
Low-Dimensional Embedding with Extra Information

Mihai Bădoiu Erik D. Demaine∗ MohammadTaghi Hajiaghayi∗ Piotr Indyk

MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Cambridge, MA 02139, USA
{mihai, edemaine, hajiagha, indyk}@mit.edu

ABSTRACT
A frequently arising problem in computational geometry is when
a physical structure, such as an ad-hoc wireless sensor network or
a protein backbone, can measure local information about its ge-
ometry (e.g., distances, angles, and/or orientations), and the goal
is to reconstruct the global geometry from this partial information.
More precisely, we are given a graph, the approximate lengths of
the edges, and possibly extra information, and our goal is to as-
sign coordinates to the vertices that satisfy the given constraints
up to a constant factor away from the best possible. We obtain
the first subexponential-time (quasipolynomial-time) algorithm for
this problem given a complete graph of Euclidean distances with
additive error and no extra information. For general graphs, the
analogous problem is NP-hard even with exact distances. Thus, for
general graphs, we consider natural types of extra information that
make the problem more tractable, including approximate angles
between edges, the order type of vertices, a model of coordinate
noise, or knowledge about the range of distance measurements.
Our quasipolynomial-time algorithm for no extra information can
also be viewed as a polynomial-time algorithm given an “extremum
oracle” as extra information. We give several approximation algo-
rithms and contrasting hardness results for these scenarios.

Categories and Subject Descriptors: F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and
Problems—geometrical problems and computations; G.2.2 [Dis-
crete Mathematics]: Graph Theory—graph algorithms

General Terms: Algorithms, Theory

Keywords: Graph embedding, metrics, angles, order type, distri-
bution, range graphs, approximation algorithms

1. INTRODUCTION
Suppose we have a geometric structure (a graph realized in Eu-
clidean space), but we can only measure local properties in this
∗Supported in part by NSF under grant number ITR ANI-0205445.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’04, June 8–11, 2004, Brooklyn, New York, USA.
Copyright 2004 ACM 1-58113-885-7/04/0006 ...$5.00.

structure, such as distances between pairs of vertices, and such
measurements are approximate. In many applications, we would
like to use this local information to reconstruct the entire geomet-
ric structure, that is, the realization of the graph. Two interest-
ing questions arise in this context: when is such a reconstruction
unique, and can it be computed efficiently? These problems have
been studied extensively in the fields of computational geometry
[6, 8, 25, 20], rigidity theory [11, 5, 14], sensor networks [4, 19],
and structural analysis of molecules [2, 7, 12]. The reconstruction
problem arises frequently in several distributed physical structures
such as the atoms in a protein [2, 7, 12] or the nodes in an ad-hoc
wireless network [4, 19, 17].

A reconstruction is always unique and easy to compute for
a complete graph of exact distances, or any graph that can be
“shelled” by incrementally locating nodes according to the dis-
tances to three noncollinear located neighbors. More interesting
is that such graphs include visibility graphs [6] and segment visi-
bility graphs [8]. In general, however, the reconstruction problem
is NP-hard [25], even in the strong sense [20]. It is also NP-hard
to test whether a graph has a unique reconstruction [21, Sect. 6].
The uniqueness of a reconstruction in the “generic” case (in 2D)
was recently shown to be testable in polynomial time by a simple
characterization related to generic infinitesimal rigidity [11, 14],
but this result has not yet lead to efficient algorithms for actual re-
construction in the generic case.

This reconstruction problem can also be cast in the context of
embedding arbitrary distance matrices into (low-dimensional) geo-
metric spaces. Methods for computing such embeddings have their
roots in work going back to the first half of the 20th century, and
in the more recent work of Shepard [22, 23], Kruskal [15, 16], and
others. The area is usually called multi-dimensional scaling and
is a subject of extensive research with several applications [24].
However, despite significant practical interest, very few theoreti-
cal results exist in this area. The most commonly used algorithms
are heuristic (e.g., gradient-based method or simulated annealing)
and are often not satisfactory in terms of the running time and/or
embedding quality.

Recently, several papers [10, 13, 3, 1, 9] have presented algo-
rithms for various versions of the embedding problem. These algo-
rithms offer provable guarantees on the distortion of the computed
embeddings. Unfortunately, the results suffer from two important
limitations:

• None of the algorithms support embedding into the Eu-
clidean plane. For example, the polynomial-time algorithm
of [3] works only for additive-error embeddings into <2 un-
der the `1 norm.

• The algorithms assume that approximate distances between
all pairs of points are specified. In some contexts, we have

only partial distance information, for example, because an
obstacle between two objects prevents estimating their dis-
tance or because the objects are too far for the estimation to
be reliable.

In this paper we attempt to overcome these difficulties. Our ap-
proach is to explore possible additional types of local information
and study their influence on the complexity of the problem. In
many practical scenarios, such information is readily available. In
other cases, the amount of extra information needed is so small
that it can be “guessed” via exhaustive enumeration, which leads to
a quasipolynomial-time algorithm that uses no extra information.
This algorithm is in fact the first subexponential-time algorithm
for additive-distortion embedding into low-dimensional Euclidean
space.

We consider the following types of extra information:

Angle information: Between every pair of incident edges e, e′,
we are given the approximate angle.

Extremum oracle: Suppose the x coordinates of the embed-
ding are known (fixed). Let f be the optimal (minimum-
distortion) embedding subject to these and all other con-
straints. The extremum oracle reports, in any specified ver-
tical slab of the optimal embedding, the minimum y co-
ordinate and a point achieving that coordinate, and sym-
metrically for the maximum y coordinate. More precisely,
given a range [xl, xr], the oracle reports the data point p =
argminp′:fx(p′)∈[xl,xr] fy(p′) and f(p), and symmetrically
with argmax. Guessing this extra information is exactly
what causes one of our algorithms to use quasipolynomial
time when given no extra information.

Order type: For some point p and all pairs of points q, r, we are
given the clockwise/counterclockwise orientation of 4pqr.

Distribution information: We know the metric is induced by ran-
dom points in a square plus random noise.

Range constraints: Each point p has a range rp such that we know
the (approximate) distance between p and a point q precisely
when this distance is at most rp.

One of our motivations for studying these problems is “autocon-
figuration” in the Cricket Compass [18] location system. In this
system, several beacons are placed in a physical environment, and
beacons can measure approximate distances (using a combination
of ultrasonic and radio pulses) and, in some cases, approximate
angles (using multiple ultrasound receivers). In this practical sce-
nario, order type, distribution information, range constraints, and
especially angle information are all reasonable assumptions to con-
sider.

