
Trains, Games, and Complexity:

0/1/2-Player Motion Planning through Input/Output Gadgets

Joshua Ani∗ Erik D. Demaine∗ Dylan H. Hendrickson∗ Jayson Lynch∗

Abstract

We analyze the computational complexity of motion planning through local “input/output”
gadgets with separate entrances and exits, and a subset of allowed traversals from entrances to
exits, each of which changes the state of the gadget and thereby the allowed traversals. We study
such gadgets in the zero-, one-, and two-player settings, in particular extending past motion-
planning-through-gadgets work [DGLR18, DHL20] to zero-player games for the first time, by
considering “branchless” connections between gadgets that route every gadget’s exit to a unique
gadget’s entrance. Our complexity results include containment in L, NL, P, NP, and PSPACE;
as well as hardness for NL, P, NP, and PSPACE. We apply these results to show PSPACE-
completeness for certain mechanics in the video games Factorio, [the Sequence], and a restricted
version of Trainyard, improving the result of [ALP18a]. This work strengthens prior results on
switching graphs, ARRIVAL [DGK+17], and reachability switching games [FGMS21].

1 Introduction

Imagine a train proceeding along a track within a railroad network. Tracks are connected together
by “switches”: upon reaching one, the switch chooses the train’s next track deterministically based
on the state of the switch and where the train entered the switch; furthermore, the traversal changes
the switch’s state, affecting the next traversal. ARRIVAL [DGK+17] is one game of this type, where
every switch has a single input and two outputs, and alternates between sending the train along the
two outputs; the goal is to determine whether the train ever reaches a specified destination. Even
this seemingly simple game has unknown complexity, but is known to be in NP ∩ coNP [DGK+17],
so cannot be NP-hard unless NP = coNP. More recent work shows a stronger result of containment
in UP ∩ coUP as well as CLS [GHH+18], PLS [Kar17], and UEOPL [FGMS20]. But what about
other types of switches?

In this paper, we introduce a very general notion of “input/output gadgets” that models the
possible behaviors of a switch, and analyze the resulting complexity of motion planning/prediction
(does the train reach a desired destination?) while navigating a network of switches/gadgets. This
framework gives us an expressive set of problems for various complexity classes to use as starting
points for hardness reductions to other problems of interest. For example, it is related to the
“reachability switching games” of [FGMS21], which in turn generalize “switching systems” known
as Propp machines. In addition to ARRIVAL, our framework captures other toy-train models,
including those in the video games Factorio and Trainyard. In many cases, we obtain PSPACE-
hardness, enabling building of a (polynomial-space) computer out of a deterministic railway system
with a single train. Intuitively, our model is similar to a circuit model of computation, but where

∗MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139, USA,
{joshuaa,edemaine,dylanhen,jaysonl}@mit.edu

1

{joshuaa,edemaine,dylanhen,jaysonl}@mit.edu

down
up

down

down

up
up

up

down

icon state diagram
Figure 1: An example gadget—the switch/set-up line/set-down line of Figure 3b—which is a 7-
location 2-state input/output gadget. The agent can enter at any of the three input locations on
the left, and exit at the corresponding output location on the right. Traversing the top or bottom
line sets the gadget’s state to ‘up’ or ‘down’, respectively, which controls the output of the middle
traversal to be the top or bottom, respectively, of its two options. The middle traversal does not
change the state.

the state is stored in the gates (gadgets) instead of the wires, and gates update only according to
visits by a single deterministically controlled agent (the train).

This work builds off of prior work on the computational complexity of agent-based motion
planning [DGLR18,DHL20], extending it to zero-player situations. An analogous generalization of
computational problems based on the number of players and boundedness of moves can be found
in Constraint Logic [HD09], which has served as a framework for a large number of hardness proofs
for reconfiguration problems as well as games and puzzles.

1.1 Motion Planning through Gadgets

Our model is a natural zero-player adaptation of the motion-planning-through-gadgets frame-
work developed in [DHL20] (after its introduction at FUN 2018 [DGLR18]), so we begin with a
summary of that framework. A gadget G = (Q,L, T) consists of a finite set Q of states, a fi-
nite set L of locations (entrances/exits), and a set T ⊆ (Q × L)2 of transitions of the form
(q, a) → (r, b) where q, r ∈ Q and a, b ∈ L. Figure 1 shows an example of a gadget. A transition
(q, a) → (r, b) ∈ T means that, when the gadget is in state q, an agent can traverse the gadget by
entering the gadget at location a and exiting at location b, while changing the state of the gadget
from q to r. In general, a location might serve as the entrance for one traversal and the exit for
another traversal. In this paper, however, we consider the special case (as in Figure 1) where each
location serves exclusively as an entrance or an exit for the agent, but not both; our figures will
usually put entrances (which we call inputs) on the left, and put exits (outputs) on the right.

We can think of a gadget as a graph (Q× L, T) on state/location pairs, called the transition
graph . We sometimes also consider the state-transition graph of a gadget, which is the directed
multigraph with a vertex for each state ∈ Q and a directed edge (q, r) for each transition (q, a) →
(r, b) ∈ T for any a, b ∈ L. In figures such as Figure 1, we define gadgets using a state diagram
which gives, for each state q ∈ Q, a labeled directed multigraph Gq = (L,Eq) on the locations,
where a directed edge (a, b) with label r represents a transition (q, a) → (r, b) ∈ T (and thus Gq

represents the available transitions in state q).
A system of gadgets consists of a set of gadgets, their initial states, and a connection

2

graph on the gadgets’ locations. If two locations a, b of two gadgets (possibly the same gadget)
are connected by a path in the connection graph, then an agent can traverse freely between a
and b (outside the gadgets). (Equivalently, we can think of locations a and b as being identified,
effectively contracting connected components of the connection graph.) Gadgets are local in the
sense that traversing a gadget does not change the state of any other gadgets.

In one-player motion planning , we are given initial and goal locations s, t of a single agent
in a system of gadgets, and the problem asks whether there is a sequence of traversals that brings
the agent from s to t. Two-player and team motion planning are also introduced in [DHL20], but
not discussed here.

Past work [DHL20] analyzed (and in many cases, characterized) the complexity of these motion-
planning problems for gadgets satisfying a few additional properties, specifically, gadgets that are
“reversible deterministic k-tunnel” or that are “DAG k-tunnel”, defined as follows:

• A gadget is k-tunnel if there is a perfect matching on its 2k locations, whose matching edges
are called tunnels, such that the gadget only allows traversals between endpoints of a tunnel.

• A gadget is deterministic if its transition graph has maximum out-degree ≤ 1, i.e., an agent
entering the gadget in some state q at some location a can exit in only one state r and at
only one location b.

• A gadget is reversible if its transition graph has the reverse of every edge, i.e., every traversal
could be immediately undone.

• A gadget is a DAG if it has an acyclic state-transition graph, i.e., no sequence of traversals
repeats a state. Such gadgets can necessarily be traversed only a bounded number of times
(at most the number of states).

1.2 Input/Output Gadgets and Zero-Player Motion Planning

We define a gadget to be input/output if its locations can be partitioned into input locations
(entrances) and output locations (exits) such that every traversal brings an agent from an input
location to an output location, and in every state, there is at least one traversal from each input
location. In particular, deterministic input/output gadgets have exactly one traversal from each
input location in each state. Note that input/output gadgets cannot be reversible nor DAGs, so
prior characterizations [DHL20] do not apply to this setting. Indeed, the example of Figure 1
satisfies none of the k-tunnel, deterministic, reversible, or DAG properties.

An input/output gadget is output-disjoint if, for each output location, all of the transitions
to it (including those from different states) are from the same input location. This condition is a
generalization of k-tunnel: it allows a one-to-many relation from a single input to multiple outputs.

