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Abstract
We present a new algorithm for unfolding planar polygonal link-
ages without self-intersection based on following the gradient flow
of a “repulsive” energy function. This algorithm has several ad-
vantages over previous methods. (1) The output motion is repre-
sented explicitly and exactly as a piecewise-linear curve in angle
space. As a consequence, an exact snapshot of the linkage at any
time can be extracted from the output in strongly polynomial time
(on a real RAM supporting arithmetic, radicals, and trigonomet-
ric functions). (2) Each linear step of the motion can be computed
exactly in O(n2) time on a real RAM where n is the number of
vertices. (3) We explicitly bound the number of linear steps (and
hence the running time) as a polynomial in n and the ratio between
the maximum edge length and the initial minimum distance be-
tween a vertex and an edge. (4) Our method is practical and easy
to implement. We provide a publicly accessible Java applet [1] that
implements the algorithm.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling

General Terms: Algorithms, Theory

Keywords: Carpenter’s rule problem, linkage reconfiguration, un-
folding, gradient flow, knot energy, computational geometry.

1 Introduction
1.1 Linkage Reconfiguration
Consider a planar linkage of rigid bars connected at flexible joints
to form a collection of tangled but noncrossing arcs and cycles
(polygonal chains). The linkage may move in any way that pre-
serves the bar lengths and causes no two bars to cross. Figure 1
shows four frames from an example of such a motion.

1.2 Motivation
Arc and cycle linkages and their motions arise throughout science
and engineering in a variety of contexts, including:
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Figure 1. A sample unfolding of a polygonal arc produced by our
algorithm. By following the gradient of a repulsive energy function,
the linkage evolves from its initial configuration shown in (a), through
a series of non-intersecting intermediate configurations represented
by (b) and (c), to a final straight configuration (d). Throughout the
motion all segments preserve their length, but the figure uniformly
scales each configuration to fit in the same image area.

1. robotic-arm folding, where the goal is to fold the arm from
one configuration to another;

2. hydraulic tube bending, where the goal is to manufacture a
particular shape out of an initially straight tube;

3. protein folding, where the backbone of the protein can be
modeled as an arc or cycle, and the goal is to understand how
the amino acids quickly and precisely fold into a minimum-
energy configuration; and

4. computer graphics, where the goal in key-frame animation is
to smoothly interpolate between two shapes of an underlying
skeleton (linkage).

In the past few years, tremendous progress has been made on
understanding convexifying motions for arc and cycle linkages,
specifically in FOCS 2000 [9, 12]. However, the algorithms be-
hind these motions are relatively complex and slow. The goal of
this paper is to improve this situation by presenting a simple and
efficient method for computing convexifying motions of planar arc
and cycle linkages.

1.3 Existence of Motions
A natural question asks for a characterization of the shapes into
which a linkage can fold. The most fundamental version of this



question asks whether the linkage can fold into every non-self-
intersecting configuration. In the context of arcs and cycles, this
question is equivalent to whether the arcs can be straightened and
the cycles can be convexified. This fundamental question has been
resolved in all cases: every valid configuration is reachable for ev-
ery arc or cycle in 2D [9, 12] and in 4D and higher dimensions [7],
whereas not every configuration is reachable for some arcs and cy-
cles in 3D [5, 6]. Intuitively, 4D chains have a “lot of space” (com-
paring the dimensions of the configuration space and the barriers
preventing a motion), 3D chains can be geometrically “knotted”
(but still topologically trivial), and 2D chains can be expanded un-
til they unfold (consequently avoiding crossings).

1.4 Algorithms

In 4D, we have an essentially ideal situation: there are strongly
polynomial-time algorithms to compute a polynomial number of
succinctly describable moves (algebraic curves of constant degree)
for an arc or cycle [7]. (Strongly polynomial time means that the
running time on a real RAM is polynomial in the number n of ver-
tices in the linkage, and independent of the bit complexity of the
input.) In 3D, it is PSPACE-hard to decide whether a 3D arc can
be folded from one configuration to another [3], though it remains
open how quickly we can determine whether an arc can be straight-
ened [5].

In contrast, the algorithmic side remains relatively undeveloped
in 2D. The original 2D theorem of [9] is algorithmic but requires
solving an ordinary differential equation where the right-hand side
is defined implicitly by a convex optimization. This motion is
“canonical”, in particular preserving any symmetries present in the
original linkage; it also expands all distances between pairs of ver-
tices. Although the algorithm is finite for any specified output error
tolerance (and even output error can likely be avoided), no time
bounds have been established. The alternative approach of [12]
gives a motion involving polynomially many algebraic motions of
degree Θ(n). This motion is expansive and involves conceptually
simple motions, but does not preserve symmetries in the linkage.
Unfortunately, computing each algebraic motion requires exponen-
tial time and is accurate only up to a specified error tolerance.
Nonetheless, that exponential bound is the current best time bound
on any algorithm for this problem.

1.5 Our Results

In this paper, we introduce a novel energy-driven approach for
straightening 2D arcs and convexifying 2D cycles that establishes
stronger algorithmic, practical, and mathematical results.

On the algorithmic side, we obtain the first polynomial-time al-
gorithm for linkage unfolding where the polynomial depends on n
and geometric features of the initial configuration.1 Specifically,
the running time is O(n79r26) where r is the ratio of the maximum
edge length over the minimum elliptic distance between a vertex
and an edge in the initial configuration. (Elliptic distance is defined
in Section 3.2.) In particular, if the input vertices are chosen from
an integer N × N grid, then this time bound is pseudopolynomial
in the sense that it is polynomial in n and N . This algorithm is also
the first that outputs an explicit, exact representation of a motion,
in the sense that an exact snapshot of the linkage at any time during
the motion can be extracted from the output in strongly polynomial
time. Specifically, the motion is piecewise-linear in angle space.
Each linear step in the motion can be computed in O(n2) time,

1Our model of computation is a real RAM supporting +, −, ×, ÷, √ , sin,
and arcsin.

whereas previous approaches required linear programming or con-
vex programming to compute even an infinitesimal motion, which
take weakly polynomial time. The running time of the algorithm
is strongly polynomial in the output size (n times the number of
steps in the output motion), and we prove that the output size is
polynomial in n and the geometric features mentioned above.