We show that any of the types of extra information described
above often allow us to construct good embeddings with efficient
algorithms. More precisely, we consider the problem of embed-
ding a graph G = (P, E) with specified lengths D[p, q] for all
edges {p, q} ∈ E, plus some additional information. Our goal is
to embed G into `k

s space via a mapping f : P → `k
s to either

approximately minimize additive distortion max(p,q)∈E | ‖f(p) −
f(q)‖s − D[p, q] |, or approximately minimize multiplicative dis-
tortion max(p,q)∈E ‖f(p) − f(q)‖s/D[p, q] subject to ‖f(p) −
f(q)‖s ≥ D[p, q] (non-contractiveness). In `k

s space, distances and
lengths are measured according to the `s norm ‖(x1, . . . , xk)‖ =
s
p

xs
1 + · · · + xs

k.
We develop polynomial-time algorithms for the following ver-

sions of this embedding problem:

1. Embedding a general graph with approximate angle infor-
mation into `2

s, s ∈ {1, 2,∞}, with approximately optimal
multiplicative error. If we are given the angle of each edge
with respect to a fixed axis, or we are given angles between
incident pairs of edges in the complete graph, our approxima-
tion factor is O(1). If we are given angles between pairs of
incident edges in a general graph, our approximation factor
is O(D) where D is the diameter of the graph. The approx-
imation factors depend on the additive error on the angles;
see Section 2 for details.

These algorithms are the first subexponential-time algo-
rithms for embedding an arbitrary metric into a low-
dimensional space (even in the one-dimensional case) to ap-
proximately minimize the multiplicative error.

2. Embedding a complete graph into `2
2 with O(1)-approximate

additive distortion in weakly quasipolynomial time of
2O(log n·log2 ∆) where ∆ is the “spread” of the input point
set. We obtain this result in Section 3 using a polynomial
number of calls to an extremum oracle, which can be simu-
lated in weakly quasipolynomial time.

This algorithm is the first subexponential-time algorithm for
minimizing the additive error of an embedding into a low-
dimensional Euclidean space.

3. Embedding a complete graph into `2
2 with O(1)-approximate

additive distortion given the orientation of all triples of points
involving a common point (Section 4).

4. Embedding a complete graph into `2
2 with O(1)-approximate

additive distortion given the prior that the distances D are
approximately induced by a random set of points in a unit
square. In this case, our algorithm returns an embedding
with additive distortion that is within a constant factor from
the “designed distortion”. See Section 5 for the detailed for-
mulation.

5. Embedding a general graph that satisfies the range con-
straints into the line with O(1)-approximate additive distor-
tion (Section 6).

6. In contrast, we show that embedding a general graph that
satisfies the range constraints into `2

p for p ∈ {1, 2,∞} is
NP-hard (Section 7). This problem was known to be NP-
hard without range constraints in `d

2 for all d [20].

Several of these algorithms are practical; often they are based on
simple linear programs.

2. EMBEDDING WITH
ANGLE INFORMATION

This section considers embedding a graph with given edge lengths
up to multiplicative error and given angles with additive error, in
`1, `2, and `∞. We consider several possible angle specifications
in the next section, and reduce to the case that we know the angle
between every edge and one fixed edge.

2.1 Different Types of Angle Information
LEMMA 1. Given a complete graph, and given angles between

pairs of incident edges each with (one-sided or two-sided) addi-
tive error at most γ, we can compute the angle of every edge with
respect to a particular edge with additive error at most 2γ.

Figure 1. Feasible region of a point q with respect to p given the `2
distance within a multiplicative ε and given the angle to the x axis
within an additive γ.

Proof: Fix one edge (p, q) and call it the x axis. To estimate the
angle of an edge (v, w) with respect to the x axis, we consider the
angles θ1 = ∠pqv and θ2 = ∠qvw. If the angles were exact, the
angle of (v, w) with respect to (p, q) would be θ1+θ2−180◦ (mod-
ulo 360◦). With additive error, the errors in θ1 + θ2 accumulate to
at most double in the worst case. 2

LEMMA 2. Given a general graph, and angles between pairs
of incident edges each with (one-sided or two-sided) additive error
at most γ, we can compute the angle of every edge with respect to
a particular edge with additive error at most (D + 1)γ where D is
the diameter of the graph.

Proof: Similar to Lemma 1, except now we must combine angles
along a path p, q, . . . , v, w, which might have length up to D + 2,
and therefore involves at most D + 1 angles. 2

This lemma is the best we can obtain in the worst case. We can
of course improve the angles estimates by e.g. choosing (p, q) to
be maximally central, computing shortest paths, etc. If the errors
are known to be independent and randomly distributed with mean
0, the error is O(

√
D) with high probability.

2.2 `2 Algorithm
Our algorithm sets up a constraint program for finding the coordi-
nates of each vertex. The straightforward setup is nonconvex and
difficult to compute. We relax the problem to be a convex program
at the cost of some error. We further relax the problem to be a linear
program at the cost of additional error.

The basic optimization problem has the following constraints.
The distance and angle information of an edge (p, q) specifies a
(nonconvex) feasible region for q given a proposed location for p.
See Figure 1. If we know both ε and γ, our goal is to find a feasible
solution. If only one of these error parameters (e.g., γ) is known,
our objective function is to minimize the other error parameter (e.g.,
ε). If neither error parameter is known, we can solve the bicriterion
version of the problem by minimizing one error parameter and bi-
nary searching on the other.

We can relax the feasible region to be convex by taking the con-
vex hull. More precisely, we add one edge (a, b) to cut off the inner
arc of the region; see Figure 1. This relaxation produces a convex
program. The maximum possible error is obtained when q is placed
at the midpoint between a and b. Then the distance between p and q
is cos γ times the input distance between p and q. We can transform
this contraction into an expansion by multiplying all distances by
1/ cos γ. Thus, the maximum expansion is at most (1 + ε)/ cos γ,
proving the following theorem:

THEOREM 1. Given a graph, given the length of each edge with
multiplicative error ε, and given the angle of every edge with re-
spect to a particular edge with additive error γ, we can compute in
polynomial time an `2 embedding with angles of maximum additive
error γ and distances of maximum relative error (1+ε)/ cos γ−1.

We can further relax the feasible region to be piecewise-linear by
approximating the unique arc of the region with a polygonal chain.
If we use k + 1 ≥ 2 segments in a regular chain, the maximum ex-
pansion factor of a distance is (1+ε)/ cos(γ/k). By incorporating
the expansion factor from the previous theorem as well, we obtain
the following theorem:

THEOREM 2. Given a graph, given the length of each edge with
multiplicative error ε, and given the angle of every edge with re-
spect to a particular edge with additive error γ, we can compute in
polynomial time an `2 embedding with angles of maximum additive
error γ and distances of maximum relative error

1 + ε

cos γ cos(γ/k)
− 1 =

1 + ε

cos γ
− 1 + O

„

γ2

k2

«

.

2.3 More Types of Angle Information
For embedding into `1, we need additional information about the
global rotation of the graph. More precisely, we need to know,
for each edge (p, q), the quadrant of q with respect to p. In other
words, we need to know the two high-order bits of the angle of
each edge (p, q) with respect to the x axis, i.e., whether this angle
is in [0, 90◦], [90◦, 180◦], [180◦, 270◦], or [270◦, 360◦]. Because
of our additive angle errors, we may not know to which quadrant
an edge belongs; in this case, we would like to know that the edge
is borderline between two particular quadrants.

