions corresponding to the
nodes in each subtree of T−v lie entirely in one of these sectors, with exactly one
subtree per sector. In constant time, we can decide which of the three sectors
contains the query point q. The farthest-point Voronoi region containing the
query point q is guaranteed to be incident to the corresponding subtree, and
therefore we obtain a suitable answer for the oracle query. At the end, Oracle-
Search will narrow the search to a specific edge of T , meaning that the query
point q is in one of the two Voronoi regions incident to the corresponding Voronoi
edge. In constant time, using the two labels on that edge of the tree, we can
determine which side of the bisector contains q, and therefore which Voronoi
region contains q, i.e., which point pi is farthest from q.

Transform 10. Given an O(n log2 n)-space data structure that supports O(log n)-
time farthest-point queries on any prefix of a sequence of n points ordered in
convex position in counterclockwise order, we can construct an O(n log3 n)-space
data structure that supports O(log n)-time farthest-point-left-of-line queries on
n points in convex position.

Combining Theorems 7 and 8 with Transforms 9 and 10, we obtain:

Corollary 11. There is an O(n log3 n)-space data structure that supports O(log n)-
time halfplane proximity queries on n points in convex position.

Corollary 12. There is an O(n)-space data structure for maintaining a nearest-
point or farthest-point Voronoi diagram of a sequence of points in convex position
in counterclockwise order. The data structure supports inserting a new point at
the end of the sequence, subject to preserving the invariants of convex position
and counterclockwise order, in O(log n) amortized pointer changes per insertion;
and supports point-location queries in O(log n) worst-case time.

6 Open Problems and Conjectures

Several intriguing open problems remain open. One obvious question is whether
the O(n log3 n) space of our second data structure can be improved while keeping
the optimal O(log n) query time. One specific conjecture in this direction is this:

Conjecture 13. A sequence of n flarb operations, starting from an empty tree,
can be implemented at a cost of O(1) amortized pointer changes per flarb.

We have no reason to believe that our O(log n) amortized bound is tight. Re-
ducing the bound to O(1) amortized would shave off a O(log n) factor from our
space and preprocessing time. More importantly, it would increase our under-
standing of dynamic Voronoi diagrams, reducing the O(log n) amortized update
time in Corollary 12 to O(1) amortized. The potential function we use is inher-
ently logarithmic; a completely new idea is needed here for further progress.

On the issue of improving our understanding of dynamic Voronoi diagrams,
we pose the following problem:

Open Problem 14. Is there a data structure for maintaining a Voronoi di-
agram of a set of points in convex position that allows point to be inserted in
logO(1) n time while supporting O(log n) point location queries?

Here we relax the condition that the points be inserted in counterclockwise
order, but maintain the restriction that they be in convex position. Although our
potential function does not give the result, it is possible that a slight variation
of it does.

Finally, it would be interesting to improve the construction time in our sec-
ond data structure, in particular so that it completely subsumes the first data
structure:

Open Problem 15. Can the pointer changes caused by a flarb be found and
implemented in o(n) time, preferably logO(1) n time?

We have not been able to fully transform our combinatorial observations
about the number of pointer changes into an efficient algorithm, because we lack
efficient methods for finding which pointers change. Solving this question would
improve our construction time by almost a linear factor, and would provide a

reasonably efficient dynamic Voronoi data structure for inserting points in convex
position in counterclockwise order.

Acknowledgments. This work was initiated at the Schloss Dagstuhl Seminar
04091 on Data Structures, organized by Susanne Albers, Robert Sedgewick, and Dorothea
Wagner, and held February 22–27, 2004 in Germany. This work continued at the Ko-
rean Workshop on Computational Geometry and Geometric Networks, organized by
Hee-Kap Ahn, Christian Knauer, Chan-Su Shin, Alexander Wolff, and René van Oost-
rum, and held July 25–30, 2004 at Schloss Dagstuhl in Germany; and at the 2nd
Bertinoro Workshop on Algorithms and Data Structures, organized by Andrew Gold-
berg and Giuseppe Italiano, and held May 29–June 4, 2005 in Italy. We thank the
organizers and institutions hosting both workshops for providing a productive research
atmosphere. We also thank Alexander Wolff for introducing the problem to us.

References

1. A. Aggarwal, L. J. Guibas, J. B. Saxe, and P. W. Shor. A linear-time algorithm
for computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom.,
4(6):591–604, 1989.

2. B. Aronov, P. Bose, E. D. Demaine, J. Gudmundsson, J. Iacono, S. Langerman,
and M. Smid. Data structures for halfplane proximity queries and incremental
voronoi diagrams. arXiv:cs.CG/0512091, http://arXiv.org/abs/cs.CG/0512091

3. T. Calling. The adventures of Flarb Demingo! http://www.thecalling.co.za/

flarb_pictures.htm, 2005. See also the fan site, http://www2.fanscape.com/

thecalling/streetteam/flarb.html.
4. T. M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest

neighbor queries. In Proc. 17th ACM-SIAM Sympos. Discrete Algorithms, 2006.
5. Y.-J. Chiang and R. Tamassia. Dynamic algorithms in computational geometry.

Proc. IEEE, 80(9):1412–1434, 1992.
6. R. G. Cromley. Digital Cartography. Prentice Hall, August 1991.
7. O. Daescu, N. Mi, C.-S. Shin, and A. Wolff. Farthest-point queries with geometric

and combinatorial constraints. Computat. Geom. Theory Appl., 2006. To appear.
8. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computat. Geom.

Theory Appl.. Springer, second edition, 1999.
9. B. D. Dent. Cartography: Thematic Map Design. William C Brown Pub, fifth

edition, July 1998.
10. J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures

persistent. Journal of Computer and System Sciences, 38(1):86–124, 1989.
11. H. Edelsbrunner, L. Guibas, and J. Stolfi. Optimal point location in a monotone

subdivision. SIAM Journal on Computing, 15(2):317–340, 1986.
12. D. Eppstein. The farthest point Delaunay triangulation minimizes angles. Com-

putat. Geom. Theory Appl., 1(3):143–148, March 1992.
13. R. B. McMaster and K. S. Shea. Generalization in Digital Cartography. Association

of American Cartographers, Washington D.C., 1992.
14. M. H. Overmars. The Design of Dynamic Data Structures, LNCS 156, 1983.
15. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.

Springer, 1993.
16. D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of

Computer and System Sciences, 26(3):362–391, June 1983.
17. D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of the

ACM, 32(3):652–686, July 1985.

http://arXiv.org/abs/cs.CG/0512091
http://www.thecalling.co.za/flarb_pictures.htm
http://www.thecalling.co.za/flarb_pictures.htm
http://www2.fanscape.com/thecalling/streetteam/flarb.html
http://www2.fanscape.com/thecalling/streetteam/flarb.html

	Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams
	Boris Aronov 1, Prosenjit Bose 1, Erik D. Demaine 1, Joachim Gudmundsson 1, John Iacono[3] 1, Stefan Langerman 1, Michiel Smid

