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Abstract

We prove that any finite polyhedral manifold in 3D can be continuously flattened into 2D
while preserving intrinsic distances and avoiding crossings, answering a 19-year-old open problem,
if we extend standard folding models to allow for countably infinite creases. The most general
cases previously known to be continuously flattenable were convex polyhedra and semi-orthogonal
polyhedra. For non-orientable manifolds, even the existence of an instantaneous flattening (flat
folded state) is a new result. Our solution extends a method for flattening semi-orthogonal
polyhedra: slice the polyhedron along parallel planes and flatten the polyhedral strips between
consecutive planes. We adapt this approach to arbitrary nonconvex polyhedra by generalizing
strip flattening to nonorthogonal corners and slicing along a countably infinite number of parallel
planes, with slices densely approaching every vertex of the manifold. We also show that the
area of the polyhedron that needs to support moving creases (which are necessary for closed
polyhedra by the Bellows Theorem) can be made arbitrarily small.

1 Introduction

We crush polyhedra flat all the time, such as when we recycle cereal boxes or store airbags in a
steering wheel. But is this actually possible without tearing or stretching the material? This problem
was first posed in 2001 [DDL01] (see [DO07, Chapter 18]): does every polyhedron have a continuous
motion that preserves the metric (intrinsic shortest paths), avoids crossings, and ends in a flat folded
state? This problem is Open Problem 18.1 of the book Geometric Folding Algorithms [DO07]. In
this paper, we solve this 19-year-old open problem with a positive answer: every polyhedron can
be continuously flattend. Specifically, we prove for a broad definition of polyhedron: any compact
polyhedral 2-manifold (possibly with boundary) embedded in 3D and having finitely many polygonal
faces. However, our result is arguably in a model not intended by the original problem: our folding
has countably infinitely many creases at all times.

A necessary first step is to show that every polyhedron has a flat folded state (the end of the
desired flattening motion). This problem was also first posed in 2001 [DDL01], where it was solved
for convex and semi-orthogonal polyhedra.1 Later, Bern and Hayes [BH11] solved the problem for
orientable polyhedral manifolds, generalizing a previous solution for sphere or disk topology [DO07].
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1In a semi-orthogonal polyhedron, every facet is either parallel or perpendicular to a common plane. Thus, in

some orientation, the faces are all horizontal (parallel to the floor) or vertical (perpendicular to the floor).
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This result solved Open Problem 18.2 of [DO07] (also originally posed in 2001 [DDL01]), except for
non-orientable polyhedral manifolds, which we solve here.

Continuous flattening necessarily requires continuously moving/sliding the creases on the surface
over time (for polyhedra enclosing a volume): if all creases remained fixed throughout the motion
(and the set of creases is finite), then the Bellows Theorem [CSW97] tells us that the volume would
remain fixed, so could not decrease to zero. A natural question, though, is how much area of the
surface needs to be flexible in the sense of supporting moving creases, and how much can be made
of rigid panels connected by hinges. Abel et al. [ACD+15] showed that a surprisingly small but
finite slit suffices for continuous flattening of a regular tetrahedron. Matsubara and Nara [MN17]
recently showed that an arbitrarily small area of flexibility suffices for α-trapezoidal polyhedra. In
this paper, we show that an arbitrarily small area of flexibility suffices for any polyhedral manifold.

Several previous results constructed continuous flattenings of special classes of polyhedra. Itoh
and Nara [IN10] solved Platonic solids while preserving two faces, and later with V̂ılcu [INV11] solved
convex polyhedra using Alexandrov surgery (which is difficult to compute). At SoCG 2014, Abel et
al. [ADD+14] solved convex polyhedra using a simple algorithm that respects the straight skeleton
gluing, corresponding to the intuitive way to flatten a polyhedron, and solving Open Problem
18.3 of [DO07] (the last open problem of Chapter 18, also originally posed in 2001 [DDL01]).
Unfortunately, this approach seems difficult to extend to nonconvex polyhedra. More recently,
a slicing approach (dating back to [DDL01]) was shown to continuously flatten semi-orthogonal
polyhedra [DDIN15]. In this paper, we extend this slicing approach in several ways to solve arbitrary
polyhedral manifolds.