If our input specifies angles of edges with respect to the x axis,
we are done. For other types of input, we can apply the following
reductions:

LEMMA 3. Given a graph, given angles between pairs of in-
cident edges each with (one-sided or two-sided) additive error at
most γ, and given the angle of one edge relative to the x axis with
the same additive error, we can compute the angle of every edge
with respect to the x axis with additive error at most (D + 2)γ.

Proof: Apply Lemma 2 relative to the edge for which we know the
angle with respect to the x axis, and translate using this angle. 2

LEMMA 4. Given a graph, and given angles between pairs of
incident edges each with (one-sided or two-sided) additive error at
most γ, we can compute a family of O(1/γ′) possible assignments
of angles relative to the x axis with additive error at most γ + γ′.

Proof: Apply Lemma 2 to obtain angles relative to an edge e, and
then “guess” the angle of the x axis with respect to e among the
2πd1/γ′e angles of the form 0, d1/γ′e, 2d1/γ′e, 2

(a) Convex case

(b) Nonconvex case

Figure 2. Feasible region of a point q with respect to p given the `1
distance within a multiplicative ε and given the angle to the x axis
within an additive γ.

2.4 `1 Algorithm
We can adapt the `2 algorithm to an `1 algorithm as follows. The
convex program and linear program are the same as before; the
only difference is the shape of the feasible region of q with respect
to p. For an edge (p, q) that is known to be in a particular quadrant,
the region is a trapezoid as shown in Figure 2(a). In this case, the
region is already convex and polygonal, and we find an embedding
with no error beyond the optimal distortion.

The difficult case is when the edge (p, q) straddles two quad-
rants, i.e., is almost parallel to a coordinate axis. See Figure 2(b).
In this case, the angular wedge intersects two sides of the `1 circle
around p, and the region becomes a nonconvex ‘V’. As before, we
convexify this region by closing the mouth of the ‘V’. The resulting
region is also polygonal, so we can apply linear programming.

The worst-case error arises when (p, q) is exactly parallel to a co-
ordinate axis. Then the smallest distance between p and a relaxed
position for q is 1−(tan γ)/(1+tan γ) times the input distance be-
tween p and q. Again we can transform this contraction into an ex-
pansion by multiplying all distances by 1/[1−(tan γ)/(1+tan γ)],
and the maximum expansion is at most (1 + ε)/[1− (tan γ)/(1 +
tan γ)]:

THEOREM 3. Given a complete graph, given the length of each
edge with multiplicative error ε, and given the angle of every edge
with respect to the x axis with additive error γ, we can compute in
polynomial time an `1 embedding with angles of maximum additive
error γ and distances of maximum relative error

1 + ε

1 − (tan γ)/(1 + tan γ)
− 1 = (1 + ε)(γ + O(γ3)) + ε.

If we are given the approximate angles between incident pairs of
edges, and the approximate angle between one edge and the x axis,
then we can apply this theorem in combination with Lemma 3. If
we are just given the approximate angles between incident pairs of
edges, we can consider all “combinatorial rotations” with respect
to the x axis, and extract whether each edge is roughly horizon-
tal, roughly vertical, or substantially within one of the four quad-
rants. This partial information increases the region error for near-
horizontal and near-vertical edges, and does not preserve the angle
for all other edges, but will approximately preserve distances in the
resulting embedding.

2.5 Extension to `∞

We can directly adapt the `1 algorithm to an `∞ algorithm. If we
rotate an `∞ input by 45◦, and scale by a factor of 1/

√
2 in each

dimension, then we obtain an “identical” `1 input. The two inputs
are identical in the sense that the `∞ distance between any pair of
points in the `∞ input is equal to the `1 distance between that pair
in the `1 input. Thus, we can apply the `1 embedding algorithm to
the `1 input, and then undo the transformation, and we obtain an
`∞ embedding of an `∞ input.

2.6 Extension to Higher Dimensions
Our embedding algorithms extend to d dimensions for fixed d. The
input now becomes the approximate length of every edge and the
approximate angle of every edge with respect to every coordinate
axis. (Lemmas 3 and 4 can no longer obtain this information from
just the angles between pairs of edges.) These angles determine,
for each edge (p, q), a cone with origin at p specifying the region
of q that satisfies the angular constraints. The approximate length
information intersects this cone with a ball and the complement of
a ball (a higher-dimensional annulus); the resulting feasible region
for q with respect to p is nonconvex as before. The rest of the algo-
rithm proceeds as before; the error bounds from convexifying and
polyhedralifying the feasible regions grow with d. In the end, we
obtain a constant-factor approximation, where the approximation
factor depends on ε, γ, and d.

3. ADDITIVE EMBEDDING
INTO THE PLANE

In this section we describe an O(1)-approximate algorithm for em-
bedding a metric into `2

2 that minimizes (approximately) the addi-
tive error. The algorithm assumes that the minimum additive error
t is known. In fact, knowing a constant-factor approximation to

t is good enough. This assumption can be satisfied in a standard
way by trying out several values of t of the form diameter(P)/2i

for i = 0, 1, We also assume that the ratio of the diameter of
f(P) to t is bounded by ∆, called the spread of the metric. For
simplicity, we assume that we know t exactly, and without loss of
generality, we assume that t = 1.

The algorithm runs in polynomial time given the extremum or-
acle. By exhaustive enumeration of the possible oracle answers,
it can be converted to a standard algorithm with running time
2O(log n·log2 ∆).

We use the following notation. B(p, r) denotes a ball of radius
r around point p. R(p, r, s) denotes the ring (or annulus) B(p, r +
s) − B(p, r − s).

In the first step, the algorithm guesses the diameter pair (i.e., we
run Θ(n2) copies of the algorithm for each pair of points). Denote
the diameter pairs by o and o′. By rotation, we can assume f(o) =
(0, 0) and f(o′) = (∆, 0). Consider any other point q. Let S(q) =
R(f(o), D(o, q), 1) ∩ R(f(o′), D(o′, q), 1) (in the following, we
will simply refer to this set as S). Clearly, f(q) must lie in the set
S. At the same time, S is “narrow”, i.e., there is a value xq so
that S is contained in the strip [xq − c1, xq + c1] × <, for some
constant c1. Thus, if we fix the x-coordinates of the images of q
to xq , then there exists an embedding f ′ that f ′

x(q) = xq, whose
additive error is at most 2c1. In addition, we require that f ′

y(q) is
a multiple of t (i.e., an integer if t = 1); this increases the additive
error by at most t. The goal of the remaining part of the algorithm
is to find a mapping g with at most the error of f ′, assuming we
know gx(q) = f ′

x(q) for all q ∈ P . For simplicity, we will assume
that all x-coordinates are different; this can be easily achieved by a
small perturbation.