On the practical side, our algorithm is simple and easy to imple-
ment, involving a straightforward computation of the gradient of
an energy function. We have implemented the algorithm as a Java
applet [1] and in C++. Our timings indicate that our algorithm runs
dramatically faster than an implementation of [9]. (The algorithm
of [12] has not been implemented to our knowledge.) The algo-
rithm is inspired by a natural physical process, in which vertices
repel edges (and vice versa) as if they all were objects with similar
electrostatic charges.

On the mathematical side, our techniques construct a natural C∞

unfolding motion. In contrast, the motions of [9] and [12] are
piecewise-C1 and piecewise-C∞, respectively. Our motions are
not always expansive, but this seems key to achieving our results.

1.6 Overview
The basic idea of our approach is to define an energy function on
the configurations of a linkage, satisfying four properties:

1. expansive motions decrease energy;
2. the energy is infinite when the linkage crosses itself;
3. the energy is minimum when the linkage is in the desired

configuration (straight or convex);
4. as two connected components of the linkage grow in dis-

tance, their interaction energy decreases.

The first property, together with the existence of expansive mo-
tions [9], establishes the existence of motions that decrease energy.
We follow the negative gradient flow to find a motion that decreases
energy. The second property implies that this energy-decreasing
motion will avoid self-intersection. The third property along with
the existence of energy-decreasing motions implies that we eventu-
ally reach the desired configuration. The fourth property prevents
multiple components from flying apart from each other so quickly
that they never actually straighten or convexify.

We begin in Section 2 with background and definitions. Then in
Section 3 we define the precise constraints we need of an energy
function and give examples of such energy functions. Section 4 es-
tablishes the main mathematical result, that gradient flow produces
the desired smooth motion. Section 5 describes the algorithm to
find an exact piecewise-linear motion and proves that its running
time is finite. Section 6 gives explicit bounds on the running time
in terms of n and geometric features of the input. Section 7 de-
scribes experiments with an implementation of our approach, and
shows the resulting animations and running times. We conclude in
Section 8

2 Background: Arc-and-Cycle Sets
We now define the objects of interest. An arc-and-cycle set A is
a finite collection of planar polygonal arcs and polygonal closed
curves. A configuration V = [v1, v2, . . . ] of A is an assignment of
coordinates to vertices such that the edge lengths match those in A.
If A has n vertices, the configuration space of A, denoted X(A),
can be viewed as the algebraic subvariety of R

2n determined by
fixing the length of each edge. The embedded configurations of
A—configurations without self-crossing—are denoted EX(A).

A configuration of an arc-and-cycle set is outer-convex if each
outermost connected-component of A is either straight (when it is



an arc) or convex (when it is a cycle). A motion of a configura-
tion is strictly expansive if it does not decrease any vertex-to-vertex
distance, and strictly increases all of the vertex-to-vertex distances
between pairs of vertices that are not forced to have constant dis-
tance because they are connected by a straight chain of edges or
because they are on or inside a common convex cycle. A motion
is merely expansive when it does not decrease any vertex-vertex
distance, and increases at least one such distance.

The main result of [9] establishes the existence of such motions,
which we use extensively:

THEOREM 1. Any arc-and-cycle set admits a strictly expansive
motion until it is outer-convex.

3 Energy Functions
Next we consider energy functions whose minimization forces the
linkage to “repel itself”. The gradient of any such function will
then define a motion of the linkage towards an outer-convex con-
figuration that avoids crossings as desired.

3.1 Definition and Required Properties

An energy function is a function from embedded configurations
EX(A) to the nonnegative real numbers R

+. We call an energy
function admissible if it has four properties defined below: it must
be C2, charge, repulsive, and separable. (We can define a version
of admissibility for C1,1 functions instead of C2, but it is much
harder to work with.)

3.1.1 Charge

An energy function E is charge if it approaches +∞ on the bound-
ary of EX(A), that is, if it becomes infinite as the linkage ap-
proaches any self-crossing configuration.

This requirement is an adaptation of an idea from the literature
of knot energies (cf. [10]) to capture the idea that our energy func-
tional must avoid self-crossing configurations. The inspiration for
the name “charge” comes from electrostatics, where it takes an in-
finite amount of work to pull a pair of point charges together until
they coincide.

3.1.2 Repulsive

An energy function E is repulsive if it decreases to first order under
any strictly expansive motion of A.

This requirement captures the idea that the vertices and edges of
the linkage should roughly repel each other under the gradient flow
of the energy.

3.1.3 Separable

For an arc-and-cycle set A with connected components A1, . . . ,
An, an energy function E is separable if it can be written in the
form

E(A) =
nX

i,j=1

Eij(Ai, Aj), (1)

where each two-component energy Eij is an energy function on the
arc-and-cycle set Ai ∪ Aj that itself is C2, repulsive, and charge;
and furthermore the contribution of Eij to the gradient of E ap-
proaches zero as the distance between Ai and Aj grows.

This requirement enforces that, as connected components of A
become far away from each another, the repulsion between them
has little impact on the gradient of the energy.