1.1 Approach

We generalize the slicing approach of [DDIN15], which conceptually cuts the polyhedron along
parallel planes through every vertex, and several additional planes in between so that the resulting
slabs (portions of the polyhedron between consecutive planes) are “short”. In [DDIN15], each slab
is an orthogonal band, which is relatively easy to flatten continuously. The key difference in our
case is that the slabs are much more general: in general, a slab in a polyhedron is a prismatoid
(excluding the top and bottom faces), that is, a polyhedron whose vertices lie in two parallel planes,
whose faces are triangles and trapezoids spanning both planes. Unfortunately, prismatoids seem
extremely difficult to flatten continuously, as original polyhedron vertices are particularly difficult
to handle in the general case.

To circumvent this challenge, we instead target the flattening of prismoids: prismatoids whose
spanning faces are only trapezoids having parallel top and bottom edges (i.e., no triangular spanning
faces), where every vertex is incident to at most two spanning trapezoids. We will use the term
cylindrical prismoid to refer to the spanning faces of a prismoid, without the top and bottom face.
A key innovation in our approach is to divide a polyhedral manifold using countably infinitely many
parallel planar cuts, with slabs approaching zero height as we approach polyhedron vertices. As a
result, all slabs consist of disjoint cylindrical prismoids. The key property is that original polyhedron
vertices do not appear on the boundary of any slab, because any such slab would get divided in half
through countably infinite recursion.

Note that since we allow polyhedral manifolds with boundary, a component within a slab may
only be a subset of a cylindrical prismatoid, we call a prismoidal wall ; this generalization is discussed
in Section 4.
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1.2 Outline

We implement the approach described above in a bottom-up fashion. First, Section 2 formally
defines our model of folding. Next, Section 3 shows how to collapse prismoid edges and faces by
constructing generalized In-Out and Out-Out gadgets. Then, Section 4 shows how to slice the
input polyhedral manifold so that we can flatten subsets of it using the methods from Section 3.
Finally, Section 5 puts these algorithms together to prove the following theorem:

Theorem 1. Any compact polyhedral 2-manifold (possibly with boundary) embedded in 3D and
having finitely many polygonal faces can be continuously flattened while preserving intrinsic distances
and avoiding crossings. A flattening motion exists such that at all times during the flattening motion
(except the beginning), the folded form consists of countably infinitely many creases, with finitely
many accumulation lines. Furthermore, the area supporting moving creases can be made arbitrarily
small.

2 Model

The standard model of folding 2D surfaces in 3D [DO07, Chapter 11] assumes finitely many creases,
as that is the primary case of interest for origami. A full definition supporting countably infinitely
many creases is likely possible, but difficult, as it is no longer possible to focus on well-behaved
positive-area neighborhoods. For the purposes of this paper, we define a limited model of folding with
countably infinite creases, where the folding decomposes into components separated by horizontal
planes, and each component is a finite-crease folding according to [DO07, Chapter 11].

Specifically, define a stacked folded state of a polygon P of paper to consist of two components:

1. A decomposition of P into countably many topologically closed polygonal regions P1, P2, . . .
(the unfolded slices, each of which can be disconnected), whose interior-disjoint union ∪∞i=1Pi
equals P . The sequence P1, P2, . . . can be (countably) infinite, and is in no particular order
(in particular, it does not match the stacking order defined below in Property 3). Because
of the infinite decomposition, some points of P belong to one or two Pi (two in the case of
shared boundary), while other points of P may not belong to any Pi but rather exist in the
limit of some sequence Pk1 , Pk2 , . . . .

2. A finite-crease folded state (fi, λi) of each region Pi (the folded slice), consisting of a geometry
fi : Pi → R3 and a layer-ordering partial function λi : P 2

i → {−1,+1} (as in [DO07,
Chapter 11]).

These components must satisfy the following constraints:

3. The decomposition P1, P2, . . . has a total ordering ≺ for which each Pi intersects only its
immediate predecessor and successor in ≺.