The algorithm is based on the divide and conquer paradigm.
Firstly, we compute the median x of the x-coordinates of points in
g(P). Let P+ be the set of all points p ∈ P such that gx(p) > x,
and let P− = P − P+. The algorithm proceeds by creating the
set of constraints on g(P+) and g(P−). The constraints have two
properties:

• They are feasible, i.e., f ′ satisfies them

• For any mapping g satisfying those constraints, we have
|g(p) − g(q)| = D(p, q) ± c, for all p ∈ P +, q ∈ P−;
here c is a certain fixed constant.

This allows us to compute g(P +) and g(P−) (enforcing the con-
straints) recursively and independently from each other.

The constraints are of the form “gy(p) ∈ Y (p)”, where Y (p) is
a finite set of intervals. They are constructed as follows. For i ≥ 1,
define Ii = (x+2i−1 −1, x+2i −1]; if i < 0, define Ii = −I−i.
For each Ii, the algorithm queries the extremum oracle to obtain
the point pi

up ∈ P , f ′
x(pi

up) ∈ Ii, such that f ′
y(pup) is maximal.

Similarly, the algorithm obtains pi
down. In addition, the algorithm

obtains the values f ′
y(pi

up) and f ′
y(pi

down) for each i.
The oracle’s answers can be implemented by exploting all

choices of the guessed variables. The total number of such choices
is bounded by 2O(log2 ∆), since there are at most O(∆) different
potential values of y coordinates of f ′(·).

After making the guesses, the algorithm imposes the following
new constraints, for each i, d ∈ {up, down}, and p ∈ P :

• “gy(pi
d) = f ′

y(pi
d)”

• if f ′
x(p) ∈ Ii, then “gy(p) ∈ [f ′

y(pi
down), f ′

y(pi
up)]”

• “g(p) ∈ R(f ′(pi
d), D(pi

d, p), 2c1)”; note that the latter con-
dition can be expressed as a restriction on gy(p)

As mentioned above, after imposing the constraints, the algo-
rithm recurses to find g(P +) and g(P−) independently. At the
leaf level of recursion (i.e., when we are given only one point p),
the algorithm sets gy(p) to be an arbitrary y coordinate satisfying
all constraints (if it exists).

The claimed bound for the running time T (n) follows from the
recursion T (n) = 2O(log2 ∆)[T (n/2) + nO(1)]. Note that if we
could compute the oracle’s answers in polynomial time, our algo-
rithm would have polynomial running time as well.

It is easy to see that the constraints imposed at all stages are
consistent with f ′. It remains to show that, after g(P +) and g(P−)
satisfying the constraints are found, then we have |g(p) − g(q)| =
D(p, q)±c, for all p ∈ P +, q ∈ P−. This is done via the following
two claims.

CLAIM 1. Consider any two points a = (x, y) and b =
(x′, y′), such that x′ ≥ x/2. Define b′ = (x′, y) and I = {0}×<.
Then, for any r there exists r′ such that I ∩ R(a, r, 2c1) ⊂
R(b′, r′, c) for a fixed constant c.

The interpretation (and usage) of this claim is as follows. Con-
sider the points g(p) and g(q) as above, and assume that gx(p) ∈
Ii, i < 0, and gx(q) ∈ Ij , j > 0, such that it is not the case
that i = −1, j = 1 (we will take care of this case later). In the
procedure described above, we impose constraints on g(p) of the
form g(p) ∈ R(a, r, 2c1), for d ∈ {down, up}, r = D(pj

d, p),
a = f ′(pj

d). However, it will be more convenient to consider
a different constraint, namely g(p) ∈ R(b′, r′, c), where b′ =
(f ′

x(q), f ′
y(pj

d)), since in this way f ′(q) and b′ have the same x-
coordinate, which will be used in the next claim. However, we
do not know f ′(q), so we cannot impose the second constraint
explicitely. Fortunately, the above claim guarantees that the lat-
ter constraint is implied by the former. Note that the assumption
x′ ≥ x/2 is satisfied by the construction of the intervals Ii, Ij .

Proof (of Claim 1): Without loss of generality we can assume
that I ∩ R(a, r, 2c1) is nonempty. In addition, we assume that
it consists of two disconnected components (if it consists of only
one component, the proof is similar). Denote the upper component
(with higher values of y-coordinates) by Y = {0} × [yd, yu]. Let
qd = (0, yd), qu = (0, yu). Note that y2

u + x2 = (r + 2c1)
2,

and y2
d + x2 = (r − 2c1)

2. By symmetry, it suffices to ensure that
Y ⊂ R(b′, r′, c).

Define r′ = |b′ − qu| = x′2 + y2
u. Consider any (0, z) ∈ Y . We

need to show (1) |b′ − (0, z)|2 ≤ (r′ + c)2 and (2) |b′ − (0, z)|2 ≥
(r′ − c)2 or r′ < c. First, |b′ − (0, z)|2 = x′2 + z2 ≤ x′2 + y2

u =

r′
2. Second, |b′ − (0, z)|2 ≥ x′2 + y2

d ≥ r′
2 − 2r′c + c2.

By plugging in the expressions for y2
d, r′2 and then y2

u, we obtain
equivalently

x′2 + (r − 2c1)
2 − x2 ≥ [(r + 2c1)

2 − x2] + x′2 − 2r′c + c2

which simplifies to 2r′c − c2 ≥ 4c1r.
Because r′ ≥ max(x′, yu), r′ ≤ x + yu, and (by the assump-

tion) x′ ≥ x/2 and r′ ≥ c, it follows that the last expression is
satisfied if c ≥ 8c1. This proves the claim. 2

Now we need the second claim.
Consider the following configuration of points a = (0, ya), b =

(0, yb), c = (x, yc), d = (x, yd).

For any ra, rb, rc, rd, define two sets:

S1 = {(0, y) : ya < y < yb} ∩ R(c, rc, s) ∩ R(d, rd, s)

S2 = {(x, y) : yc < y < yd} ∩ R(a, ra, s) ∩ R(b, rb, s)

CLAIM 2. The difference maxu∈S1,v∈S2
|u − v| −

minu∈S1,v∈S2
|u − v| is at most 4s.

Note that this implies that for any points p ∈ P−, q ∈ P+ that
satisfy the imposed constraints, we have |g(p)− g(q)| = |f ′(p)−
f ′(q)| ± O(1). To show that, consider two cases. Let f ′

x(p) ∈ Ii,
f ′

x(q) ∈ Ij .
Case 1: i = −1, j = 1. Let yup = max[f ′

y(p−1
up), f ′

y(p1
up)] and

ydown = max[f ′
y(p−1

down), f ′
y(p1

down)]. If yup − ydown ≤ c2 for
c2 larger than, say, 10c1, then the statement follows. Otherwise, if
yup − ydown > 10c1 , then for any u ∈ {p, q}, the set

([−1, 1] ×<) ∩i{−1,1},d∈{up,down} R(f ′(pi
d), D(pi

d, u), 2c1)

has constant diameter. Thus the statement again follows.
Case 2: By Claim 1 we can assume that the points pi

up, pi
down, p

(as well as pj
up, p

j

down, q) have the same x coordinates. Then we
apply Claim 2.

raT1

Z1

A
C

T2

Z2

D

ra − 2

B

Figure 3. Illustration of
the proof.