With deterministic input/output gadgets, we can define a natural zero-player motion-plan-
ning game as follows. A system of input/output gadgets is branchless if each connected com-
ponent of the connection graph contains at most one input location. Intuitively, if an agent finds
itself in such a connected component, then there is only one gadget location it can enter, uniquely
defining how it should proceed. (If an agent finds itself in a connected component with no input
locations, it is stuck in a dead-end and the game ends.) We can think of edges in the connection
graph as directed wires that point from output locations to the input location in the same connected
component. Note that branchless systems can still have multiple output locations in a connected
component, which functions as a fan-in.1

1In fact, the original framework of [DGLR18] was inherently branchless: connections between locations formed a

3

In a branchless system of deterministic input/output gadgets, there are never any choices to
make: in the connection graph, there is at most one reachable input location, and when the agent
enters a gadget at an input location, there is exactly one transition it can make. Thus we define
zero-player motion planning with a set of deterministic input/output gadgets to be the one-
player motion-planning problem restricted to branchless systems of those gadgets. Lacking any
agency, the decision problem is equivalent to whether the agent ever reaches the goal location while
following the unique path available to it (before cycling or hitting a dead-end).

1.3 Classifying Output-Disjoint Deterministic 2-State Input/Output Gadgets

In this paper, we are primarily interested in output-disjoint deterministic 2-state input/output gad-
gets. In this section, we omit the adjectives and refer to them simply as “gadgets”; and categorize
these gadgets as “trivial”, “bounded”, or “unbounded”.

The behavior of an input location to a gadget is described by how it changes the state and which
output location it sends the agent to in each state. If the input location does not change the state
and always uses the same output location, it can be ignored (the agent’s path can be “shortcut” to
skip that transition); we call this a trivial line . Otherwise, the input location corresponds to one
of the five nontrivial subunits shown in Table 1. A gadget is then a disjoint union of some of these
subunits; Figures 2 and 3 show some different ways these subunits can be assembled into different
gadgets.

We call the states of a two-state gadget up and down , and assume that each switch transitions
to the top output in the up state and the bottom output in the down state; because we are not
concerned with planarity, this assumption is fully general by possible reflection of each subunit.
There are two versions of the set line and set switch: one that sets the gadget to each state, up
or down. For example, a gadget with a set-up switch and set-up line (Figure 2b) is meaningfully
different from a gadget with a set-up switch and set-down line (Figure 3d). We draw the set-down
line and switch as the reflections of the set-up version in Table 1. To represent the current state
of a gadget, we draw one of the lines in each switch dashed, so that the next transition would be
made along a solid line.

The ARRIVAL problem [DGK+17] is equivalent to zero-player motion planning with just the
toggle switch from Table 1: each vertex in their switch graph corresponds to a toggle switch in a
system of gadgets. We will use their terminology when referring to switch graphs in ARRIVAL
[DGK+17]; however, when referring to gadgets in our model, a switch is a gadget (or part of a
gadget) which does not change state when traversed (as in Table 1). More generally, zero-player
motion planning with an arbitrary set of deterministic single-input input/output gadgets (with
gadgets specified as part of the instance) is equivalent to explicit zero-player reachability switching
games, as defined in [FGMS21].

We categorize gadgets into three families:

1. Trivial gadgets have either no state change or no state-dependent behavior; they are com-
posed entirely of switches or entirely of toggle and set lines. Trivial gadgets are equivalent to
(collections of) trivial lines, or equivalently always-open tunnels. Zero-player motion planning
with trivial gadgets is in L by straightforwardly simulating the agent for a number of steps
equal to the number of locations.

matching. That framework used a 1-state nondeterministic “branching hallway” gadget to connect multiple locations
to each other. For branchless input/output systems, we can equivalently think of replacing the branching hallway
with a 1-state “fan-in” input/output gadget with traversals from two inputs to one output.

4

Set-Up Line
A tunnel that can always be traversed in one direction and
sets the state of the gadget to a specific state (‘up’).

Toggle Line
A tunnel that can always be traversed in one direction and
toggles the state with each crossing.

Switch

A three-location gadget with one input which transitions
to one of two outputs (‘top’ or ‘bottom’) depending on the
state (‘up’ or ‘down’ respectively), without changing the
state.

Set-Up Switch
A switch that also sets the state of the gadget to a specific
state (‘up’).

Toggle Switch
A switch that also toggles the state of the gadget with each
crossing.

Table 1: The five possible subunits (modulo up/down symmetry) for output-disjoint deterministic
2-state input/output gadgets, whose states are named ‘up’ and ‘down’. In general, unannotated
lines denote transitions that do not change the state, full arrowheads denote transitions that always
toggle the state, and half arrowheads denote transitions that always set the state to a specific value
(‘up’ or ‘down’ according to the half arrowhead).

2. Bounded gadgets have state-dependent behavior (i.e., some kind of switch) and have only
one-way state change, either only to the up state or only to the down state. A bounded gadget
can change its state at most once, so such gadgets naturally give rise to bounded games in
which the maximum number of moves is polynomially bounded.

3. Unbounded gadgets have state-dependent behavior (switches) and have transitions that
change state in both directions. For example, the toggle switch of ARRIVAL is unbounded.
Unbounded gadgets naturally give rise to unbounded games in which the number of moves
can be exponential.

We will find that the complexity of motion planning with a given gadget also depends on whether
the gadget is single-input or multi-input , where we count only “nontrivial” input locations. A
nontrivial input must have a transition from that input that either changes the state of the
gadget or does not exist in all states of the gadget. The only nontrivial single-input gadgets are
the set switch and toggle switch, which are bounded and unbounded, respectively.

1.4 Our Results: Complexity

Table 2 summarizes our main complexity results for zero-player motion planning with output-
disjoint deterministic 2-state input/output gadgets. While our main motivation was to analyze
zero-player motion planning, we also characterize the complexity of one-player motion planning for
contrast. These complexity results apply to any gadget in the family specified in each column, and
more generally to any nonempty set of gadgets in the family (optionally with gadgets from simpler

5

Trivial
(always-open
tunnels)

Bounded &
multiple
nontrivial inputs

Unbounded &
multiple
nontrivial inputs

Zero-player (fully
deterministic) [§2]

L P-complete PSPACE-complete

One-player [§3] NL-complete NP-complete PSPACE-complete

Table 2: Complexity of zero- and one-player motion planning for arbitrary output-disjoint deter-
ministic 2-state input/output gadget(s), with multiple nontrivial inputs in nontrivial gadgets.

Contained in Hard for

Zero-player (fully
deterministic) [§2] UP ∩ coUP [GHH+18]

NL for toggle switch [§2.1]
(cf. [FGMS21])

One-player [§3] NP [§3.1] (cf. [FGMS21]) NP [§3.2] (cf. [FGMS21])

Two-player [§4] EXPTIME [§4]
(cf. [FGMS21])

PSPACE [§4]
(cf. [FGMS21])

Table 3: Complexity results for zero-, one-, and two-player motion planning with any nontrivial
single-input input/output gadget(s) (the toggle switch and/or the set switch).

families in leftward columns). In particular, we prove that motion planning with any multi-input
bounded gadget(s) (and optionally with trivial gadgets) is P-complete for zero-player and NP-
complete for one-player; while motion planning with any multi-input unbounded gadget(s) (and
optionally with trivial or bounded gadgets) is PSPACE-complete for both zero- and one-player.