4. The folded states meet on their shared boundaries, i.e., fi(Pi ∩ Pj) = fj(Pi ∩ Pj) for all i, j.

5. For every point q ∈ P , there is a unique point r ∈ R3 (more naturally notated f(q)) such
that, for every sequence q1, q2, . . . of points in P converging to q, if each qi belongs to a
corresponding region Pki , then sequence fki(qi) converges to r. This property guarantees a
global folded-state geometry f on all of P , in particular for points that do not belong to
any Pi.
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6. The folded states live in interior-disjoint horizontal slices of space, i.e., all points in fi(Pi) have
z coordinates in the range Zi = [z−i , z

+
i ], where the intervals Z0, Z1, Z2, . . . are interior-disjoint

and Pi ≺ Pj implies z+i ≤ z−j .

Intuitively, these constraints guarantee that there are no proper collisions between different folded
states (fi, λi) where they join. Although two folded states may touch in a shared horizontal plane,
the total ordering from Property 3 provides a stacking order for such overlapping layers. A subtlety
here is that, to allow the final flat folded state where Z1 = Z2 = · · · = [z, z] for some z, we need
to allow each interval Zi to degenerate to a point, allowing for potentially many folded states to
overlap in that single z plane (without violating interior-disjointness of Property 6).

With this notion in hand, we can define (stacked) folding motions as in [DO07, Chapter 11]: a
continuous function M mapping each time t ∈ [0, 1] to a stacked folded state, where each Pi(t) and
zi(t) varies continuously with time, and the restriction of M to each Pi(t) produces a valid folding
motion of the finite-crease folded state (fi(t), λi(t)). A (stacked) flattening motion is a (stacked)
folding motion M such that the final folded state M(1) lies in a single z plane.

3 Flattening Prismoids

In this section, we show how to flatten prismoids which have a small height relative to their other
features. We will then use this technique to flatten arbitrary polyhedral manifolds after slicing them
into a countable set of such prismoids, as detailed in Section 4. Section 3.1 describes an overview of
our approach, and the rest of this section describes the details of how to locally flatten the edges
and faces of a prismoid.

3.1 Approach

To specify the approach in more detail, let us recall the overall approach for semi-orthogonal
polyhedra from [DDIN15]. Call a prismoid edge spanning if its endpoints lie in the top and bottom
planes, and a prismoid face spanning if it includes vertices in both the top and bottom planes. Unlike
in the Introduction, here we include the top and bottom horizontal faces as part of the prismoid
(which will later represent attachments to neighboring prismoids), and we will continuously flatten
while moving the horizontal faces only vertically. The approach of [DDIN15] flattens orthogonal
spanning edges of a (possibly nonconvex) prism using two methods. One method bends both faces
adjacent to a spanning edge toward the convex side of the edge, while the other method bends
one face toward, and one face away, from the convex side; we call these general strategies In-In
and In-Out respectively. In each method, the top face is translated down normal to the face onto
the bottom face; faces adjacent to the edge are bent using a single crease far from each spanning
edge; while additional local creases are added in order to collapse each edge. This strategy allows a
common interface between spanning edge collapsing crease patterns so each edge can be dealt with
independently, assuming the edges are far enough apart. By alternately labeling each face around
the prism as In or Out, each spanning edge can then be collapsed using their In-Out method,
with the exception of perhaps one spanning edge collapsed using their In-In method; see Figure 1.

Our edge flattening construction generalizes their orthogonal approach for nonorthogonal edges,
allowing us to flatten general prismoids. There are a few key differences between the gadgets presented
here and the gadgets presented in [DDIN15]. While we give a construction for a generalized In-Out
gadget, we provide a construction for an Out-Out gadget, bending both faces adjacent to an edge
away from the convex side, instead of an In-In gadget. While their orthogonal In-Out gadget
constructs three new crease pattern vertices at any intermediate folded state to flatten each spanning
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Figure 1: [Left] Top view of a semi-orthogonal set of walls, assigning a direction to each edge and
labeling non-terminating vertices as either In-In in white or In-Out in black. [Right] The flattened
state associated with this direction assignment.

edge, our generalized In-Out gadget requires construction of only two new vertices, simplifying the
structure. Additionally, our Out-Out gadget has the same topological complexity as the orthogonal
In-In gadget, both requiring construction of two new vertices. Lastly, both orthogonal gadgets
require some adjacent faces to be coplanar and touching throughout the folding motion, which may
not be desirable; by contrast, faces in our generalized gadgets never touch face to face except in the
final flat-folded state.