Proof (of Claim 2): Let z1 ∈ S1,
z2 ∈ S2 be any two points such that
|z1 − z2| = max{|u − v| : u ∈
S1, v ∈ S2}. Similarly, let t1 ∈
S1, t2 ∈ S2 be any two points such
that |t1 − t2| = min{|u − v| : u ∈
S1, v ∈ S2}.

Without loss of generality we can
assume that yz1 < yz2 < yd.

Note that if yt2 < ya then by con-
sidering t3 = (x, 2ya − yd) we get
|t1−t3| < |t1−t2| and we can con-
sider only the case when yt2 ≥ ya.
Also, if yt2 < yz1 by increasing yt2

we decrease |t1 − t2| so we can as-
sume yt2 > yz1.

It is easy to see that as long as ya < yz1 we can increase ya

and decrease ra such that t2 and z2 will continue to belong to S2.
Therefore, without loss of generality we can assume a = z1 and
ra + s = |z1 − z2|.

Similarly, we apply the same idea to d and t1: we note that yt1 <
yz2 and by decreasing yd, we can assume that d = z2 and rd +s =
ra + s = |z1 − z2|. It is easy to see that in this case (see Figure 3)
we have |t1 − t2| ≥ ra − 3s = |z1 − z2| − 3s. 2

4. EMBEDDING WITH ORDER TYPE
In this section, we consider the model in which we are given all
distances in `2, and in addition order type of the points or in other
words orientations of all triples. Here orientations of three points
p, q, and r is a triple (p, q, r) which says we see these points in
this order in triangle pqr, when we start from p and turn clock-
wise. In fact, we present the algorithm when we have orientations
of all triples, however we relax the condition such that knowing
only orientations of all triples which have a point p in common is
sufficient (i.e., knowing

`

n−1
2

´

orientations instead of
`

n

3

´

ones.) In
fact, knowing this information is equivalent to knowing the order
of points around point p according to their angles with a fixed axis.
In addition, we assume that the given orientations are robust.

DEFINITION 1. A set of orientations is called δ-totally robust if
perturbing the x and y coordinates of all points by at most δ does
not change the given orientations. A set of orientations is called
δ-robust if perturbing the x and y coordinates of a single point by
at most δ does not change the orientations.

We note that robustness is weaker than totally robustness. However,
Lemma 4 shows totally robustness and robustness are equivalent up
to a constant factor.

LEMMA 5. If a set of orientations is 3δ-robust, then it is δ-
totally robust.

Proof: One can easily observe that if the set of orientations are
not totally robust, there should exist a situation in which a point p
passes a line segment between q and r. Since the total movement
in such a situation is at most 3δ, one can fix q and r and just per-
turb p by 3δ and still changes the orientations. Thus we reach to a
contradiction. 2

In the rest of the proof, we mainly use totally robustness. How-
ever since by Lemma 5 totally robustness can be further relaxed to
robustness by losing a constant factor, we use these words inter-
changeably. The main theorem of this section is as follows:

THEOREM 4. Given a complete graph, given the length of each
edge with additive error ε, and given a set of 3cε-robust orienta-
tions of every set of three points, we can compute in polynomial
time an `2 embedding with additive distortion cε for some con-
stant c.

By setting the robustness high enough, we can guarantee that
our embedding satisfies all specified orientation constraints. Also,
our proof uses the orientations of only one point with respect to
all other points. Thus, knowing only the orientations of all triples
involving a common point is sufficient.
Proof: We extend the algorithm of Bădoiu [3] for embedding in `1.
Similar to [3], we guess ε by binary search and thus we can assume
that we know ε. Next we show how to guess the x coordinates
within a constant factor of ε, which is enough for this result. The
main idea of this step is that we first guess p and q denoting the
diameter and without loss of generality we take p = (0, 0) and
q = (D[p, q], 0). For any other point v, let Rv be the intersection
of the annulus between balls of radius D[p, v] − ε and D[p, v] + ε
around p and the annulus between balls of radius D[v, q] − ε and
D[v, q]+ε around q. One can easily observe that v should lie in Rv

and the x-coordinates of points in Rv are contained in the interval
of [xv − c′ε, xv + c′ε] for some constant c′ ≤ 4. (Intuitively,
region R is narrow since p and q form a diameter and the worst
case happens when q and v and p and v also form diameters.) This
step is similar to a step in Section 3 and in an algorithm of Bădoiu
[3]. Now by fixing fx(v) = xv , we have the additive error at most
2c′ε. In the rest of the algorithm, we fix these x-coordinates and
assume that they are all distinct (otherwise perturb them a bit), and
then we try to obtain the y coordinates of the points. Also, since
orientations are robust, fixing the x-coordinates dose not prevent us
to use orientations to obtain the y-coordinates.

Having the x coordinates we will find fy(v) for each point v,
such that |D[p, q] − ||f(p) − f(q)||2| ≤ 3ε. We note that here
since x coordinates are fixed, fy(p) − fy(q) can take at most two
intervals (which depends whether fy(p) ≥ fy(q) or not.) Our final
goal is to obtain the y coordinates by setting up a linear program.

First, we define a graph whose vertex set is the set of points
as follows. We connect p and q by a strong edge if D[p, q] ≥

p

(fx(p) − fx(q))2 + 3ε2. Also, we connect two points v and
w by a weak edge if there exists p and q in the same connected
component as w of strong edges and v is not in the same connected
component as w and D[v, w] >

p

(fx(v) − fx(w))2 + ε2 and
fx(p) ≤ fx(v) ≤ fx(q). The set of edges of G is the union of
all strong and weak edges. We say an edge {p, q} is oriented up
if fx(p) ≤ fx(q) and fy(p) ≤ fy(q). Similarly, we say an edge
{p, q} is oriented down if fx(p) ≤ fx(q) and fy(p) ≥ fy(q). The
proof of the following lemmas is very similar to Claims 4.1 and 4.2
of Badoiu [3] and hence omitted.

LEMMA 6. No two connected components of G overlap, i.e.,
there is a vertical line l not passing through any given points that
separates the vertices of the first component from the vertices of the
second component.

LEMMA 7. If we fix the orientation of an edge of G, we can
uniquely determine the orientation of all other edges in the same
connected components.