Table 3 summarizes our results for motion planning with single-input nontrivial input/output
gadgets. This case is a more immediate generalization of ARRIVAL [DGK+17], and is equivalent
to the reachability switching games studied in [FGMS21]. We strengthen the results of [FGMS21]
in two ways. First, we show that the containments in NP and EXPTIME still hold when we allow
nondeterministic gadgets. Second, we show hardness for specific constant-size gadgets—the toggle
switch for zero-player, and each of the toggle switch and set switch for one- and two-player—instead
of having unbounded-size gadgets specified as part of the instance. In particular, these hardness
results apply to all (two) nontrivial single-input gadgets for one- and two-player; the complexity of
the set switch for zero-player remains open.

Our complexity results for zero-player, one-player, and two-player motion planning are presented
in Sections 2, 3, and 4, respectively.

In Section 5, we apply our input/output gadget framework to prove PSPACE-completeness of
mechanics in several video games: one-train colorless Trainyard, the game [the Sequence], trains
in Factorio, and transport belts in Factorio are all PSPACE-complete. The first result improves a
previous PSPACE-completeness result for two-color Trainyard [ALP18a] by using a strict subset of
game features. Factorio in general is trivially PSPACE-complete, as players have explicitly built
computers using the circuit network; here we prove hardness for the restricted problems with only
train-related objects and only transport-belt-related objects.

6

(a) Switch/set-up line. (b) Set-up switch/set-up line.

Figure 2: A basis for bounded multi-input gadgets: all such gadgets can simulate one of these two.

1.5 Our Results: Simulation

How do we prove that zero-player motion planning with any multi-input bounded or unbounded
gadget is P-complete or PSPACE-complete, respectively? We show how to reduce these infinite
families down to finitely many cases through the concept of “simulation”.

A zero-player simulation of a gadget G is a branchless system of gadgets, together with a
mapping of input and output locations of G to distinct input and output locations of gadgets in
the system, that has the same behavior as G in the natural sense: if the agent enters the system
at a sequence of input locations corresponding to inputs of G, then the system sends the agent to
the output locations corresponding to the outputs G would send the agent to. (Note that some
locations of the system may not correspond to any locations of G.) We say that G′ simulates G
if there is a system of G′ gadgets that is a simulation of G.

This definition of simulation is only applicable to zero-player motion planning, and thus with
deterministic input/output gadgets. We can define a similar notion of simulation for one-player
motion planning; see also [Hen21,ACD+22] for more precise definitions. A one-player simulation
of a gadget G is a system of gadgets, together with a mapping of locations of G to distinct locations
of gadgets in the system, that has the same behavior as G in the natural nondeterministic sense: if
the agent enters the system at a sequence of k locations corresponding to locations of G, then the
agent can exit the system in a sequence of k locations corresponding to locations of G if and only
if it could have made the corresponding sequence of traversals in G.

Any zero-player simulation is also a one-player simulation, so all of our results for zero-player
simulations immediately carry over to the one-player case.

Crucially, simulations yield logarithmic-space polynomial-time reductions: simply replace each
copy of G with a copy of the system simulating it. In particular, simulations preserve hardness of
zero-player and one-player motion planning for NL, P, NP, and PSPACE.

To characterize all multi-input input/output gadgets, we show that they all simulate at least
one of the eight gadgets listed in Lemma 1.1 and shown in Figures 2 (bounded) and 3 (unbounded),
and thus it will suffice to show hardness for these eight cases.

Lemma 1.1. Let G be an output-disjoint deterministic 2-state input/output gadget with multiple
nontrivial inputs.

• If G is bounded, then it simulates either a switch/set-up line or a set-up switch/set-up line
(Figure 2).

• If G is unbounded, then it simulates one of the following gadgets (Figure 3):

(a) switch/toggle line,

(b) switch/set-up line/set-down line,

7

(a) Switch/toggle line. (b) Switch/set-up line/set-down line (c) Set-up switch/toggle line.

(d) Set-up switch/set-down line. (e) Toggle switch/toggle line. (f) Toggle switch/set-up line.

Figure 3: A basis for the unbounded multi-input gadgets: all such gadgets can simulate one of
these six. We later show that Figure 3b alone forms a one-gadget basis.

(c) set-up switch/toggle line,

(d) set-up switch/set-down line,

(e) toggle switch/toggle line, or

(f) toggle switch/set-up line.

Proof. First we compress every switch, set switch, and toggle switch, except for one, by merging
(connecting) its two outputs. This operation transforms set switches into set lines, toggle switches
into toggle lines, and ordinary switches into trivial lines. Figure 4 shows an example. If the gadget
has any ordinary switches, we use one of them as the switch that does not get compressed. The
resulting gadget has the same boundedness as the original gadget, has a single switch of some type,
and still has multiple nontrivial inputs: if it had only one nontrivial input, then the other inputs
must have all been ordinary switches which got compressed, so the remaining uncompressed input
is also an ordinary switch, and thus the original gadget contained only ordinary switches and was
trivial.

Figure 4: Compressing a set-up switch by merging its outputs yields a set-up line.

For multi-input bounded gadgets, we now have either a switch or a set switch (any sort of toggle
would make the gadget unbounded), and at least one set line. Each set switch and line must set the
gadget to the same state (which we can assume by symmetry is the up state), and we can ignore
all but one set line. In particular, without loss of generality, the resulting gadget contains exactly
a set-up line and either a switch (2a) or a set-up switch (2b).

For multi-input unbounded gadgets, there are multiple cases to consider based on the type of
the single switch which was not compressed. First, if the switch is an ordinary switch, then there

8

must be lines that can set the state in both directions, which must include either a toggle line (3a)
or two set lines in different directions (3b). If the switch is a set switch, then there must be a line
that can set the state in the opposite direction, which can be either a toggle line (3c) or a set line
opposite the set switch (3d). Finally, if the switch is a toggle switch, then there must be some
nontrivial line: either a toggle line (3e) or a set line (3f). We have made arbitrary choices for the
directions of set lines and set switches; these are without loss of generality because we can reflect
the gadget (or rename the up and down states).

These simulation results are of independent interest. They show that there is a two-gadget basis
for multi-input bounded input/output gadgets, and a six-gadget basis for multi-input unbounded
input/output gadgets, where every gadget in each family can simulate at least one gadget in the
basis. In fact, Section 2.3.3 shows the stronger result that multi-input unbounded input/output
gadgets have a one-gadget basis, namely, the switch/set-up line/set-down line of Figure 1 or 3b.
Past work on one-player motion planning [DHL20] established a one-gadget basis for a particular
gadget family: every reversible deterministic interacting-k-tunnel gadget can simulate a locking
2-toggle.

At the other extreme from a basis, we can ask for universality . For example, in one-player
motion planning, each door gadget from [ABD+20] simulates every gadget. In Section 2.3.4, we
prove a universality result for zero-player motion planning: the same switch/set-up line/set-down
line of Figure 1 or 3b simulates every deterministic input/output gadget (not just those that are
output-disjoint and 2-state). Thus the switch/set-up line/set-down line both simulates and can
be simulated by every unbounded multi-input output-disjoint deterministic 2-state input/output
gadget, and thus every such gadget is similarly both a basis and universal. We also prove a new
universality result for one-player motion planning: the switch/set-up line/set-down line—and thus
every unbounded multi-input output-disjoint deterministic 2-state input/output gadget—simulates
every gadget (just like the doors of [ABD+20]).

2 Zero Players

In this section, we study the complexity of zero-player motion planning with deterministic in-
put/output gadgets from several classes. In Section 2.1, we consider such gadgets with a single
input. In Section 2.2, we consider bounded gadgets with multiple inputs, which are naturally P-
complete. Finally, in Section 2.3 we consider unbounded gadgets with multiple inputs, which are
naturally PSPACE-complete.