3.2 Gadget Parameterization

The next three sections describe how to locally flatten spanning edges of a prismoid by detailing
two gadgets: an In-Out gadget and an Out-Out gadget. Because the top and bottom faces of a
prismoid must all collapse consistently and simultaneously, we give a single parameterization for
the entire collapse; see Figure 2 [Left]. Of the two prismoid vertices incident to the spanning edge,
at least one has an angular deficit no greater than π. We choose such a vertex to be the primary
vertex, and let θ, α, and β be the three face angles incident to it, with θ the angle at the base,
and α and β the two angles of the incident spanning faces. When we speak locally of a spanning
edge, the primary vertex will be vertex o, with the other non-primary vertex being q. By fixing the
spanning edge to have unit length, we can uniquely specify any prismoid spanning edge up to affine
transformations by choosing θ, α, and β such that:

• 0 < θ because we forbid touching faces in the input polyhedron;

• |α− β| < θ < α+ β or else the prismoid is already flat; and

• α+ β ≤ π as defined for a primary vertex.

3.3 Spanning Face Collapse

Each spanning face is angled relative to the top and bottom face of the prismoid. The dihedral
angle φ of the face relative to the base uniquely determines the crease line that will collapse the face
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Figure 2: [Left] Parameterization of a spanning edge up to affine transformation. [Right] Cross
section of a spanning face flattening along a single crease.

flat when sufficiently far from a spanning edge. We will translate the top face down normal to the
face onto the bottom face; see Figure 2 [Right] for a cross section of the face collapse. Two different
single-crease solutions can allow this flattening to occur, either flattening the face to one side or the
other. Call the width the distance between the top and bottom edge of the face. In either case, the
crease we introduce will separate the width of the face w into sections of width(

1± cosφ

2

)
w. (1)

We call such a crease a spanning face crease. The crease will be closer to the bottom if the face
folds toward the bottom edge, and closer to the top if the face folds toward the top edge. Local to a
vertex, we can write w and φ on both the α and β sides of the edge in terms of our parameterization:

wα = sinα, cosφα = cscα(cosβ csc θ − cosα cot θ), (2)

wβ = sinβ, cosφβ = cscβ(cosα csc θ − cosβ cot θ). (3)

We note also that collapsing the face along this crease keeps folded material within distance
(1 − cosφ)w/2 of the projection of the face onto the prismoid base, when φ and w are strictly
positive. Further, it is easy to verify that during a collapse, spanning face creases always exist
between the top and bottom faces (strictly between except in the final flat-folded state).

3.4 Interactive Gadget Visualization

In the following two sections, we describe and analyze our Out-Out and In-Out gadgets for
flattening spanning edges. To supplement understanding, we have implemented a web application
to visualize these gadgets over the parameterized space of possible spanning edges. You can find it
here [Ku]. The application is written in CoffeeScript and is open source. Using the app, you can
explore the different spanning edges over the parameterized space as well as intermediate folded
states of the continuous folding motion. Figure 3 shows a view of the interface and display. Toggling
“Vertices” will show numeric labels for the vertices. Vertices {10, 13, 16, 17} in the animations for
both the Out-Out and In-Out gadgets correspond to respective points {o, q, pβ, pα} in Figures 4
and 5.
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Prismatoid Flattening Gadgets
Toggle:     View:    

 α + β
 α / (α + β)
 (α + β - θ)/2/Min(α, β)
 h

θ is the base angle of the prismoid at the edge, 
α is the face angle of the right face, 
β is the face angle of the left face, 
and h parameterizes the height during flattening.

Select Gadget: Select Gadget: 

Figure 3: View of the web application [Ku] for interacting with the prismoid spanning edge flattening
gadgets. The Out-Out gadget is shown on the [Left] and the In-Out gadget is shown on the
[Right].