3.2 Example
We now give an example of an energy function that obeys our cri-
teria. The basic idea is to sum powers of reciprocals of distances
between vertices and edges of the arc-and-cycle set. This idea im-
mediately leads to the charge property: as a distance approaches
zero, the reciprocal approaches +∞. We use a particular definition
of distance between a vertex and edge so that the energy function
is C∞.

Specifically, the elliptic-distance energy of an arc-and-cycle set
A with vertex set V and edge set E is defined by

E(A) :=
X

edge {v,w}

vertex u/∈{v,w}

1

(‖u−v‖ + ‖u−w‖ − ‖v−w‖)2 .

(2)
where the denominator is the squared elliptic distance between ver-
tex u and edge {v, w}. For any edge {v, w}, the level sets of the
summand in the elliptic-distance energy, as we vary the position
of vertex u, are a family of ellipses with foci at v and w which
converge at zero to the edge {v, w}.

PROPOSITION 1. Elliptic-distance energy is admissible.

PROOF. This energy is C∞ on the interior of EX(A) and is there-
fore also C2. Because the denominator of the summand vanishes
precisely when vertex u is on the edge {v, w}, the energy is charge.
Any expansive motion cannot increase any of the summands, and
it must increase a positive term in at least one of the denominators,
while leaving all negated terms alone. Thus the energy is repul-
sive. Finally, because we can split the sum up according to which
connected-component of A the edge {v, w} and the vertex u be-
long to, while the derivative of the summand approaches zero as
the distances ‖u − v‖ and ‖u − w‖ become large, the energy is
separable.

4 Gradient Flow Almost Unfolds Linkages
This section proves our main mathematical result: for any ε >
0, the negative gradient flow of any admissible energy functional
moves any linkage configuration to within distance ε of an outer-
convex configuration in finite time.

4.1 Existence of Gradient Flow
We first observe that the gradient flow is well-defined:

PROPOSITION 2. Given any embedded arc-and-cycle set A, the
downhill gradient flow A(t) of A under any admissible energy
function E exists for all time t ≥ 0 and is as smooth (in t) as
the energy function E (in space).

PROOF. Because energy only decreases under gradient flow, we
can restrict to the closed subspace EX+(A) of EX(A) where
E ≤ E(A)+1. Because E is C2, the integral curve V (t) of −∇E
through A exists for all time, unless it approaches the boundary of
this space. But energy approaches +∞ along the boundary and en-
ergy strictly decreases along the path, so this cannot happen.

4.2 Main Theorem
We now prove our main theorem:

THEOREM 2. If A is an arc-and-cycle-set and E is an admissible
energy function on EX(A), then for any ε > 0 the motion A(t)
defined by the downhill gradient flow of E carries A(0) to within ε
of an outer-convex configuration in finite time.



PROOF. A standard result in dynamical systems says that any tra-
jectory of the negative gradient flow A(t) either weakly converges
to some configuration of A that is critical for E or A(t) leaves any
compact neighborhood of A(0) in finite time.

Because E is repulsive, Theorem 1 implies that any critical con-
figuration of A is outer-convex. So in the first case there is nothing
more to prove.

We focus on the second case. We can split A into n sublink-
ages Ai(t), so that the components of each Ai remain within a
bounded distance of one another for all time. In this case Ai(t)
remains within a compact subspace of EX(Ai). We define a com-
pact subspace of this space by restricting our attention to the space
EX+(Ai) of configurations with Eii ≤ E(A(0)) + 1. Here we
have used separability of E to write E(A) =

P

i,j Eij(Ai, Aj)

where each Eij is a C2, repulsive, charge energy function on
EX(Ai ∪ Aj).

Now removing an ε-neighborhood of the outer-convex configu-
rations leaves a subspace Si on which ‖∇Eii‖ is bounded below by
some Gi > 0, because this removes a neighborhood of the critical
configurations for Eii (by Theorem 1 and because Eii is repulsive).

Because the Ai are drifting further apart, and E is separable,
for each Eij there is some finite time after which each ‖∇Eij‖ <
Gi/2n. After this point, the gradient flow of E must reduce each
Eii at rate at least Gi/2. But each Eii(Ai(t)) is finite at this point
and must always be non-negative, so for all t greater than some ti,
Ai(t) must be outside Si.

By definition, the complement of Si consists of configurations
with Eii > E(Ai(0)) and configurations within ε of an outer-
convex configuration. But Eii(Ai(ti)) < E(Ai(0)), so we must
be in the second case: Ai(t) is close to an outer-convex configu-
ration for t > ti. So for any t > maxi ti, A(t) is close to an
outer-convex configuration, completing the proof.

5 Algorithm
This section presents an algorithm for computing a piecewise-linear
motion from an initial configuration to an outer-convex configura-
tion. This path is computed by first selecting a particular admissible
energy function, expressing the energy function in terms of a suit-
able parameterization, and then applying Euler integration along
the downward gradient path to get a series of “snapshots” of our
linkage with decreasing energy which can be joined by linear in-
terpolation in our parameter space. The algorithm terminates when
we are sufficiently close to an energy-critical configuration to com-
plete the motion by linear interpolation. As shown in Section 4,
any critical configuration is guaranteed to correspond to an outer-
convex configuration as desired.

5.1 Parameterizing the Configuration Space of an
Arc

We start by considering the case when A consists of a single arc
of n − 1 edges. Refer to Figure 2(a). Let V = [v1, v2, . . . , vn]
denote the positions of the n vertices and let ei denote the edge
between vertices vi and vi+1. We parameterize the system by Θ =
[θ1, θ2, . . . , θn−1] where θi measures the angle between edge ei

and the x axis. The locations of the other vertices are given by

vi+1 = vi + `i[cos θi, sin θi], i ∈ {1, . . . , n − 1}, (3)

where `i is the constant length of the edge ei, and v1 is arbitrarily
set to the origin. If we wish, we may also assume θ1 to be zero.