One can easily observe that if there is no strong edge between
two points p and q, the distance already given by fx(p) − fx(q)
is good enough for a 3ε-approximation. Then we can add the con-
straint D[p, q] + ε ≥ ||f(p) − f(q)||, which is equivalent to

−
p

(D[p, q] + ε)2 − (fx(p) − fx(q))2

≤ fy(p) − fy(q)

≤
p

(D[p, q] + ε)2 − (fx(p) − fx(q))2,

to make sure that the error is not too much. In addition, for an edge
(v, w) ∈ E(G) which is oriented up and fx(v) ≤ fx(w), we have
this linear constraint on fy.

p

(fx(w) − fx(v))2 + (fx(w) − fx(v))2 − ε

≤ D[v, w]

≤
p

(fx(w) − fx(v))2 + (fx(w) − fx(v))2 + ε

or equivalently
p

D[v, w]2 − 2εD[v, w] + ε2 − (fx(w) − fx(v))2

≤ fy(w) − fy(v)

≤
p

D[v, w]2 + 2εD[v, w] + ε2 − (fx(w) − fx(v))2

We have a similar relation if (v, w) ∈ E(G) is oriented down.
Now, using Lemmas 6 and 7 and the description above we can

obtain a cε-approximation solution for the problem, if G′ has only
one connected component. However if there are several connected
components, each connected component can be oriented up or
down and then the number of cases can be exponential. For this
case, we use the given orientations. We note that since the ori-
entations are 3cε-robust (and thus cε-totally robust by Lemma 5),
and we guessed the x and y coordinates within some 2c′ε error for
2c′ ≤ c, still we can use the orientations. Without loss of gener-
ality, we can assume the left-most component is oriented up. Now
consider a point v in this component. We show that for each other
component C, using orientations, we can determine whether C is
oriented up or down. Consider a strong edge (u, w) ∈ C (there
should exist such a strong edge, since otherwise C has only one
point and its orientation is trivial.). Since there is no strong edge
between v and u, it means segment v and u is almost horizontal
(see the definition of strong edges). Using this property and the
fact that (u, w) is a strong edge and also, we know the orientations
of three points v, u, w, we can determine the orientation of (u, w)
and thus the orientation of the whole component C. Thus, fixing

the orientation of the leftmost component we can determine the ori-
entation of all edges of other components. Finally, by setting up the
following LP, we obtain the desired approximation embedding.

p

D[v, w]2 − 2εD[v, w] + ε2 − (fx(w) − fx(v))2

≤ fy(w) − fy(v)

≤
p

D[v, w]2 + 2εD[v, w] + ε2 − (fx(w) − fx(v))2

if (v, w) ∈ E is oriented up and fx(w) ≥ fx(v)

p

D[v, w]2 − 2εD[v, w] + ε2 − (fx(w) − fx(v))2

≤ fy(v) − fy(w)

≤
p

D[v, w]2 + 2εD[v, w] + ε2 − (fx(w) − fx(v))2

if (v, w) ∈ E is oriented down and fx(w) ≥ fx(v)

−
p

(D[v, w] + ε)2 − (fx(v) − fx(w))2

≤ fy(v) − fy(w)

≤
p

(D[v, w] + ε)2 − (fx(v) − fx(w))2

if (v, w) 6∈ E

2

5. EMBEDDING WITH
DISTRIBUTION INFORMATION

In this section we consider embedding methods for complete
graphs with given edge lengths that are chosen at random from
certain distribution. In particular, we show a polynomial-time al-
gorithm that finds an embedding f into <2 under `2 such that the
additive distortion of f is within a constant factor away from the
“designed” distortion.

The given edge lengths D is chosen via the following random
process. Let P be a set, |P | = n, and t be the “designed distortion”.
We first choose the “designed optimal embedding” f∗ : P →
[0, 1]2. This is done by choosing f∗(p), p ∈ P , to be a point cho-
sen at random from a uniform distribution over S = [0, 1]2. Then,
each D[p, q] is chosen such that |D[p, q]− ||f∗(p)− f∗(q)||| ≤ t.
Note that f∗ provides an embedding of (P, D) into [0, 1]2 that has
an additive distortion t. The goal of the algorithm is: given (P, D),
find an embedding f such that the additive distortion of f is O(t).

THEOREM 5. There is a polynomial time algorithm that, given
a complete graph with edge lengths constructed as above, finds an
embedding f that has an additive distortion of O(t) with probabil-
ity 1 − o(1), as long as t = ω(1/

√
n). The algorithm is determin-

istic; the probability is taken over the space of mappings f∗.

Let r be such that r = ω(1/
√

n) and r = O(t). The algorithm
uses the “triangulation” approach:

1. For each sequence p1, p2, p3, p4 ∈ P do:

(a) Assign f(p1) = (0, 0), f(p2) = (0, 1), f(p3) =
(1, 1), f(p4) = (1, 0)

(b) For each p ∈ P − {p1, p2, p3, p4}, choose f(p) to be
an arbitrary point in the region

Rp = ∩i=1...4R(f(pi), D[p, pi], t + 2
√

2r)

where R(p, r,w) is an annulus centered at p, with inner
radius r−w and outer radius r+w. If Rp∩S is empty,
ignore the (incomplete) embedding.

2. Report the embedding with the smallest additive distortion

The following claim follows from basic calculations.

CLAIM 3. With probability 1 − o(1), each of the four r × r
sub-squares of S that each touches a corner of S contain f∗(p) for
some p ∈ P .

From the claim it follows that, with probability 1 − o(1), there
exist p1 . . . p4 with the above property. Consider the case when the
algorithm chooses that set of points (step (1) of the code). It follows
that, if we modify f∗ into f by performing the assignment as in step
(a) of the algorithm, then f has distortion at most t + 2

√
2r. This

implies that, in this case, all regions Rp ∩ S are non-empty.
It suffices to show that the diameter of each set Rp∩S is O(t+r).

Consider any p ∈ P − {p1, p2, p3, p4}.
The following claim follows from the argument as in the proof

of Theorem 4.

CLAIM 4. Consider any p, q ∈ S and r1, r2, w > 0 such that
r1, r2 = O(|p−q|). The set R(p, r1, w)∩R(q, r2, w) is contained
in a strip of width O(w).

Recall that Rp is an intersection of four annuli. By applying
Claim 4 to annuli around points (0, 0) and (0, 1), we conclude that
Rp is contained in a vertical strip of width O(t + r). In the same
way, we conclude that Rp is contained in a in horizontal strip of the
same width. It follows that that the diameter of Rp is O(t + r) as
claimed.

6. EMBEDDING WITH
RANGE GRAPHS

In this section we are interested in embedding a graph with spec-
ified edge lengths into the line subject to the following condition.
An embedding f : P → < of a graph G = (P, E) with edge
lengths specified by D satisfies the range condition if, for every
three points p, q, r ∈ P , (a) if {p, q} ∈ E and {p, r} /∈ E,
|f(p) − f(q)| ≤ |f(p) − f(r)|, and (b) if {p, q}, {p, r} ∈ E,
|f(p) − f(q)| ≤ |f(p) − f(r)| precisely if D[p, q] ≤ D[p, r].
Among all such embeddings, we will find one that minimizes the
additive distortion with respect to the specified edge lengths on G.
Part (b) of this definition will be satisfied provided the difference
between adjacent distances in a near-optimal embedding is at least
the additive distortion.