3.5 Out-Out Gadget

We describe the construction of our Out-Out gadget, and then show that it folds continuously
while preserving intrinsic distances and avoiding crossings. We begin by constructing a flat folded
state, introducing two crease pattern vertices and show that moving one of these vertices along a
line provides the desired folding motion. Figure 4 corresponds to our construction described below.
Consider a prismoid spanning edge parameterized by θ, α, and β. First we construct the spanning
face creases on each side according to the characterization in Section 3.3, and let cα and cβ be
the locations where respective spanning face creases meet the spanning edge. Then we can flatten
the primary vertex o locally using two creases so the adjacent faces collapse away from the convex
side of the edge. In order to flatten angle α + β of material with two creases while keeping the
bounding edges angle θ apart, the angle between the creases must be (α + β + θ)/2. Any such
creases will suffice for our construction, but choosing one that is somewhat centered will keep the
gadget closer to the spanning edge. We choose the pair centered on the primary vertex o, so that
the angle between a crease and its adjacent bottom edge is the same, (α + β − θ)/4. Terminate
each of these creases when they meet their respective spanning face crease. Let these termination
points be pα and pβ respectively. Complete the crease pattern by adding creases along the three
pairwise shortest paths between these two points and non-primary vertex q. Some tedious but
straightforward algebra confirms that this crease pattern is always flat-foldable, with each vertex
satisfying Kawasaki’s Theorem [DO07].

This flat-foldable crease pattern corresponds to a folding mechanism that has a single-degree of
freedom because the internal vertices are nondegenerate and degree-four. However, when this crease
pattern unfolds rigidly, the base angle spanned by the two boundary edges incident to the primary
vertex o will open monotonically from θ to α+ β when fully unfolded. As a thought exercise, let us
fix the crease pattern folded to some three-dimensional intermediate folded state so that the base
angle is strictly between θ and α + β, and then remove the two triangular faces from the crease
pattern. We have removed a quadrilateral of material that was creased from pα to pβ, i.e. in the
folded state, the distance between pα and pβ is the same as when the material is unfolded. Now we
rotate the bent α and β spanning faces together around the axis from o to q until the base angle

7



θ

q

o

β α

cα

cβpα

pα pβ

β
α

q

o

pα
pα

pβ

cα

cβ

1 + cosφα

2
wα

1 + cosφβ

2
wβ

1

4
(α+ β − θ)

Figure 4: Reference points and creases for the Out-Out gadget drawn on [Left] the surface of a
prismoid local to a spanning edge, and [Right] the development of the spanning faces adjacent to
the edge.

is θ, which brings points pα and pβ closer together. What remains is a folding of a subset of the
prismoid corner that matches the top and bottom face angles in an intermediate folded state. It
remains to replace the hole with the quadrilateral of paper we removed. Noting that nonadjacent
vertices of quadrilateral hole are now strictly contractive in this intermediate folded state, we appeal
to the construction in [DK15] to construct an isometry. Extend the spanning face crease incident to
pα to a point p′α whose distance to pβ is equal to the intrinsic distance along the surface, which
exists by [DK15, Lemma 5]. Extending creases from p′α to o, q, and pβ provides the crease pattern
for this intermediate state. In fact we parameterize the continuous family of crease patterns that
folds this spanning edge flat according to the location of p′α along the segment between cα and pα,
mapping the surface continuously to its flattened state.

Lemma 2. The Out-Out gadget has bounded size and stays between the top and bottom faces during
folding, while preserving intrinsic distances and avoiding crossings. Further, the area supporting
moving creases is also bounded and is proportional to the square of the gadget’s height.

Proof. The Out-Out gadget has finite size; specifically, the introduced points pα and pβ are within
bounded projected distances from point o relative to θ, α, and β:

(pα − o) · uα =
1

2
csc θ cot

(
α+ β − θ

4

)
(cos(α+ θ)− cosβ) , (4)

(pβ − o) · uβ =
1

2
csc θ cot

(
α+ β − θ

4

)
(cos(β + θ)− cosα) . (5)

where uα is the unit direction along the bottom edge from o adjacent to α and similarly for uβ.
These distances are bounded when 0 < θ < α+ β ≤ π as is required. Also, points p′α and pβ remain
between the top and bottom faces because they exist on the spanning face creases; thus the entire
gadget folds between the top and bottom faces.