Lemma 2.1. Zero-player motion planning with deterministic input/output gadgets is in PSPACE.

Proof. In polynomial space, we can keep track of the current configuration of a system of gadgets
and current location of the agent. Thus we can simply simulate the zero-player motion planning
problem until either the agent reaches the goal location, the agent reaches a dead-end, or it makes
more transitions than there are configurations, and thus is stuck in a cycle.

2.1 Single Input

In this section, we consider zero-player motion planning with deterministic single-input input/
output gadgets. If the gadgets are described (for concreteness, using transition graphs) as part of
the instance, this is equivalent to the explicit zero-player reachability switching games of [FGMS21].
In our language, [FGMS21] shows that zero-player motion planning with instance-specified deter-
ministic single-input input/output gadgets is NL-hard. As pointed out in [FGMS21], the proofs

9

in [GHH+18], which only considered ARRIVAL, also apply to explicit zero-player reachability
switching games. In our language, they show that zero-player motion planning with instance-
specified deterministic single-input input/output gadgets is in UP ∩ coUP (which is contained in
NP ∩ coNP).

We strengthen the NL-hardness result of [FGMS21] by showing that zero-player motion planning
with just the toggle switch is NL-hard. This is a straightforward modification of the proof of NL-
hardness in [FGMS21]; we present the full argument for completeness and to translate it to our
terminology. There is still a large gap between the lower bound of NL-hard and the upper bound
of UP ∩ coUP.

Theorem 2.2. Zero-player motion planning with the toggle switch is NL-hard.

Proof. We reduce from reachability in directed graphs, which is NL-complete [Wig92].
First we modify the graph to have out-degree 0 or 2 at every vertex without changing reach-

ability; refer to Figure 5. We replace every vertex v with out-degree k > 2 with a sequence of k
vertices each with out-degree at most 2: if v has edges to w1, . . . , wk, we replace v with v1, . . . , vk
with edges vi → vi+1 and vi → wi, and edges to v now go to v1. Then we remove any vertices with
out-degree 1 by setting their incoming edges to instead go to the target of their unique outgoing
edge. This reduction to where every vertex has out-degree exactly 2 can be done in logarithmic
space and does not affect reachability,

v

w1

w2

w3

w4

w1

w2

w3

w4

v1

v2

v3

v4

w1

w2

w3

w4

v1

v2

v3

Figure 5: Modifying a directed graph to have out-degree 0 or 2 at every vertex: splitting vertices
of high out-degree, and removing vertices of out-degree 1.

Now we use a construction based on that in [FGMS21]; refer to Figure 6. Let V be the set of
vertices in the modified graph G, where we are interested in a path from s to t. Our system of
gadgets has |V |2 toggle switches, named (v, i) for v ∈ V and 1 ≤ i ≤ |V |. For a vertex v ̸= t with
edges to w1 and w2 and i < |V |, the outputs of (v, i) are connected to the inputs of (w1, i+ 1) and
(w2, i+ 1). For a vertex v ̸= t with out-degree 0, both outputs of (v, i) are connected to the input
of (s, 1). For v ̸= t, both outputs of (v, |V |) are connected to the input of (s, 1). Finally, for each i,
both outputs of (t, i) are connected to the goal location, which then leads back to (s, 1). The start
location is the input of (s, 1).

When the agent moves through this system, it follows paths in G starting from s and counts
the number of steps taken, resetting after |V | steps or when it reaches a vertex with out-degree
0. By construction, a toggle switch (v, i) is reachable from (s, 1) exactly when there is a path of
length i− 1 from s to v. If the agent reaches the goal location, it must have entered (t, i) for some
i, and thus there is a path (of length i− 1) from s to t.

10

s t

(v, 1)

(v, 2)

(v, 3)

(v, 4)

goal

Figure 6: Reduction from reachability in directed graphs of out-degree 0 or 2 to zero-player motion
planning with the toggle switch.

Because all paths eventually return to (s, 1), the agent must enter (s, 1) infinitely many times,
so it must use each output of (s, 1) infinitely many times. By induction, it uses every toggle switch
reachable from (s, 1) infinitely many times. If there is a (simple) path from s to t, it has some
length i < |V |, so (t, i+ 1) is reachable from (s, 1). Then (t, i+ 1) is visited infinitely many times,
so the agent reaches the goal location.

2.2 Bounded Gadgets

In this section, we consider the complexity of zero-player motion planning with a bounded output-
disjoint deterministic 2-state input/output gadget which has multiple nontrivial inputs. We will
find that this problem is always P-complete.

A gadget is bounded if the number of times it can change states is bounded; this generalizes
the definition in Section 1.3.

Theorem 2.3. Zero-player motion planning with bounded deterministic input/output gadgets is
in P.

Proof. Suppose we have a system with n copies of the gadget. Let k be the maximum number
of state changes a gadget in the system can make, and let i be the maximum number of input
locations a gadget in the system has. Then gadget states can change at most kn times. Between
consecutive state changes, the agent can visit each entrance of each gadget at most once (otherwise
it is stuck in a cycle), so consecutive state changes are separated by at most in traversals. Hence
after ikn2 traversals, the agent must be in a cycle, which involves no state changes of length at

11

x y x NOR y x NOR y

Figure 7: A nor gate for P-hardness of zero-player motion planning with the switch/set-up line.
If neither x nor y is set to true (up), the agent sets each x nor y gadget to true.

most in. So we can solve the problem in polynomial time by simulating the agent for in(kn + 1)
steps and seeing whether it reaches the goal location by then.

Lemma 1.1 tells us that every output-disjoint deterministic 2-state input/output gadget with
multiple nontrivial inputs simulates either the switch/set-up line or the set-up switch/set-up line.
Thus to prove that zero-player motion planning with any such gadget is P-hard, it suffices to show
P-hardness for these particular two gadgets. This is what we do for the remainder of this section.

Theorem 2.4. Zero-player motion planning with the switch/set-up line or the set-up switch/set-up
line is P-hard (under logarithmic space reductions).

Proof. We provide a reduction to each of these problems from the problem of evaluating a circuit
containing only nor gates and fan-out, with the gates listed in a topological order. This restricted
version of circuit evaluation is known to be P-complete [GHR+95]. The two reductions are nearly
identical: we present the reduction for the switch/set-up line, and the reduction for the set-up
switch/set-up line is the same with each gadget replaced. We shall see that the agent never goes
over a switch multiple times, so these two systems of gadgets behave the same.

Our reduction builds a system of switch/set-up lines which has one gadget for each input of a
nor gate; this gadget indicates whether the input is true or false, and is initially set to false. The
agent will evaluate each nor gate in the order they are listed in the input, setting the gadgets for
outputs of that gate to true if appropriate. This is accomplished with the gadget in Figure 7. For
each nor gate, we build one of these gadgets, where x and y are the inputs, and the gadgets labeled
xnor y are the outputs (and inputs of other nor gates). There are as many output gadgets as the
fan-out of this nor gate. The entrance and exit to the nor gate gadgets are connected in series,
in the given order of the gates.

To complete the construction, we place the start location at the entrance to the first nor gate.
The exit of the last nor gate enters a switch which holds the output of the final nor gate, and the
goal location is the top output of that switch. Every switch/set-up line starts in the down state
except for those that correspond to true inputs to the circuit.

When the agent moves through this system of gadgets, in goes through each nor gate in order.
Because the input circuit was given with gates in topological order, the agent goes through both
gates that provide the inputs x and y to a gate that computes x nor y before going through that
gate itself. If either x or y is set to true (i.e., in the up state), the agent leaves xnor y false, but if
x and y are both false, it goes through the set-up lines to set xnory true. This correctly computes
x nor y, and by induction it computes the value of the circuit. At the end, the agent reaches the
goal location if the value is true and gets stuck in a nearby dead-end if the value is false.