6.1 The Exact Case
In this subsection we consider embedding with zero distortion:

LEMMA 8. Given a graph G with edge lengths specified by D,
we can check in polynomial time whether there is an embedding
f that satisfies the range condition and matches D exactly on the
edges of f , and construct such an embedding if it exists.

Proof: Without loss of generality we assume that the graph G is
connected. Let p be the leftmost point in an embedding f into
the line that satisfies the conditions of the lemma. We guess p by
enumerating all |P | possibilities. Without loss of generality, p has
coordinate 0. All neighbors of p in G lie to the right of p. Let q be
such a neighbor. Let r be a neighbor of q but not a neighbor of p.
By the range condition, we have |f(p) − f(r)| > |f(p) − f(q)|.
Therefore, f(r) > f(q) and thus f(r) = f(q) + D[q, r]. By
traversing G in a breadth-first manner, we can reconstruct f . The
running time of our algorithm is O(|P | · |E|). 2

6.2 The Additive Error Case
In this subsection we consider the case when the optimal embed-
ding has minimum additive distortion ε. We say an edge (p, q) ∈ G
is a forward edge if f(p) ≤ f(q) and a backward edge if f(p) >
f(q). We call this distinction the orientation of an edge. Note that
if (p, q) is a forward edge then (q, p) is a backward edge.

LEMMA 9. Given a graph G with edge lengths specified by D
for which there is an embedding f that satisfies the range condition,
and for any two incident edges {p, q} and {q, r} in G, we can
determine the orientation of (q, r) in f given the orientation of
(p, q) in f using just D.

Proof: Without loss of generality (p, q) is a forward edge and
D[p, q] > D[q, r]. By part (b) of the range condition, if D[p, r] <
D[p, q], then (q, r) must be a backward edge. By both parts of the
range condition, if D[p, r] > D[p, q] or D[p, r] is unknown, then
(q, r) must be a forward edge. 2

THEOREM 6. Given a graph G with edge lengths specified by
D, we can construct in polynomial time an an embedding f that
satisfies the range condition and matches D up to the minimum
possible additive distortion subject to the range condition.

Proof: Let (p, q) be an edge in G. Without loss of generality we
can assume (p, q) is a forward edge. Lemma 9 implies that we
know the orientation of all the incident edges. By applying this ar-
gument multiple times, we can determine the orientation of all the
edges within the connected component of G containing p. We can-
not determine the relative orientation between different connected
components, but this is not necessary. By placing the locally em-
bedded connected components far away from each other, the result-
ing embedding satisfies the range condition. Knowing the orienta-
tions, we can construct the following linear program which mini-
mizes additive distortion:

minimize ε

subject to f(p) + D[p, q] − ε < f(q) < f(p) + D[p, q] + ε

if (p, q) is a forward edge,

f(p) − D[p, q] − ε < f(q) < f(p) − D[p, q] + ε

if (p, q) is a backward edge.

2

In Section 7, we show that embedding a graph with given edge
lengths in `2

2 and `21, even using exact distances and a more re-
stricted form of range-condition, is NP-hard.

7. HARDNESS RESULTS
Saxe [20] proved that deciding embeddability of a given graph with
exact `2 edge lengths is strongly NP-hard in d dimensions, for any
d ≥ 1. Independently, Yemini [25] proved weak NP-hardness of
the same problem for d = 2 with a simple reduction from Partition.
Here we prove weak NP-hardness for both `1 and `2 in 2D, even
when the graph satisfies the constant-range condition: two vertices
v, w are connected by an edge precisely when their distance is at
most a fixed range r. This condition is a special case of the (vari-
able) range condition defined in Section 6, and hence our hardness
results apply under that restriction as well. One interesting feature
of our restricted form of the problem is that the problem is not hard
in 1D, and thus our proofs require us to use the structure of 2D. In
contrast, previous hardness proofs start with 1D, and then trivially
extend to higher dimensions.

3 L

2 L
L/2

L

4
 n

 L

(L+a1)/2

2 L

3 L

L + a1

L

L + a2

Figure 4. Our reduction from Partition to `2 embedding of a graph
satisfying the constant-range condition. In the reduction, the ai ’s are
much smaller than L, and in this drawing, the ai ’s are drawn as 0.

7.1 `2 Case
THEOREM 7. It is NP-hard to decide whether a given graph

with exact `2 edge lengths and satisfying the constant-range condi-
tion has an embedding with zero distortion.

Our reduction from Partition is sketched in Figure 4. The range
is 1.1L, where L is a large number to be chosen later. In any em-
bedding of our graph, all vertices lie roughly on a square grid with
edge lengths L/2. We use strips of k vertices spaced every L/2
units to build rigid bars of length kL/2; the strips are rigid because
each vertex can see the next two vertices in the strips. We use right
isosceles triangles with edge lengths L/2, L/2, and L/

√
2 to force

angles of 90◦. All other pairs of vertices have distance at least√
5

‹

2 > 1.1L, so are not within range.
For a given instance a1, a2, . . . , an of Partition, we construct 2n

edges, two with length (L + ai)/2 for each i, and force them all to
be parallel. We choose L large enough so that

Pn

i=1 ai < 0.1L.
For each pair of edges of length (L + ai)/2, we also create a pair
of edges of length L/2, so that the absolute horizontal shift caused
by these four edges is (L + ai)− L = ai. Each such quadruple of
edges can be independently flipped so that the shift is either ai or
−ai. Finally, we add another connection between the two extreme
edges which forces the total shift to be 0. Thus, a distortion-free

aiL LL

L

L

L

L

L

P Q

Figure 5. Analogous gadgets for use in Figure 4 for the `∞ case.
Here ai is drawn larger than reality. Dotted edges are present, but
not necessary for rigidity.

embedding corresponds to a solution to Partition and vice versa.

7.2 `1 and `∞ Case
We prove the first hardness result about embedding with exact `1

or `∞ distances:

THEOREM 8. It is NP-hard to decide whether a given graph
with exact `∞ edge lengths (or equivalently, exact `1 edge lengths)
and satisfying the constant-range condition has an embedding with
zero distortion.

The proof is similar to the `2, except that the gadgets are slightly
more complicated; see Figure 5. The radius r is now exactly L.
We use a sequence of attached L × L boxes in place of a strip of
vertices. As before, this construction acts as a rigid bar, except that
it can be flipped. (In Figure 5, vertices P and Q can be swapped.)
To perturb a length by ai from a multiple of L, we add a small
ai × ai box and attach it in the middle of the strip. This box is
in fact rigid and cannot be flipped with respect to its neighbors.
Thus, the construction can be plugged into Figure 4 and we have
the theorem.

8. OPEN PROBLEMS
An important open problem in this area is whether there is a
polynomial-time algorithm for approximately minimizing additive
distortion given all pairwise distance information and no extra in-
formation. Our quasipolynomial-time algorithm is one step in
this direction. The analogous problem for multiplicative distortion
seems even harder.