Isometry is satisfied by construction. It remains to show that faces do not intersect. First,
dihedral angles between adjacent faces in the construction are always positive except in the flat
state, so local crossing does not occur between adjacent faces. Alternatively, the faces bounding
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Figure 5: Reference points and creases for the In-Out gadget drawn on [Left] the surface of a
prismoid local to a spanning edge, and [Right] the development of the spanning faces adjacent to
the edge.

the α and β spanning face creases cannot intersect each other as they will always exist on opposite
sides of a plane passing through o and q, in particular any such plane that also contains a base edge.
Thus, the constructed Out-Out gadget avoids crossings local to the gadget throughout the folding
motion.

The area supporting moving creases is shown in yellow in Figure 4. The area is bounded by
product of the distance between o and q and (pα − o) · uα + (pβ − o) · uβ, which is proportional to
the square of the gadget’s height.

3.6 In-Out Gadget

Now we describe the construction of our In-Out gadget, and show that it also folds continuously
while preserving intrinsic distances and avoiding crossings. We again construct a flat folded state,
introducing two crease pattern vertices, moving one of which provides the desired folding motion.
Figure 5 corresponds to our construction described below. Again we construct the spanning face
creases for a prismoid spanning edge parameterized by θ, α, and β. But this time we flatten the
primary vertex o locally using only one crease so that one face collapses toward the convex side
of the edge while the other face collapses away. Without loss of generality, let the α side collapse
away from the convex side of the edge. We flatten the angle α+ β of material with one crease while
keeping the bounding edges angle θ apart, yielding a crease with angle (α+ β − θ)/2 on the α side
and angle (α+ β + θ)/2 on the β side. We terminate the crease when it meets the α spanning face
crease at point pα. Complete the crease pattern by adding a crease from pα to q. Again, trivial but
tedious algebra confirms that this crease pattern is always flat-foldable.

Similarly to the construction of the Out-Out gadget, we would like to identify a quadrilateral
of paper with contractive diagonals at intermediate folded states. However, in this case there is no
obvious single choice for where to locate our stationary point pβ along the β spanning face crease.
Nevertheless, we continue using the same strategy as before. Again, we have a single degree of
freedom flat-foldable crease pattern whose base angle opens monotonically from θ to α+ β when
unfolded. Fix this crease pattern in some three-dimensional intermediate folded state so that the
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base angle is strictly between θ and α+ β. But this time, cut the folding along the segments from
pα to o and q. Now when we rotate the bent α and β spanning faces toward each other. Every point
on the β spanning face crease is separated by exactly the intrinsic distance from point pα before
rotation. Additionally, point cβ and any point further from o along the β spanning face crease will
be closer to point pα after rotation. Thus choosing any point pβ along the ray from cβ would yield
a quadrilateral with contractive diagonals, upon which we could apply the construction in [DK15]
to find point p′α along the α spanning face crease that results in an isometry. However, we cannot
choose any such point. Consider for example point cβ. When θ is less than π/2, cβ can penetrate
the bent α spanning face which we cannot allow. Thus we must choose some point along the β
spanning face crease for which intersection does not occur.

With the Out-Out gadget, we were able to argue that the bent α and β spanning faces do not
interact with each other by identifying a separating plane. We use that same strategy to pick point
pβ . Let pβ be the point on the β spanning face crease such that the angle at q bounded by pα and
the top face edge on the α side equals the angle at q between pα and pβ. This choice ensures that
the faces bounding the top face edges do not overlap in the folded state, so the plane containing the
top edge on the α side and point o will always separate the bent α and β spanning faces. Note that
when π − β < θ, this choice of pβ will lie on the α side of the line from o to q. In such cases, cβ
being further away also avoids intersection, so we use it for pβ instead. Now, having fixed pβ for our
spanning edge folded to some intermediate state, we have a quadrilateral hole with vertices o, pα,
q, and pβ with contractive diagonals. We again extend the spanning face crease incident to pα to
a point p′α whose distance to pβ is equal to the intrinsic distance along the surface, which exists
by [DK15, Lemma 5], and extending creases from p′α to o, q, and pβ provides the crease pattern for
this intermediate state. We parameterize the continuous family of crease patterns in the same way
as the Out-Out gadget, by the location of p′α along the segment between cα and pα, mapping the
surface continuously to its flattened state.