By the basis simulation result of Lemma 1.1, these two cases establish hardness for all multi-
input output-disjoint deterministic 2-state input/output gadgets:

12

A A'

B B'
X X'

Figure 8: The schematic of an edge duplicator. An agent entering at A or B exits at A′ or B′,
respectively, having gone over the central path. This duplicates the edge in the center.

Corollary 2.5. Zero-player motion planning with any bounded output-disjoint deterministic 2-state
input/output gadget with multiple nontrivial inputs is P-complete.

2.3 Unbounded Gadgets

In this section, we consider zero-player motion planning with an unbounded output-disjoint de-
terministic 2-state input/output gadget which has multiple nontrivial inputs. We show that this
problem is PSPACE-complete for every such gadget through a reduction from Quantified Boolean
Formula (QBF), which is PSPACE-complete, to zero-player motion planning with the switch/set-up
line/set-down line, and by showing that every such gadget simulates the switch/set-up line/set-down
line. We also show that the switch/set-up line/set-down line (and thus every unbounded output-
disjoint deterministic 2-state input/output gadget with multiple nontrivial inputs) can simulate
every deterministic input/output gadget in zero-player motion planning.

2.3.1 Edge Duplicators

Many of our simulations involve building an edge duplicator , shown in Figure 8. An edge du-
plicator is a construction which allows us to effectively make a copy of a line from X to X ′ in a
gadget. This is achieved by routing two inputs A and B to X, and then sending the agent from X ′

to one of two exits A′ or B′ corresponding to the input used. The details of the construction of an
edge duplicator depend on the gadget used; see Figure 9 for an example.

If we have access to an edge duplicator, we can duplicate tunnels in gadgets. Note that this is
not enough to duplicate switches, since we would have to account for both exits getting duplicated.

2.3.2 PSPACE-Hardness of the Switch/Set-Up Line/Set-Down Line

In this section, we show that zero-player motion planning with the switch/set-up line/set-down line
is PSPACE-hard through a reduction from QBF. Recall from Figure 1 or 3b that the switch/set-up
line/set-down line is a 2-state input/output gadget with three inputs: one sets the state to up, one
sets it to down, and one sends the agent to one of two outputs based on the current state.

Theorem 2.6. Zero-player motion planning with the switch/set-up line/set-down line is PSPACE-
hard.

Proof. First we build an edge duplicator, shown in Figure 9. This allows us to use gadgets with
multiple set-up or set-down lines.

Next we present a reduction from QBF. Given a quantified Boolean formula where the unquan-
tified formula is 3-CNF, we construct a system of gadgets which evaluates the formula, ultimately

13

A

B

A'

B'
X X'

Figure 9: An edge duplicator for the switch/set-up line/set-down line. A agent entering on the left
sets the state of the switch, goes across the duplicated tunnel (which is one subunit of some bigger
gadget), and exits based on the state it set the switch to.

sending the agent to one of two locations based on its truth value. The system consists of a sequence
of quantifier gadgets, which set the values of variables, followed by the CNF evaluation , which
checks whether the formula is satisfied by a particular assignment and reports this to the quantifier
gadgets.

Each quantifier gadget has three inputs, called In, True-In, and False-In, and three outputs,
called Out, True-Out, and False-Out. The agent will always first arrive at In. This sets the
variable controlled by that quantifier to true, and the agent leaves at Out, which sends it to the
next quantifier gadget. Eventually the agent will return to either True-In or False-In, depending on
the truth value of the rest of the quantified formula with the variable set to true. Depending on the
result, the quantifier gadget either sends the agent to True-Out or False-Out to pass this message
to the previous quantifier gadget, or the quantifier gadget sets its variable to false, and again sends
the agent to the next quantifier. When it gets a truth value in response the second time, it sends
the appropriate truth value to the previous quantifier. The last quantifier communicates with the
CNF evaluation instead of with another quantifier.

The universal quantifier gadget is shown in Figure 10. The chain of gadgets at the top encode
the state of the variable controlled by this quantifier, as has as many gadgets as there are instances
of the variable in the formula. The variable is true when they are set to the ‘left’ state and false
when they are set to the ‘right’ state, where the direction refers to the position, in the figure as
drawn, of the exit which would be taken if the agent enters the switch.

When the agent enters In, it sets the variable to true and exits Out. If it then returns to
True-In, the first time it takes the bottom branch of the switch, sets that gadget to the up state,
sets the variable to false, and exits Out again. If it returns to True-In a second time, that means
the rest of the formula was true for both settings of the universally quantified variable: it takes the
top branch, resets that gadget to down, and exits True-Out. If after either trial the agent enters at
False-In, it resets the bottom gadget to the down state and exits False-Out. This is the intended
behavior of the universal quantifier: it reports true if the result was true for both settings of the
variable, and false otherwise.

The existential quantifier is identical except that True-Out and False-Out are swapped, and
True-In and False-In are swapped. It reports false if the result was false for both settings, and true
otherwise.

For CNF evaluation, we use the switches controlled by each quantifier to read the value of a
variable. For each clause, the agent passes through a switch corresponding to each of the literals
in the clause. If all three literals are false, it exits False-Out. Otherwise, it moves on to the next
clause, eventually exiting True-Out if all clauses are satisfied. This is shown, for 3 clauses, in

14

Out

True-Out

False-Out

In

True-In

False-In

Figure 10: The universal quantifier for the switch/set-up line/set-down line. An edge duplicator
(Figure 9) is used to give the bottom gadget two set-down lines.

Figure 11. Ultimately, the agent exits True-Out or False-Out depending on whether the formula is
satisfied by the current assignment.

It follows by induction that, for each quantifier, when the agent arrives at In, it will eventually
leave either True-Out or False-Out depending on the truth value of the suffix of the formula begin-
ning with that quantifier under the assignment of the earlier quantifiers. Thus, if the agent starts
in the first quantifier at In, it reaches True-Out on the first quantifier if and only if the formula is
true.

2.3.3 Other Gadgets Simulate the Switch/Set-Up Line/Set-Down line

In this section, we show that every unbounded output-disjoint deterministic 2-state input/output
gadget with multiple nontrivial inputs simulates the switch/set-up line/set-down line. In other
words, the switch/set-up line/set-down line forms a one-gadget basis for unbounded output-disjoint
deterministic 2-state input/output gadgets. We only need to show that the five other gadgets from
Lemma 1.1 simulate the switch/set-up/set-down. It follows that zero-player motion planning with
any such gadget is PSPACE-complete, since we can replace each gadget in a system of switch/set-
up/set-down with a simulation of it.

Toggle Switch/Toggle Switch. We begin with the toggle switch/toggle switch, which is not
part of our basis of gadgets from Lemma 1.1, but will be a useful intermediate gadget. It simulates
an edge duplicator, as shown in Figure 12. We can merge the two outputs of one of the toggle
switches to simulate a toggle switch/toggle line, and then duplicate the toggle line to make a gadget

15

True-Out

False-Out

In

Figure 11: Three clauses of CNF evaluation for the switch/set-up line/set-down line; each clause
is a row of three switches. The switches are part of gadgets in the quantifiers. We assume the top
exit of each switch corresponds to that literal being true; all literals are set to false in this image.

Figure 12: An edge duplicator for the toggle
switch/toggle switch. The tunnel on the left is
duplicated.