A general theme of our work is to consider the case in which
we do not know all distances. Another approach for making this
case tractable is to constrain the connectivity to something less than
n − 1 (for the complete graph). For example, what can we say
about c-connected graphs for sufficiently large c, or cn-connected
graphs for c < 1? These special cases will still likely require extra
information, because even for the case where we know all pairwise
distances, we do not know approximation algorithms without extra
information except for `1 and additive error [3].

It would seem natural to obtain angle estimates in a graph G
“for free” using (approximate) distances in G ∪ G2, by analyzing
triangles (p, q, r) in G ∪ G2. There are two problems with this

approach. The first problem is that two vertices p, q in a triangle
may be much closer to each other than to the third vertex r, and
the multiplicative errors on distances allow p and q to spin around
each other and allow p and q to have any angle. This problem can
be surmounted by assuming that the ratio of lengths between any
two incident edges is bounded. The second, more serious prob-
lem is that it is difficult to decode the orientations of triangles and
hence the signs of the angles using purely distance information. We
conjecture that this information can be decoded using distances in
G ∪ G2 ∪ G3 ∪ G4 ∪ G5 ∪ G6, because 6-connected graphs have
unique embeddings [14].

Even with just distance information, the complexity of one inter-
esting variation remains unresolved. Given a graph that is gener-
ically uniquely embeddable, in the sense that almost any assign-
ment of edge lengths induces a unique embedding, can we construct
the unique embedding for almost any assignment of edge lengths?
Jackson and Jordán [14] recently showed that, in polynomial time,
we can test whether a graph has this property, but the proof is not
entirely constructive. Another example of an NP-hard problem that
can be solved in polynomial time almost always is Subset Sum.
Our hardness reductions for embedding are based on Subset Sum,
so there is hope that nongeneric examples are the only obstruction
to polynomial-time algorithms.

References
[1] R. AGARWALA, V. BAFNA, M. FARACH-COLTON,

B. NARAYANAN, M. PATERSON, AND M. THORUP, On
the approximability of numerical taxonomy: (fitting distances
by tree metrics), 7th Symposium on Discrete Algorithms,
(1996).

[2] B. BERGER, J. KLEINBERG, AND T. LEIGHTON, Recon-
structing a three-dimensional model with arbitrary errors, in
Proc. 28th Annu. ACM Sympos. Theory Comput., May 1996,
pp. 449–458.

[3] M. BĂDOIU, Approximation algorithm for embedding met-
rics into a two-dimensional space, 14th Annual ACM-SIAM
Symposium on Discrete Algorithms, (2003).

[4] S. ČAPKUN, M. HAMDI, AND J.-P. HUBAUX, Gps-free po-
sitioning in mobile ad-hoc networks, in Proceedings of the
34th Hawaii International Conference on System Sciences,
January 2001, pp. 3481–3490.

[5] R. CONNELLY, On generic global rigidity, in Applied Geom-
etry and Discrete Mathematics: The Victor Klee Festschrift,
P. Gritzman and B. Sturmfels, eds., vol. 4 of DIMACS Series
in Discrete Mathematics and Theoretical Computer Science,
AMS Press, 1991, pp. 147–155.

[6] C. COULLARD AND A. LUBIW, Distance visibility graphs,
Internat. J. Comput. Geom. Appl., 2 (1992), pp. 349–362.

[7] G. M. CRIPPEN AND T. F. HAVEL, Distance Geometry and
Molecular Conformation, John Wiley & Sons, 1988.

[8] H. EVERETT, C. T. HOÀNG, K. KILAKOS, AND M. NOY,
Distance segment visibility graphs. Manuscript, 1999. http:
//www.loria.fr/∼everett/publications/distance.html.

[9] M. FARACH-COLTON AND S. KANNAN, Efficient algorithms
for inverting evolution, 28th Symposium on Theory of Com-
puting, (1996).

[10] J. HASTAD, L. IVANSSON, AND J. LAGERGREN, Fitting
points on the real line and its application to rh mapping, Lec-
ture Notes in Computer Science, 1461 (1998), pp. 465–467.

[11] B. HENDRICKSON, Conditions for unique graph realizations,
SIAM J. Comput., 21 (1992), pp. 65–84.

[12] , The molecule problem: Exploiting structure in global
optimization, SIAM J. on Optimization, 5 (1995), pp. 835–
857.

[13] L. IVANSSON, Computational aspects of radiation hybrid,
Doctoral Dissertation, Department of Numerical Analysis and
Computer Science, Royal Institute of Technology, (2000).

[14] B. JACKSON AND T. JORDÁN, Connected rigidity matroids
and unique realizations of graphs. Manuscript, March 2003.

[15] J. KRUSKAL, Multidimensional scaling by optimizing good-
ness of fit to a nonmetric hypothesis, Psychometrika, 29
(1964), pp. 1–27.

[16] , Nonmetric multidimensional scaling: A numerical
method, Psychometrika, 29 (1964), pp. 115–129.

[17] N. B. PRIYANTHA, A. CHAKRABORTY, AND H. BALAKR-
ISHNAN, The Cricket location-support system, in Proceedings
of 6th Annual International Conference on Mobile Computing
and Networking, Boston, MA, August 2000, pp. 32–43.

[18] N. B. PRIYANTHA, A. K. L. MIU, H. BALAKRISHNAN,
AND S. TELLER, The Cricket compass for context-aware
mobile applications, in Proceedings of the 7th ACM Inter-
national Conference on Mobile Computing and Networking,
Rome, Italy, July 2001, pp. 1–14.

[19] C. SAVARESE, J. RABAEY, AND J. BEUTEL, Locationing in
distributed ad-hoc wireless sensor networks, in Proceedings
of the International Conference on Acoustics, Speech, and
Signal Processing, Salt Lake City, UT, May 2001, pp. 2037–
2040.

[20] J. B. SAXE, Embeddability of weighted graphs in k-space
is strongly NP-hard, in Proc. 17th Allerton Conf. Commun.
Control Comput., 1979, pp. 480–489.

[21] J. B. SAXE, Two papers on graph embedding problems, Tech.
Rep. CMU-CS-80-102, Department of Computer Science,
Carnegie-Mellon University, Jan. 1980.

[22] R. N. SHEPARD, The analysis of proximities: Multidimen-
sional scaling with an unknown distance function 1, Psy-
chometrika, 27 (1962), pp. 125–140.

[23] , The analysis of proximities: Multidimensional scal-
ing with an unknown distance function 2, Psychometrika, 27
(1962), pp. 216–246.

[24] WORKING GROUP ON ALGORITHMS FOR MULTIDI-
MENSIONAL SCALING, Algorithms for multidimensional
scaling. http://dimacs.rutgers.edu/SpecialYears/2001 Data/
Algorithms/MDSdescription.html.

[25] Y. YEMINI, Some theoretical aspects of position-location
problems, in Proc. 20th Annu. IEEE Sympos. Found. Com-
put. Sci., 1979, pp. 1–8.