The major virtue of this parameterization is that it is exact: any
set of parameter values corresponds precisely to a linkage configu-
ration in X(A), and linear interpolation between two “snapshot”
positions in angle space yields a one-parameter family of exact
linkage configurations joining snapshots.

We can define a norm of the angle parameterization as follows.
If Θ′ = [θ′

1, . . . , θ
′
n−1], then

‖Θ − Θ′‖ =
X

i

min{|θi − θ′
i|, 2π − |θi − θ′

i|} (4)

This norm is different from the norm on X(A) as a subvariety of
R

2n: a small angular move is magnified by the length of the edge it
turns. However, we can relate the two norms as follows. Let `max

be the maximum edge length, maxi `i. Let V ′ = [v′
1, v

′
2, . . . , v

′
n]

denote the point parameterization of the configuration represented
by angle parameterization Θ′. Then

‖V − V ′‖ < n2`max‖Θ − Θ′‖. (5)

5.2 Parameterizing Cycles

For cycles, the situation is more complicated: we must change
our parameterization to ensure that the length of the closing edge
en = {vn, v1} is preserved. Refer to Figure 2(b)–2(c). We re-
move θn−1 from the set of independent variables, and determine
it in terms of the other independent variables, [θ1, θ2, . . . , θn−2],
by computing the location of vn as the intersection of the circle
of radius `n centered at v1 with the circle of radius `n−1 centered
at vn−1. We can compute vn with

vn=v1+d
l2n − l2n−1 + ‖d‖2

2‖d‖2
±d⊥

s

l2n
‖d‖2

− (l2n−l2n−1 + ‖d‖2)2

4‖d‖4

(6)
where d = vn−1 − v1 and ·⊥ denotes rotation by 90 degrees. Be-
cause v1 and vn−1 are not co-located (no self-intersections), there
will be zero, one, or two real solutions for vn depending on whether
‖v1−vn−1‖ is greater than, equal to, or less than `n−1+`n. When
there are two possible solutions, one will cause vn to be a convex
vertex, and the other will cause vn to be reflex.

We arrange for there always to be two solutions and choose
among those solutions by the following procedure. At the ini-
tial configuration A0, we let vn be the vertex of maximum abso-
lute turn angle, and use this to define an angle-space parameteri-
zation Θ0. Now any closed n-sided polygon has a vertex whose
absolute turn angle is at least 2π/n, so we may assume the abso-
lute turn angle at vn is at least 2π/n. If the polygon has minimum
edge length `min, a calculation reveals that vn remains convex or
reflex in all configurations V ′ with ‖V0 − V ′‖ < 2`min/n (in the
vertex-space norm). So if the next angle-space position is Θ1, and
‖Θ0 −Θ1‖ < 2`min/(n3`max), then by Equation 5 there will still
be two real solutions for vn and maintaining the convex/reflexness
of vn will let us interpolate continuously between Θ0 and Θ1. Then
in O(n) time we choose a new angle-space parameterization of A1

so that vn is again the vertex of maximum absolute turn angle in A1

and continue. Iterating this procedure yields a well-defined angle-
space parameterization for any snapshot Ai, and retains the prop-
erty that linear interpolation between these angle space positions
yields a one-parameter family of exact linkage configurations join-
ing snapshots, as long as the vertex-space distance between succes-
sive configurations remains less than 2`min/n.
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Figure 2. Parameterization of chains in terms of angles.

5.3 Computing the Gradient of Energy at a Con-
figuration

Simple inspection shows that the elliptic energy function requires
computing O(n2) terms. Naı̈ve computation of the gradient in
angle space for an arc would require computing the derivative of
those O(n2) terms with respect to each of the O(n) parameteri-
zation variables, for a total cost O(n3). However, there are many
common subexpressions and after some algebraic manipulation the
total work to compute the gradient can be reduced to O(n2). (We
omit the details.)

For closed cycles, the contribution of θn is distributed to the rest
of Θ by applying the chain rule to Equations 3 and 6. We use
this gradient for our theoretical results, but from a practical stand-
point it is numerically inefficient. The partials of Equation 6 can
over emphasize the motion of vn, slowing convergence. Instead
we can compute the gradient of the closed-chain energy using the
open parameterization with edge en accounted for by explicit con-
straint projection. We then discard the gradient term for θn−1 and
determine vn with Equation 6. This procedure still preserves all
edge-lengths exactly, but is numerically more efficient.

5.4 Picking Step Size to Avoid Self-Intersection
Before we can generate snapshots by following the gradient, we
must show that we can choose step sizes to ensure that we can lin-
early interpolate between snapshot configurations while avoiding
self-intersections. Suppose our initial configuration has energy E.
Because the energy functional is charge, the Euclidean distance be-
tween the compact set of configurations with energy ≤ E and the
compact set of non-embedded configurations of A is strictly larger
than some Ds > 0. By Equation 5, we obtain a corresponding dis-
tance bound Ds/(n

2`max) > 0 in angle space. (In Section 6 we
explicitly compute these bounds for elliptic-distance energy.)

We use two consequences of this fact. First, if the energy de-
creases monotonically on the sequence of snapshots Θi, and the
distance between successive snapshots Θi and Θi+1 is less than
Ds/(n

2`max), then the path of exact configurations interpolating
between the snapshots avoids self-intersection. Second, if any snap-
shot is within Ds/(n

2`max) of an outer-convex configuration, then
the algorithm may terminate: we can move to the outer-convex
configuration by linear interpolation and this motion avoids self-
intersection.