Figure 13: A simulation of three toggle lines and
three toggle switches from gadgets with one tog-
gle switch and 5, 6, and 7 toggle lines. The red
tunnels are toggle lines and the blue tunnels are
toggle switches.

with one toggle switch and any number of toggle lines.
By putting such gadgets in series, we can simulate a gadget with any number of toggle lines

and any number of toggle switches. Figure 13 shows this for three toggle lines and three toggle
switches, which is as large as we need. This simulated gadget can finally simulate the switch/set-up
line/set-down line, as shown in Figure 14.

16

Figure 14: A simulation of a switch/set-up line/
set-down line, currently in the down state, from
the gadget built in Figure 13. Each component of
the switch/set-up line/set-down line is made from
one toggle line and one toggle switch; the switch,
set-up line, and set-down line are red, green, and
blue, respectively.

Figure 15: A simulation of a toggle switch/
toggle switch from the toggle switch/toggle
line. Each color corresponds to one of the tog-
gle switches.

Figure 16: An edge duplicator for the switch/toggle
line. The leftmost tunnel is duplicated.

Figure 17: An edge duplicator for the set-
up switch/toggle line. The leftmost tun-
nel is duplicated.

Toggle Switch/Toggle Line. We simulate the toggle switch/toggle switch using toggle switch/
toggle lines, as shown in Figure 15.

Switch/Toggle Line. First we build an edge duplicator, shown in Figure 16. Then we can dupli-
cate the toggle line and put one copy in series with the switch, constructing a toggle switch/toggle
line.

Set-Up Switch/Toggle Line. First we build an edge duplicator, shown in Figure 17. Then we
simulate the switch/toggle line, shown in Figure 18.

Set-Up Switch/Set-Down Line. We simulate a set-down switch/toggle line (equivalent to a
set-up switch/toggle line) using the set-up switch/set-down line, as shown in Figure 19.

17

Figure 18: A simulation of
the switch/toggle line using
the set-up switch/toggle line.
Red corresponds to the switch
and blue corresponds to the
toggle line.

Figure 19: A simulation of a set-down switch/toggle line using
the set-up switch/set-down line. When the agent is not inside
the simulation, the rightmost gadget is in the down state and the
other two gadgets are in opposite states and encode the state of
the simulated gadget. Red lines indicate the toggle line: when the
agent enters the bottom entrance, it takes one of the internal paths
depending on the state and exits the top exit, reversing the state
of the left and middle gadgets. When it enters the top entrance,
it exits one of the bottom two exits and resets the state to down.

Figure 20: A simulation of a set-up line/set-down switch from the set-up line/toggle switch. The
state of the simulated gadget is the same as the state of the center gadget. The red path corresponds
to the set-up line. When it enters the set-down switch, the agent goes along the blue lines if the
state is down, the green lines if the state is up, and the black lines in both cases.

Toggle Switch/Set-Up Line. We simulate a set-up line/set-down switch using the toggle
switch/set-up line, as shown in Figure 20; this is equivalent to a set-up switch/set-down line.

These simulations, together with Lemma 1.1, give the following theorem:

Theorem 2.7. Every unbounded output-disjoint deterministic 2-state input/output gadget with
multiple nontrivial inputs simulates the switch/set-up line/set-down line.

Corollary 2.8. Let G by an unbounded output-disjoint deterministic 2-state input/output gadget
with multiple nontrivial inputs. Then zero-player motion planning with G is PSPACE-complete.

Proof. Containment in PSPACE is given by Lemma 2.1. All of our simulations preserve PSPACE-
hardness: we can reduce from zero-player motion planning with the switch/set-up line/set-down
line (shown PSPACE-hard in Theorem 2.3.2) to zero-player motion planning with G by replacing

18

Figure 21: A simulation of a 4-switch using the switch/set-up line/set-down line. Colors indicate
the outputs corresponding to set lines.

each gadget in a system of switch/set-up line/set-down lines with a simulation built from G. The
resulting system of G has the same behavior as the system of switch/set-up line/set-down lines.

2.3.4 Universality of the Switch/Set-Up Line/Set-Down Line

In this section, we show how to simulate an arbitrary deterministic input/output gadget using the
switch/set-up line/set-down line, i.e., that this gadget is universal for all deterministic input/output
gadgets. We also show interesting consequences of this result; of particular note is Corollary 2.12
that, in one-player motion planning, the switch/set-up line/set-down line simulates every gadget,
i.e., is fully universal (just like the doors of [ABD+20]).

Theorem 2.9. The switch/set-up line/set-down line simulates every deterministic input/output
gadget in zero-player motion planning.

Proof. We present simulations of gradually more powerful gadgets. First, the edge duplicator
(Figure 9) lets us have any number of copies of the set-up and set-down lines.

Next, we simulate a generalization of the switch/set-up line/set-down line which call the k-
switch. This gadget has k states, k lines which each set the gadget to a particular state, and an
input which does not change the state and sends the agent to one of k locations depending on the
state. The switch/set-up line/set-down line is a 2-switch. The simulation for k = 4 is shown in
Figure 21, and generalizes easily to arbitrary k: we need k − 1 gadgets connected in series, where
the ith gadget has i set-up lines and k − 1− i set-down lines.

We now duplicate the large switch in a k-switch using the construction in Figure 22. Thus the
switch/set-up line/set-down line can simulate a gadget with any number of states, any number of
lines which set it to a particular state, and any number of inputs which send the agent to different
outputs depending on the state but do not change the state.

Finally, let G be an arbitrary deterministic input/output gadget. If G has k states and m input
locations, we use a k-switch with m copies of the switch to simulate G. The m inputs lead directly
to the m switches. For each transition (q, a) → (r, b) of G—meaning that when the agent enters
at a in state q, it exits at b and changes the state to r—we connect the output taken in q of the
switch corresponding to a to a line which sets the state to r, and connect the output of that line
to b. This encodes the correct behavior for that transition. Because G is deterministic, there is
only one such transition for each pair (q, a), so only connect each output of a switch to one input
location, as required for zero-player motion planning.

Corollary 2.10. Every unbounded output-disjoint deterministic 2-state input/output gadget with
multiple nontrivial inputs simulates every deterministic input/output gadget in zero-player motion
planning.

19

1

2

1

2

3

4

3
4

1

2

1

2

3

4

3
4

1

2

1

2

3

4

3
4

Figure 22: Simulating a 4-switch which has three copies of the switch.

Corollary 2.11. The switch/set-up line/set-down line simulates every input/output gadget in one-
player motion planning (that is, we allow multiple input locations in the same connected component
of the connection graph, or equivalently allow fan-out gadgets as described in Section 3).

Proof. We use the same construction as in the proof of Theorem 2.9. If G is nondeterministic—say
it has multiple transitions when entering a in state q—then we will connect the output taken in q
of the switch corresponding to a to multiple input locations.

Corollary 2.12. In one-player motion planning, the switch/set-up line/set-down line simulates
every gadget.

Proof. Let G be an arbitrary gadget. We construct a gadget G′ with the same states as G, locations
ain and aout for each location a of G, and a transition (q, ain) → (r, bout) for each transition
(q, a) → (r, b) of G. Clearly G′ is input/output: ain and aout are input and output locations,
respectively. Thus, by Corollary 2.11, the switch/set-up line/set-down line simulates G′ in one-
player motion planning. But G′ simulates G simply by connecting both ain and aout to a.

Corollary 2.13. In one-player motion planning, every unbounded output-disjoint deterministic
2-state input/output gadget with multiple nontrivial inputs simulates every gadget.

3 One Player

In this section, we consider one-player motion planning with input/output gadgets. This is a gener-
alization of zero-player motion planning, where we no longer require each connected component of
the connection graph to have only one input location. We also now allow nondeterministic gadgets.