Lemma 3. The In-Out gadget has bounded size and stays between the top and bottom faces during
folding, while preserving intrinsic distances and avoiding crossings. Further, the area supporting
moving creases is also bounded and is proportional to the square of the gadget’s height.

Proof. The In-Out gadget has finite size; specifically, the introduced points pα and pβ are within
constant projected distances from point o relative to θ, α, and β:

(pα − o) · uα =
1

2
csc θ cot

(
α+ β − θ

2

)
(cosβ − cos(α+ θ)) , (6)

(pβ − o) · uβ =
1

2
csc θmax [ cotβ (cos(β + θ)− cosα) ,

cot θ (cos(β − θ)− cosα) + 2 cosβ sin θ] .
(7)

where uα is the unit direction along the bottom edge from o adjacent to and α and similarly for uβ .
These distances are bounded when 0 < θ < α+ β ≤ π as is required. The remaining argument is
identical to the proof of Lemma 2.

The area supporting moving creases is shown in yellow in Figure 5. The area is bounded by
product of the distance between o and q and (pα − o) · uα + (pβ − o) · uβ, which is proportional to
the square of the gadget’s height.

4 Slicing

In this section, we show how to slice our polyhedral manifold into prismoids so techniques from the
previous section can be applied. Once sliced, we can collapse the subset in each slab separately.
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Figure 6: [Left] Slicing a polyhedral manifold through vertices along planes normal to a direction
(indicated by the red arrow) onto which vertices have unique projection. [Right] Slicing a prismatoid
with one vertex that is not degree-three into an infinite set of prismoids.

Because we are not restricting our input to be homeomorphic to a sphere, components within a
slab might not be prismoids, but instead subsets of prismoids (i.e., missing faces). To deal with
this generalization, we define a prismoidal wall to be a (non-strict) subset of the spanning faces of
some prismoid. Further, we define a prismoidal slab to be a finite set of disjoint prismoidal walls
spanning two planes, where each such plane is a base of the slab.

We will slice prismoidal slabs along slice planes, planes parallel to the base strictly between
the top and bottom of the slab. Subdividing a prismoidal slab along a slice plane results in two
prismoidal slabs with smaller height than the original. Slicing will occur in multiple stages. First, we
show how to break a polyhedral manifold into countably infinitely many prismoidal slabs. Next, we
further subdivide each slab so the prismoidal walls in a slab have disjoint projections onto the slab’s
base. Finally, we slice prismoidal walls one last time in order to accommodate the local bounds for
flattening spanning edges and faces using the gadgets described in Section 3.

4.1 Prismoidal Slab Decomposition

Lemma 4. Any polyhedral manifold can be decomposed into a countably infinite set of prismoidal
slabs.

Proof. Orient the polyhedron so that each vertex has unique projection along some axis, which will
be the case for a generic choice of axis. Then slice a plane through each vertex normal to that axis;
see Figure 6 [Left]. This division decomposes the polyhedral manifold into a set of prismatoidal
slabs (not necessarily prismoidal slabs as faces adjacent to a sliced vertex may be triangles). For
every non-prismoidal slab, slice along the bisecting plane between its top and bottom plane. Because
each non-prismoidal slab contains exactly one vertex by construction, bisecting them yields one
prismoidal slab and one non-prismoidal slab. Recursively bisecting all non-prismoidal slabs in this
way will decompose the polyhedral manifold into a countably infinite set of prismoidal slabs, with
slab heights approaching zero near each vertex. Figure 6 [Right] shows this division applied to a
prismatoid with one vertex that is not degree-three.

4.2 Projection Disjoint Decomposition

We call a prismoidal slab to be projection disjoint if nonadjacent faces in the slab do not overlap in
the projection of the slab onto its base.
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Figure 7: [Left] A prismoidal slab that is not projection disjoint. [Right] Calculating a split height
that will allow decomposition into a set of uniform height slabs that are projection disjoint. Angle ψ
is the smallest angle of a prismoidal spanning face relative to the base and s is the shortest distance
between a vertex and a nonadjacent edge in either the top or bottom planes.

Lemma 5. Any prismoidal slab can be decomposed into a finite set of prismoidal slabs that are
each projection disjoint.