5.5 Generating Snapshot Configurations

By Theorem 2, the negative gradient flow of any admissible energy
moves every arc-and-cycle set to an outer-convex configuration.
We now demonstrate a discretized version of this flow which gen-
erates a piecewise-linear path Θ0, Θ1, . . . , ΘK to an outer-convex
configuration in a bounded number of steps. We generate this path
by using Euler integration to trace the streamline in the gradient
field downward from Θ0. Because Euler integration will accumu-
late positional error as it advances, our path may diverge substan-
tially from the true streamline, and the two only converge as the
step-size approaches zero. Regardless of how well the discrete path
matches the streamline, it is constructed so that is still arrives at an
outer-convex configuration in a bounded number of steps.

Our primary goal is to choose our steps so that E(Θi)−E(Θi+1)
> ∆E > 0 for some ∆E. Once we can establish such a bound on
energy decrease, our algorithm will terminate after at most
E(Θ0)/∆E steps because the energy is initially E(Θ0) and is al-
ways nonnegative.

As in the proof of the main theorem, we can restrict our at-
tention to embedded configurations Θi whose energy is at most
E(Θ0) and whose distance to an outer-convex configuration is at
least Ds/(n

2`max). Such configurations form a compact subset S
of EX(A). Because ∇E can vanish only on outer-convex config-
urations, by compactness there are positive constants G and C so
that ‖∇E‖ > G and ‖∇2E‖ < C.

Define Θi+1 = Θi − ∆t · ∇E(Θi)/‖∇E(Θi)‖. Then we can
expand E(Θi+1) using Taylor’s Theorem around Θi:

E(Θi+1) = E(Θi) − ∆t‖∇E(Θi)‖

+
1

2
(∆t)2∇2E(Θi − (∆t)∗∇E)‖u‖2.

for some 0 ≤ (∆t)∗ ≤ ∆t and where u is the unit vector given by
−∇E(Θi)/‖∇E(Θi)‖. If ∆t < G/C, then the first-order term is
at least twice the second-order term, so the decrease in energy ∆E
is at least (∆t)(G/2).

We now have three distinct a priori upper bounds on
∆t: 2`min/(n3`max), Ds/(n

2`max), and G/C. The minimum U
of all three of these bounds is the largest allowed step size.



A basic form of our algorithm is as follows:

1. Set ∆t := U , k := 0, and Θ0 to the angle parameterization
of A.

2. Until Θk leaves S:

(a) Compute the gradient ∇E at Θk.
(b) Set Θk+1 := Θk − ∆t · ∇E(Θk)/‖∇E(Θk)‖
(c) In the output motion, linearly interpolate from Θk to

Θk+1.
(d) Recompute the angle-space parameterization so that vn

has maximum absolute turn angle.

3. In the output motion, linearly interpolate from Θk to the clos-
est outer-convex configuration.

The discussion above and our choice of ∆t proves that the mo-
tion avoids self-intersection and that the algorithm terminates after
at most 2E(Θ0)/(G∆t) steps.

In practice, this gradient descent can be implemented in many
more efficient ways, although it is difficult to obtain stronger worst-
case bounds. For example, instead of moving at a distance ∆t
along the gradient direction, we can perform binary search around
U to find the ∆t < min{`min/(n2`maxπ),Ds/(n

2`max)} that
decreases energy the most (steepest descent). This approach is
taken by our implementations. Although it is easy to show that the
number of steps is no more than the straightforward algorithm, the
worst-case bound remains the same. Another more sophisticated
approach, conjugate gradient, likely converges even faster, but we
have not yet experimented with it. We note that by the analysis
above, any method of choosing steps which decreases energy and
respects the step-size bounds required for valid linear interpolation
is an unfolding algorithm.

6 Bound on Number of Steps
In this section we give explicit bounds on the number of steps
taken by the algorithm described in the previous section for elliptic-
distance energy on an arc or cycle linkage. Our bound is in terms
of the following geometric parameters of the configuration Θi:

1. `max: maximum edge length, maxi `i.
2. dmin(Θi): minimum elliptic distance between a vertex and

an edge, mini,j(‖vi − vj‖ + ‖vi − vj+1‖ − ‖vj − vj+1‖).
3. w(Θi): width of the linkage, i.e., the minimum width of a

strip, bounded by two parallel lines, that contains the linkage.

We also define more convenient forms for two of the parameters:
L(Θi) = max{1, `max(Θi)} and D(Θi) = min{1, dmin(Θi)}.

THEOREM 3.
‖∇E(Θi)‖ ≥ dmin(Θi)w

3(Θi)/(5328 n8.5`6max).

PROOF. Recall that ‖∇E(Θi)‖ is the rate at which the energy E
decreases under normalized gradient motion in the direction
−∇E(Θi)/‖∇E(Θi)‖. We bound this quantity by first proving
a lower bound on the energy decrease under any normalized ex-
pansive infinitesimal motion. Then the result follows because the
normalized gradient motion must decrease energy to the first order
faster than any other normalized motion.

Consider a normalized expansive infinitesimal motion defined at
time t = 0 that fixes the edge e1 = {v1, v2}. Observe that the
diameter of the arc or cycle linkage, i.e., the maximum distance
between two vertices, is at most n`max. Then [8, Lemma 15] tells
us that

max
i

‚
‚
‚
‚

dvi

dt

‚
‚
‚
‚

t=0

≤ 666

„
n`max

w(Θi)

«3 X

j,k

d‖vj − vk‖
dt

˛
˛
˛
˛
t=0

,

i.e.,
X

j,k

d‖vj − vk‖
dt

˛
˛
˛
˛
t=0

≥ w3(Θi)

666 n3`3max

max
i

‚
‚
‚
‚

dvi

dt

‚
‚
‚
‚

t=0

.