A simple nondeterministic input/output gadget is the fan-out gadget, which has one input
location, two output locations, and one state; the player may choose which output location to
take. One-player motion planning (with input/output gadgets) can be equivalently defined by
introducing the fan-out gadget to zero-player motion planning, instead of removing the constraint
that the system is branchless.

We characterize the complexity of one-player motion planning with an output-disjoint determin-
istic 2-state input/output gadget as follows; refer to the bottom row of Table 2 and the middle row

20

of Table 3. If the gadget is trivial (with at least one traversal), then one-player motion planning is
just reachability in a directed graph, which is NL-complete [Wig92]. If the gadget is unbounded and
multi-input, then one-player motion planning is PSPACE-complete by Lemma 3.1 below and by
Corollary 2.8 because it is a generalization of zero-player motion planning. Otherwise, one-player
motion planning is in NP by Lemma 3.1 if it is bounded and by Theorem 3.2 if it is single-input.
In either case, motion planning is NP-hard by Corollary 3.8.

We begin with straightforward containment results:

Lemma 3.1. One-player motion planning with input/output gadgets is in PSPACE, and one-player
motion planning with bounded input/output gadgets is in NP.

Proof. One-player motion planning can easily be simulated by a nondeterministic polynomial-space
algorithm which guesses player choices, so it is in NPSPACE = PSPACE [Sav70].

For bounded input/output gadgets, define k, i, and n as in Theorem 2.3. As before, the number
of state changes is bounded by kn. The shortest solution visits each entrance at most once between
consecutive state changes, and thus has total length at most in(kn + 1). This is a polynomial, so
we can use the list of transitions as a certificate for NP.

For the remainder of this section, we focus on one-player motion planning with single-input
input/output gadgets.

One-player reachability switching games, studied in [FGMS21], are equivalent to one-player
motion planning with deterministic single-input input/output gadgets. Fearnley, Gairing, Mnich,
and Savini [FGMS21] show that this problem is NP-complete when the gadgets are described as
part of the instance.

In this section, we improve on this result in two ways. First, we show in Section 3.2 that the
problem remains in NP even when we allow nondeterministic single-input input/output gadgets,
which cannot all obviously be simulated by deterministic gadgets. Our proof is similar to the proof
of containment in NP in [FGMS21].

Second, we show in Section 3.2 that the problem remains NP-hard with a specific gadget
instead of instance-specified gadgets. In particular, we show that one-player motion planning
with the toggle switch or the set switch is NP-complete. Our reduction is simpler than the one
in [FGMS21], and the technique can be used to prove NP-hardness for many other single-input
input/output gadgets.

3.1 Containment in NP

First we show that one-player motion planning with any single-input input/output gadget is in NP,
generalizing a result from [FGMS21]. Our proof is similar, but requires more care to account for
nondeterministic gadgets.

Theorem 3.2. One-player motion planning with single-input input/output gadgets is in NP.

The input can describe the gadgets in the system by listing their states and locations and
specifying their transition graphs.

Proof. A single-input input/output gadget is described by a labeled directed graph, with states
as vertices and transitions as edges, where each edge is labeled with an output location. An edge
labeled b from q to r indicates that, when the agent enters the unique input location in state q, it
can exit at b and change the state to r. If you prefer, this can be thought of as a nondeterministic
finite automaton (NFA) whose alphabet is the locations of the gadgets in the motion-planning
problem.

21

We will adapt the certificates used in [FGMS21], controlled switching flows, to work for nonde-
terministic gadgets. The number of times each output location (or edge in the equivalent reacha-
bility switching game) is used is no longer enough information, since it may in general be hard to
determine whether a nondeterministic gadget has a legal sequence of transitions which uses each
location a specified number of times.2 Instead, we will have the certificate include the number
of times each traversal in each gadget is used, which will be enough information to be checked
quickly. We modify the definition of controlled switching flows as follows.

Definition 3.3. A controlled switching flow in a system of single-input input/output gadgets
is a function f from the set of transitions gadgets in the system to the natural numbers (including
zero) which is “locally consistent” in the following sense:

• For a connected component H of the connection graph, let Hi and Ho be the sets of traversals
from input locations and to output locations in H, respectively. That is, Hi contains all
transitions in gadgets whose input location is in H, and Ho contains the transitions which
leave the agent in H. Then

∑
t∈Hi

f(t)−
∑
t∈Ho

f(t) =

1 H contains the start location

−1 H contains the goal location3

0 otherwise.

• For each gadget, there is a legal sequence of transitions from its starting state s which uses
each transition t in the gadget exactly f(t) times.

That is, thinking of f(t) as the number of times the agent uses the transition t, the agent enters
and exits each connected component the same number of times, except that it exits the start location
and enters the goal location once, and the agent uses the transitions of each gadget a consistent
number of times.

To prove containment in NP, our certificate that it is possible to reach the goal location is a
controlled switching flow. Note that each gadget has a polynomial number of transitions, so f has
polynomially many entries. We need the following three lemmas:

Lemma 3.4. If there is a controlled switching flow, then it is possible to reach the goal location.

Lemma 3.5. If it is possible to reach the goal location, then there is a polynomial-length controlled
switching flow, i.e., one where f(t) is at most exponential in the size of the system.

Lemma 3.6. There is a polynomial-time algorithm which determines whether a function f is a
controlled switching flow.

Together these imply that controlled switching flows can actually be used as certificates, and
thus the one-player problem is in NP.

2In fact, this is NP-hard by a reduction from the existence of a Hamiltonian path in a directed graph: given a
graph with n vertices, construct a gadget with n states and n output locations whose transition graph is the input
graph, and ask for a sequence of transitions which uses each output location exactly once. In terms of finite automata,
determining whether a given NFA accepts any anagram of a given string is NP-complete.

3We can assume the start and goal locations are in different connected components, since otherwise the reachability
problem is trivial.

22

Proof of Lemma 3.4. Let f be a controlled switching flow. For each gadget g, pick a sequence of
transitions of length ℓg =

∑
t∈g

f(t) in that copy which uses each transition t exactly f(t) times; this

exists by the definition of a controlled switching flow. We play the one-player motion planning game
in the system. Our strategy is based on the chosen sequences: whenever we arrive at a gadget, take
the next transition in the sequence. If we find ourselves in a connected component with the input
locations of multiple gadgets, we can enter any gadget g which we have previously used fewer than
ℓg times. We stop when we reach the connected component of the goal location, or when we have
no moves obeying this strategy, meaning every gadget g whose input location is currently reachable
has already been used ℓg times.

We claim this strategy must reach the goal location. If it does not, we must eventually get stuck
with no moves (specifically, within

∑
t
f(t) steps), and we will show this cannot happen because f

is a controlled switching flow. For the sake of contradiction, let H be the connected component
of the connection graph we are stuck in. To be stuck, we must have previously exited H at least∑
t∈Hi

f(t) times. So we must have entered H at least
∑
t∈Hi

f(t) + 1 times (or one fewer, if the start

location is in H). However, we have entered H at most
∑

t∈Ho

f(t) times, so
∑

t∈Ho

f(t) ≥
∑
t∈Hi

f(t) + 1

or
∑

t∈Ho

f(t) ≥
∑
t∈Hi

f(t) if the start location is in H, which violates the assumption that f is a

controlled switching flow.

Proof of Lemma 3.5. For some path which reaches the goal location, let f(t) be the number of
times the path uses the traversal t. Then f is clearly a controlled switching flow. The number of
traversals in the shortest solution path is at most the number of configurations of the system of
gadgets, which is at most nkn the system contains n gadgets which have at most k states. Thus
using the shortest solution path, we have a controlled switching flow f where f(t) ≤ nkn and thus
f has polynomial length.