Proof. By definition, the prismoidal walls in a prismoidal slab are disjoint, and because each face
spans the top and bottom planes, each face has finite slope. Let ψ be the smallest tilt angle of any
face in the prismoidal slab, and let s be the shortest distance between any vertex and a non-adjacent
edge in the same plane; see Figure 7. Slice the prismoidal slab into a set of shorter prismoidal slabs,
each with height no greater than (s/2) sinψ. Then the width of the projection of any face of the
new slabs onto the base will be no larger than s/2. Because s is the minimum distance between a
vertex and an non-adjacent edge, these prismoidal slabs must be projection disjoint.

4.3 Flattening Projection Disjoint Prismoidal Slabs

Lemma 6. Any projection-disjoint prismoidal slab can be continuously flattened while preserving
intrinsic distances and avoiding crossings. Further, the area supporting moving creases can be made
arbitrarily small.

Proof. Our approach will be to use the In-Out and Out-Out gadgets from Section 3 to collapse
the prismoidal walls contained in the prismoidal slab. However, there may not be room to construct
the gadgets if the spanning edges are too close together. To ensure spanning edges are well separated,
we slice the prismoidal slab one last time. The proofs of Lemmas 2 and 3 show that our spanning
edge gadgets are local to their spanning edge, existing within a distance proportional to the height
of the gadget and Section 3.1 specifies how these gadgets can be assigned to a prismoid. Further,
Section 3.3 bounds the extension of spanning faces outside their projection onto the base, again
within a distance proportional to the height of the gadget. Slicing the slab in half will reduce the
reach of each edge gadget and face extension in half, while the distances between them will stay
fixed. Thus we can decompose the projection disjoint prismoidal slab into a finite set of prismoidal
slabs that each has room to fold the gadgets at each spanning edge, and collapse each spanning face.
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Constructing these gadgets, we can flatten them while preserving intrinsic distances and avoiding
crossing because we have sliced such that non-local interactions do not occur.

The proofs of Lemmas 2 and 3 also show that for each gadget, the area supporting moving
creases is proportional to the height of the prismoidal wall squared. Thus, we can reduce this area
arbitrarily by further subdivision.

5 Flattening Polyhedral Manifolds

Knowing how to locally flatten prismoids using the gadgets from Section 3, and how to split
polyhedral manifolds into projection-disjoint prismoidal slabs whose geometry is well-separated
relative to slab height from Section 4, the proof of Theorem 1 follows directly:

Proof of Theorem 1. Slice the prismoidal manifold into a countably infinite set of prismoidal slabs
using the construction in Lemma 4. Then decompose each prismoidal slab into projection disjoint
prismoidal slabs with well-separated geometry according to the constructions in Lemma 5 and
Lemma 6. Then by Lemma 6, we can continuously and independently flatten each slab while
preserving intrinsic distances and avoiding crossings within each slab. The flattening motion of each
slab brings together the top and bottom without transverse translation perpendicular to the axis,
while Lemmas 2 and 3 guarantee that geometry within each slab stays between the slab’s top and
bottom planes during folding; so crossing cannot occur between slabs. Lastly, if we want to bound
the area supporting moving creases below any positive value, Lemma 6 guarantees that we can with
further subdivision.

6 Conclusion

In this paper, we showed how to continuously flatten finite polyhedral manifolds using countably
many creases with only finitely many accumulation lines. The obvious open problem is whether
continuous flattening is possible with only finitely many creases at each time (still, of course, with
movable creases that slide over a 2D region of points over time). In the other direction, perhaps our
approach could be generalized to polyhedral manifolds with countably many vertices, edges, and
faces. Such a result may require a more general model of what folding means for countably many
creases (say, directly generalizing [DO07, Chapter 11]), which is another interesting direction for
pursuit; our current model is very specific to our slice-based approach.

Our result is tight in a couple of senses. We cannot hope to flatten surfaces with a positive area
of nonflat points (e.g., smooth surfaces like a sphere), even instantaneously, because a flat folded
state would need to be creased at all of those points. (A more reasonable model in this case is
contractive folding; see [DDIL09].) Similarly, we cannot hope to further flatten from a plane to a
line (or point) without creases becoming everywhere-dense.
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