Because each term in the sum is nonnegative, we know that some
term in the sum, say j, k, is at least the average. The number of
terms is at most n2. Thus

d‖vj − vk‖
dt

˛
˛
˛
˛
t=0

≥ w3(Θi)

666 n5`3max

max
i

‚
‚
‚
‚

dvi

dt

‚
‚
‚
‚

t=0

. (7)

Now we consider the first-order change in energy under this mo-
tion. Because the motion is expansive, no term in the energy func-
tion increases. Thus the absolute first-order change in energy is at
least the absolute first-order change in a term involving ‖vj − vk‖.
Suppose {vi, vj} is a bar incident to vj but not vk . (If such a bar
does not exist, vj is an end of a chain and vk is its neighbor; we in-
terchange the labels of vj and vk and then such a bar exists.) Then
we have

dE

dt

˛
˛
˛
˛
t=0

≤ d(‖vk − vi‖ + ‖vk − vj‖ − `ij)
−2

dt

˛
˛
˛
˛
t=0

=

0

B
B
B
@

d‖vk − vi‖
dt

˛
˛
˛
˛
t=0

| {z }

≥0

+
d‖vk − vj‖

dt

˛
˛
˛
˛
t=0

| {z }

Eq. 7

− d`ij

dt

˛
˛
˛
˛
t=0

| {z }

=0

1

C
C
C
A

· (−2) · (‖vk − vi‖ + ‖vk − vj‖ − `ij)
−3

≤ −w3(Θi)

333`3
maxn5d3

max(Θi)
· max

m

‚
‚
‚
‚

dvm

dt

‚
‚
‚
‚

t=0

,

where dmax(Θi) is the maximum elliptic distance between a vertex
and an edge in Θi. We can upper bound elliptic distances in terms
of vertex-vertex distances using the triangle inequality:

‖vk − vi‖ + ‖vk − vj‖ − `ij (8)
≤ ‖vk − vi‖ + ‖vk − vi‖ + ‖vi − vj‖ − `ij

= 2‖vk − vi‖.
Thus, dmax(Θi) is at most twice the maximum distance between
two vertices, which was earlier observed to be at most n`max. So
dmax(Θi) ≤ 2n`max.

Next we bound maxm ‖dvm/dt‖t=0
. Because the expansive

motion is normalized,
P

m ‖dvm/dt‖2

t=0
= 1, and so we have

maxm ‖dvm/dt‖2

t=0
≥ 1/n. This result in turn tells us that

maxm ‖dvm/dt‖t=0
≥ 1/

√
n.

Combining all bounds, we obtain that

dE

dt

˛
˛
˛
˛
t=0

≤ −w3(Θi)

2664 n8.5`6max

.

As described above, this bound on energy decrease holds also
of the normalized gradient motion over point space, −∇E(V )/
‖∇E(V )‖. To convert this derivative from point space to angle
space, we use the chain rule twice—once to convert from vertex
space V = [v1, v2, . . . , vn] to real-vertex space W = [v1, v2,
. . . , vn−1], and again to convert from real-vertex space W to angle
space Θ:

∂E

∂Θ
=

∂E

∂V
· ∂V

∂W
· ∂W

∂Θ
.

The first term ∂E/∂V is what we already bounded: dE/dt|t=0
.

The second term ∂V/∂W is a Jacobian providing a scale factor
between vertex space V and real-vertex space W . The 2(n − 1) ×



2(n−1) submatrix [∂vi/∂vj ]i,j<n is an identity matrix. The rest of
the Jacobian is just two additional columns which can only increase
the scale factors.

The third term ∂W
∂Θ

is a Jacobian providing a scale factor between
point space and angle space. Each entry ∂vi

∂θj
is a vector whose

length matches the bar controlled by angle θj . Thus, each ∂vi

∂θj
is

at least `min, the length of the shortest bar. By Equation 8, `min ≥
1
2
dmin(Θi).
Thus, ∂E/∂Θ ≥ 1

2
dmin(Θi)(∂E/∂V ) and the theorem fol-

lows.

THEOREM 4.
‖∇2E(Θi)(u, u)‖ ≤ 61920 n6L7(Θi)/D12(Θi).

The proof of this bound is essentially a much more tedious com-
putation along the lines of Theorem 3. One of the main challenges
is that the relation ∂V/∂W between vertex space V and real-vertex
space W must be bounded above. We omit the details from this ab-
stract.

These bounds are almost all we need. However, we are inter-
ested in the values of dmin and w at the initial configuration Θ0,
dmin(Θ0) and w(Θ0), not their values at some intermediate con-
figuration Θi. Fortunately, we can bound the change of these pa-
rameters. (`min does not change.)

LEMMA 1. The elliptic-distance energy of any configuration Θi is
at most n2/dmin(Θ0).

PROOF. The energy of any Θi is at most the initial energy E(Θ0).
There are at most n2 terms in the energy expression E(Θ0), and
each term is at most 1/dmin(Θ0).

LEMMA 2. For any configuration Θi, dmin(Θi) ≥ dmin(Θ0)/n2.

PROOF. By Lemma 1, E(Θi) ≤ n2/dmin(Θ0). Hence the max-
imum term in E(Θi) is at most n2/dmin(Θ0), so the minimum
elliptic distance between a vertex and an edge in Θi is at least
dmin(Θ0)/n2 .

LEMMA 3. The Euclidean distance between any valid configura-
tion Θi and any self-intersecting configuration is at least Ds =
dmin(Θ0)/(2n2).

