
Folding and Punching Paper

Yasuhiko Asao∗ Erik D. Demaine† Martin L. Demaine† Hideaki Hosaka‡

Akitoshi Kawamura§ Tomohiro Tachi¶ Kazune Takahashi∗

Abstract

We show how to fold a piece of paper and punch one
hole so as to produce any desired pattern of holes.

1 Introduction

In the fold-and-cut problem introduced at
JCDCG’98 [DDL98], we are given a planar
straight-line graph drawn on a piece of paper, and
the goal is to fold the paper flat so that exactly the
vertices and edges of the graph (and no other points
of paper) map to a common line. Thus, one cut
along that straight line (and unfolding the paper)
produces exactly the given pattern of cuts. This
problem always has a solution [DO07, BDEH01],
though so far the number of folds depends on both
the number n of vertices and the ratio r of the
largest and smallest distances between nonincident
vertices and edges. (A rough estimate on the
number of folds is O(nr).)

In the fold-and-punch problem, we are given n
points drawn on a piece of paper, and the goal is to
fold the paper flat so that exactly those points (and
no other points of paper) map to a common point.
Thus, punching one hole at that point (and unfold-
ing the paper) produces exactly the given pattern of
holes. This problem is a natural analog of the fold-
and-cut problem where we replace one-dimensional
features and target (segments onto a common line)
with zero-dimensional features and target (points
onto a common point); thus, we also call the prob-
lem zero-dimensional fold and cut. This problem is
also a special case of the multidimensional fold-and-
cut problem posed in [DO07, after Open Problem
26.32].

Directly applying a fold-and-cut solution to the
graph with n vertices and zero edges does not solve
the corresponding fold-and-punch problem, because
the n points would come to a common line but not
a common point. This discrepancy can be fixed by
then making n− 1 one-layer simple folds along per-
pendicular bisectors between consecutive points (all
perpendicular to the common line).

Our goal in this paper is to find more efficient al-
gorithms for the fold-and-punch problem. Indeed, in
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all four variations described below, we find solutions
that depend polynomially in n and only logarithmi-
cally or not at all on r (the ratio of the largest and
smallest distances between points); see Table 1.

Problem 1 (0-dimensional fold and cut)
Given n points p1, p2, . . . , pn on a piece of paper,
find a flat folding f such that

f(p1) = f(p2) = · · · = f(pn) 6= f(q) for all q 6= pi.

If such a folding exists, what is the order of the num-
ber of folds?

We have four variations of this problem based on
the following two criteria:

1. Finite paper or infinite paper
2. Allow or forbid crease lines through given points

The second criterion is motivated by the observa-
tion that creases passing through given points may
lead to a difficulty in the actual punching operation
because it has zero tolerance; a small misalignment
leads to missing hole or duplicated holes. For exam-
ple, the fold-and-cut solution places creases passing
through the given points.

Theorem 2 Problem 1 is always solvable in all
cases above. The orders of the number of folds (num-
ber of folding steps, each of which is composed of ei-
ther a simple fold or a folding with O(1) creases) and
the number of resulting creases in the crease pattern
are stated in the following table.

Crease Passing Crease Not Passing

Folds Creases Folds Creases

Finite O(n) O(n) O(n log r) O(n2r)

Infinite O(n) O(n2) O(n log r) O(n2r)

Table 1: Results: Number of folds and resulting
creases required in each of the four problem variants.

In the rest of this abstract, we show the sketch
of proof of the following two cases: (1) finite paper,
allowing crease passing and (2) infinite paper, for-
bidding crease passing.

2 Finite Paper, Allowing Crease Passing

The proof is by construction. The basic strategy is
to align multiple points onto a single horizontal line
by folding along horizontal creases and then to add
bisectors between consecutive points as follows:
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Step 3 (crease pattern)

Step 4

Figure 1: Steps 2–4 to fold given points to a point.

Step 1: Rotate By rotating the paper in the xy-
plane, we may assume that the y coordinates
y1, y2, . . . , yn of p1, p2, . . . , pn, respectively, are
distinct each other.

Step 2: Horizontally Align Assume y1 < y2 <
· · · yn. Then fold the paper along

• mountain creases: lines y = y1, y =
y2, . . . , y = yn, and

• valley creases: lines y = (y1 + y2)/2, y =
(y2 + y3)/2, . . . , y = (yn−1 + yn)/2.

As a result, p1, p2, . . . , pn are on mountain
creases and aligned colinearly.

Step 3: Clear Overlaps There exists only one
pi’s on each mountain crease. By folding along
two slanted lines through pi, no point except
p1, . . . , pn is on the line which p1, . . . , pn are
aligned.

Step 4: Vertically Fold Fold along the perpen-
dicular bisectors of adjacent pi’s. This folds pi’s
to a single point.

3 Infinite Paper, Forbidding Crease Passing

We introduce upshifting gadget to align pi to a hor-
izontal line while avoiding any part of the paper
folded onto pi. Figure 2 shows an upshifting gad-
get, which is composed of a pair of twist folds with
width d and angle θ < 45◦ separating the paper
into 6 regions except for the gaps of 3d between
them. By folding this gadget, these regions get
closer to each other. Also, the regions stay singly
covered, avoiding other parts of the paper to over-
lap. If we fix upper-center region to a plane, upper-
left(right) region moves to the right (left) by 2d,
bottom-left(right) region moves to upper-right(left)
by 2

√
2d, and the bottom-center region moves up

vertically by 2d. Here is the detailed steps that re-
place Steps 2 and 3 of finite crease-passing version.

Step A: Initialize Sort points by its height such
that p1 is the highest point. We draw a hori-
zontal line ` passing through p1. Now consider
pi, the highest point bellow `. i is initially 2.
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p

2d2d
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Figure 2: An upshifing gadget that shifts 6 regions
painted pink.

Step B: Shrink Let h be the vertical separation
between pi and pi+1. Let 2 the minimum hor-
izontal separation from pi to other point pj
(j 6= i). Add a horizontal pleat between ` and
pi until their distance 2d is strictly smaller than
min(0.5w, 0.5h). Here, the number of folds re-
quired is at most O(log r).

Step C: Upshift Insert an upshifting gadget such
that p0, . . . , pi−1 are on either upper-left or
upper-right region, pi is in the bottom-center
region, and pi+1 . . . are on either bottom-left or
bottom-right region. Fold the gadget to align pi
to `. Increment i and go to Step B until every
point is on `.

Combining with the same Steps 1 and 4, we can
successfully fold pi exclusively to a single point.
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