PROOF. By Lemma 2, the minimum elliptic distance between a
vertex and an edge in Θi is at least dmin(Θ0)/n2. Now for any
ellipse with foci e1 and e2, the closest points on the ellipse to
the line segment joining the foci are the endpoints of the major
axis. But at these points, this distance is half of the elliptic dis-
tance. Thus the minimum (Euclidean) distance between any vertex
of Θi and any edge not incident to that vertex is dmin(Θ0)/(2n2),
and some vertex of Θi must move at least this far to cause a self-
intersection.

LEMMA 4. For any configuration Θi whose angle-space distance
to an outer-convex configuration is at least Ds/(n

2`max), the width
w(Θi) is at least 2d2

min(Θi)/(n`max).

PROOF. First we argue that some vertex in the linkage has absolute
turn angle bounded away from 0. If the linkage contains a cycle,
then at least one vertex vi has absolute turn angle T at least 2π/n.
If the linkage consists only of arcs, let T be the maximum abso-
lute turn angle of all vertices (excluding endpoints of arcs). The
linkage has angular distance at most Tn2 from an outer-convex
configuration, because the absolute angle θk of each edge ek needs

to rotate at most Tn to reach the same angle as the first edge in that
arc (and hence straighten). Hence, Tn2 ≥ Ds/(n

2`max). Thus,
the absolute turn angle at some vertex vi is at least Ds/(n

5`max).
Therefore, in either case, we have a vertex vi whose absolute turn
angle T is at least min{2π/n, Ds/(n

5`max)}.
Consider the two neighbors vi−1 and vi+1 of vi that form the

angle at vi. The width of the linkage is at least the width of the
triangle formed by these three vertices vi−1, vi, vi+1, which in turn
is at least twice the in-radius of the triangle. The in-radius of the
triangle is the area divided by half the perimeter. The perimeter is
at most 4`max. It remains to prove a lower bound on the area of the
triangle.

If T ≤ π/2, then the interior angle at vi is between π/2 and
π − 2π/n. Suppose among vi−1 and vi+1 that vi+1 has the larger
interior angle in the triangle. Then the interior angle θ of vi+1 is
between π/n and π/2. Because θ ≤ π/2, sin θ ≥ 2θ/π ≥ 2/n.
The altitude from vi is ‖vi −vi+1‖ sin θ ≥ 2`min/n ≥ dmin/n by
Equation 8. The base of this altitude is ‖vi−1 − vi+1‖ ≥ dmin/2
by Equation 8. Thus the area is at least d2

min/(2n) in this case.
If T ≥ π/2, then the altitude of one of the other vertices, say

vi−1, is inside the triangle. Hence the altitude from vi−1 is also the
Euclidean distance between vertex vi−1 and edge {vi, vi+1}. By
Lemma 3, this distance is at least Ds. The base of this altitude is
‖vi+1 − vi‖ ≥ `min ≥ dmin/2 by Equation 8. Thus the area is at
least Dsdmin/2 in this case.

Hence in either case the area of the triangle is at least min{Ds,
dmin(Θi)}dmin(Θi)/(2n). By Lemmas 2 and 3, this area lower
bound equals d2

min(Θi)/(2n), concluding the proof.

As described in Section 5.5, the number of decent steps is at
most E(Θ0)/(G∆t). Using the observation that D ≥ dmin(Θi) ≥
dmin(Θ0)/n2, a computation shows that w3d13

min(Θ0)/(5320·
61920)n38.5L13 is a lower bound for ∆t. Substituting this and
our bounds for E(Θ0) and G into the bound E(Θ0)/(G∆t), and
writing w in terms of dmin(Θ0), n, and L by Lemma 4, we arrive
at the following final bound:

COROLLARY 1. The number of steps in our algorithm is at most
1752484608000 n79L25/D26(Θ0).

This statement of the bound has the disadvantage of being large
when the linkage is scaled very small or very large, because the
definitions of L and D force values of at least and at most 1, un-
necessarily blowing up the ratio L/D. Fortunately, the actual num-
ber of steps made by our algorithm is invariant under scaling of the
linkage, so we can choose a scaling that avoids this disadvantage:

COROLLARY 2. The number of steps in our algorithm is at most
117607251220365312000 n79(`max/dmin(Θ0))

26.

PROOF. Uniformly scale the linkage and the initial configuration
Θ0 by a factor of 1/`max(Θ0). The resulting configuration Θ′

0 has
`max(Θ

′
0) = 1 and dmin(Θ

′
0) = dmin(Θ0)/`max(Θ0). In particu-

lar, L(Θ′
0) = `max(Θ

′
0). Next we compare D(Θ′

0) and dmin(Θ
′
0).

Consider any vertex vj connected by bars to two other vertices vi

and vk . By Equation 8, the elliptic distance between vertex vk and
bar {vi, vj} is at most 2‖vk − vj‖ = 2`jk ≤ 2`max(Θ

′
0) = 2.

Therefore dmin(Θ
′
0) ≤ 2 and thus D(Θ′

0) ≥ 1
2
dmin(Θ

′
0). Apply-

ing Corollary 1, we obtain an upper bound of

1752484608000 n79/(2dmin(Θ′
0))

26

= 67108864 · 1752484608000 n79/d26
min(Θ

′
0)

= 117607251220365312000 n79(`max(Θ0)/dmin(Θ0))
26.



Doubled tree (n = 50) Teeth (n = 29)
Method #steps Time (sec) Time/step Error #steps Time (sec) Time/step Error

CDR 463 5,927.0 12.8010 0.654% 322 187.6 0.5826 14.131%
Energy 79,681 289.2 0.0036 n/a 5,032 7.9 0.0016 n/a

Ratio 0.0058 20.49 3,555 n/a 0.0639 23.74 364.13 n/a

Table 1. Running times for the examples in Figure 3, measured in CPU seconds. Computation times for both methods were measured in CPU
seconds on a 930 MHz Pentium III. CDR running times just measure time spent during the CPLEX barrier optimizer for quadratic programs,
which ignores the (relatively short) time to prepare the input to CPLEX. Energy running times measure the entire execution of a C++ program.
Our C++ implementation runs about 6 times faster than our Java implementation which is accessible on the Internet [1].

7 Experiments
7.1 Comparison to CDR
We compared a C++ implementation of our energy approach to
an implementation of [9] based on the CPLEX barrier solver for
quadratic programs2 , on two examples of closed chains. The re-
sulting animations and running times are shown in Figure 3 and
Table 1, respectively. The running times are measured imperfectly,
as described in the caption of Table 1, but in a way that only favors
the CDR method.

The comparison in Table 1 is difficult to interpret, because the
methods we are comparing have fundamental differences. At the
superficial level, for each example, the CDR method uses many
fewer steps, but the cost for computing each step is several orders of
magnitude slower, so that overall the CDR method is much slower
than the energy method. But a more careful analysis shows that the
energy method is even better.

In particular, the number of steps are chosen in fundamentally
different ways with the two methods. In the energy method, we
can move conservatively in accordance with the step bound used
in Section 6 or we can use a more aggressive numerical method.
Regardless of how the steps are chosen the link lengths are pre-
served exactly. In the CDR method however, the steps are approx-
imating a complex motion, and small steps are necessary to keep
the approximation close and preserve the edge lengths. Because
the CDR implementation does not include constraint stabilization,
the edge lengths drift, and this drift accumulates over the motion.
The final configurations have more than 10% relative error in the
edge lengths. To obtain much smaller errors with the CDR method
would require many more steps, and significantly more computa-
tion time.

The time per step is easier to compare, although again this com-
parison is not necessarily the “right” thing. The primary cost in
the CDR method is solving a convex program with Θ(n2) linear
constraints, where n is the number of joints. Such a program can
be solved up to error tolerance ε in O(n4/ε) worst-case time by
the classic ellipsoid method [11], or in O(n2/ε) time with high
probability by a new random-sampling method [4]. In contrast,
the running time of the energy method to compute a step depends
quadratically on n, and does not depend on any error tolerance.

7.2 Additional Examples
To illustrate the scalability of the energy approach, we show some
additional examples and their performance in Figure 4 and Table 2,

2The convex objective function in [9] is not exactly quadratic, but CPLEX
does not support such objective functions. We use a quadratic relaxation
of the objective function because it is much faster to compute, in particular
because we can then use CPLEX. This relaxation makes the running times
of [9] only smaller. It is also perhaps a fairer comparison, because the
objective function in [9] was not chosen with efficiency in mind, but rather
for convenience in the proof.

Energy method
Example #steps Time (sec) Time/step

Spiral (n = 34) 5,080 7.7 0.0015
Tentacle (n = 380) 2,481 1,159.0 0.4672
Spider (n = 380) 2,274 870.7 0.3829
Cover (n = 17) 10,390 4.1 0.0004

Table 2. Running times for the C++ implementation of the energy
method, applied to the examples in Figures 1 and 4, measured in
CPU seconds on a 930 MHz Pentium III.

respectively. Some of these example contain several hundred ver-
tices and would have been prohibitively expensive to run using the
CDR method.

8 Conclusion
We have presented a simpler, more efficient, and more practical
method to unfold linkages made up of arcs and cycles. While the
motion is not globally expansive, its minimization of energy at-
tempts to balance distances and reconfigure the linkage more “or-
ganically”.

One interesting question about our motion is to determine the
shape of the final minimum-energy configuration of a cycle. In con-
trast to [9] or [12], which have unpredictable final configurations,
we might expect that our energy method results in a cycle that best
approximates a regular polygon, that is, causes the joints to lie on
a common circle. See [2] for other results along these lines. From
our experiments, this expectation seems false, but a combination of
our energy function with a term involving the area of the polygon
may lead to such a result.

For even faster algorithms, an interesting approach which we
plan to explore is minimizing the energy function with a more
sophisticated optimization procedure such as conjugate gradient.
This direction should lead to motions that involve fewer steps and
would be faster overall. We also note that our repulsive energy
behaves very much like light energy or gravitational attraction as it
radiates. It is quite likely that the same hierarchical multipole meth-
ods that have been used for large n-body gravitational simulations,
photo-realistic rendering, and fast evaluation of radial splines could
be used to efficiently solve very large linkage systems as well.

In Section 5.3 we briefly touched on the idea that any of many
downward directions can be used in our minimization procedure. In
particular, different choices of admissible energy function and pa-
rameterization will yield different gradient directions that could be
used to construct a variety of unfolding motions. These choices can
be engineered to have different desirable properties such as numer-
ical stability or symmetry preservation. For example, the methods
described above do not preserve symmetries, but a method based
on a parameterization using positions with explicit algebraic con-
straints for each edge does preserve symmetries.



(a) Teeth with energy method.

(b) Teeth with CDR method.

(c) Doubled tree with energy method.

(d) Doubled tree with CDR method.

Figure 3. A comparison of convexification by our method and by CDR. To maximize visibility, the animation zooms as time proceeds; in fact, all
edge lengths remain constant.

Perhaps the most exciting direction for further research, which
we are actively pursuing, is the linkage refolding problem: given
two configurations of a linkage, find the “shortest” motion connect-
ing them. This problem is important in several of the applications
mentioned in the introduction, including key-frame animation and
robotic-arm folding. We believe that our approaches apply to this
problem as well, by defining an energy function on the space of
motions instead of the space of configurations, and following the
gradient of the motion to produce the shortest motion, forming a
geodesic in the space of motions. Details will appear in a forth-
coming paper.
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