Proof of Lemma 3.6. The first condition for f to be a controlled switching flow can be easily checked
in polynomial time by computing the relevant sums.

For the second condition, think of a gadget in the system as a directed multigraph with states
as vertices and transitions as edges (labelled with their output locations). The second condition
says that there is a walk through this graph starting at s which uses each edge t a specified number
f(t) of times. This is equivalent to an Euler tour in the (possible exponentially large) graph with
f(t) copies of the edge t. To verify that such a walk exists, we only need to check that the total in-
and out-degrees match at each vertex (except possibly off by one at s and one other vertex) and
that the set of used transitions, i.e., those t where f(t) > 0, is connected. This can all be checked
in polynomial time.

This concludes the proof of Theorem 3.2.

3.2 NP-hardness

In this section, we prove NP-hardness of one-player motion planning with each of the nontrivial
single-input 2-state deterministic gadgets: the set switch and toggle switch. Our proofs can be
easily adapted to prove NP-hardness of the corresponding problem for many input/output gadgets,
but we leave open the problem of providing a characterization.

Our reduction is simpler than that in [FGMS21], and we show hardness for specific gadgets
instead of general reachability switching games, which are equivalent to instance-specified gadgets.

23

x

NOT x

+ +
in

out

(a) A variable. The player must pick one of the two branches to cross, and
render the final set-down switch useless.

+
in

out

(b) A clause. The player
can only cross if at least
one of the literals is set
to true; otherwise they get
stuck in a dead-end a vari-
able.

Figure 23: Our reduction from 3SAT for one-player motion planning with the set-down switch.

Theorem 3.7. One-player motion planning with either the toggle switch or the set switch is NP-
hard.

Proof. We provide essentially identical reductions from 3SAT to the two motion-planning problems.
In the reduction, the player will never be able to traverse a gadget more than two times, so the
difference between the toggle switch and the set switch is irrelevant. Each gadget will begin in
the state which sends the agent to the ‘top’ exit, and after a single traversal moves to the state
which sends the agent to the ‘bottom’ exit. We will describe the reduction in terms of the set-down
switch, but it is equally applicable to the toggle switch.

For each variable in a 3SAT instance, there is a fork where the player may choose one of two
paths. Each path passes through a series of set-down switches, exiting each from the top and
setting them to the down state. The paths then merge and go through one more set-down switch,
whose down exit is a dead-end. The number of gadgets in each branch depends on the number of
instances of each literal in the formula. These variables are connected in series beginning at the
start location, so the player is forced to walk through each variable, picking a side to use for each
one. This corresponds to picking an assignment of each variable. After setting the variables in this
way, the last set-down switch at the end of each variable is in the down state.

For each clause, there is a 3-way fork, where the player must choose to go through one of the
gadgets corresponding to a literal in the clause. If the chosen gadget was already traversed (during
the variable-setting phase), the agent exits the bottom and can continue to the exit of the clause.
If the chosen gadget was not already traversal, the agent exits the top, and finds itself in a variable.
The player now has no choice but to walk down the variable path until the agent goes through the
set-down switch at the end of the variable, which is in the down state, so the agent is now stuck in
a dead-end.

The clauses are connected in series, with the last variable leading to the first clause and the last
clause leading to the goal location. In order to reach the goal location, the agent must pass through
each variable and then each clause. In order to get through a clause without getting stuck, at least
one gadget in the clause must have already been traversed; equivalently, at least one literal in the

24

(a) The switch/set-up line simulates the
set-up switch.

(b) The switch/toggle line simulates the
toggle switch.

Figure 24: Simulating nontrivial single-input gadgets from gadgets without a toggle- or set-switch.

clause must be true under the assignment corresponding to the path taken during variable setting.
Thus the agent can reach the goal location if and only if the formula has a satisfying assignment.

For the set-down switch, once a gadget is in the down state it remains there forever, so it does
not matter what order the clauses or gadgets within each variable path are in. However, for the
toggle switch, when the agent walks through a clause the gadget it uses returns to the up state,
which could lead to the agent later escaping that variable using the same gadget, instead of getting
stuck in a dead-end.

To prevent this, we order the gadgets on each variable path carefully. Specifically, we first
choose an order for the clauses. For each literal ℓ, we have the path corresponding to ℓ go through
the set-down switches representing ℓ in the same order they appear in clauses. So if the agent moves
from a clause to a variable through a gadget corresponding to ℓ (because ℓ was false), the agent
cannot have previously interacted with any of the gadgets further along the line corresponding to
ℓ during the clause-checking phase. In particular, those gadgets are all in the up state, and so the
agent is in fact forced to go to the dead-end at the end of the variable.

Corollary 3.8. One-player motion planning with any nontrivial output-disjoint deterministic 2-
state input/output gadget is NP-hard.

Proof. It suffices to show that such a gadget can simulate either the toggle switch or the set switch,
since Theorem 3.7 says one-player motion planning with either of these gadgets is NP-hard.

The only single-input output-disjoint deterministic 2-state input/output gadgets are the toggle
switch and set switch, which simulate themselves. If the gadget is multi-input, by Lemma 1.1 it
simulates one of the eight basis gadgets shown in Figures 2 and 3. All but three of these contain a
toggle switch or set switch. The switch/set-up line/set-down line contains the switch/set-up line, so
we need only consider the switch/toggle and switch/set-up line. These can simulate, respectively,
the toggle switch and the set-up switch, as shown in Figure 24.

4 Two Players

In this section, we consider a two-player game on systems of input/output gadgets where the two
players control a shared agent. This game is analogous to the two-player reachability switching
games of [FGMS21], and we improve upon their results. This game is different from two-player
motion planning as defined in [DHL20], which has two agents each controlled by one player.

Definition 4.1. For an input/output gadget G, two-player shared-agent motion planning
with G is played on a branchless system of G and fan-out gadgets, with each gadget labeled Black or

25

White, and has two players named Black and White. An agent begins at a designated start location.
When the agent reaches a gadget, the player matching the gadget’s label chooses a transition to
take. White’s goal is to reach a designated goal location, and Black’s goal is to prevent this.

The decision problem two-player shared-agent motion planning with G is whether White
has a strategy to force a victory.

If G is deterministic, the labels on G do not matter: decisions are made only at fan-out gadgets.
Two-player reachability switching games are equivalent to two-player shared-agent motion plan-

ning with deterministic single-input input/output gadgets specified as part of the instance. It is
shown in [FGMS21] that this problem is in EXPTIME and PSPACE-hard.

In this section, we improve on this result in two ways. First, we show that two-player shared-
agent motion planning with any input/output gadgets (with any number of inputs) is in EXPTIME.
Second, we show that two-player shared-agent motion planning with just the toggle switch or the set
switch is PSPACE-hard. We give a reduction from Geography which is simpler than the reduction
in [FGMS21].

We do not show EXPTIME-hardness for two-player shared-agent motion planning with any
gadget. We conjecture that two-player shared-agent motion planning is EXPTIME-hard with any
multi-input unbounded output-disjoint deterministic 2-state input/output gadget, and perhaps
even with any single-input such gadget (the only one being the toggle switch).

Lemma 4.2. Two-player shared-agent motion planning with input/output gadgets is in EXPTIME.

Proof. The two-player game can be simulated on an alternating Turing machine using polynomial
space, where White’s decisions are made by existential states and Black’s decisions are made by
universal states. Thus the problem is in APSPACE = EXPTIME.

Theorem 4.3. Two-player shared-agent motion planning with either the toggle switch or the set
switch is PSPACE-hard.

Proof. We provide essentially identical reductions from a version of Geography to the two problems.
In the reduction, the agent will never be able to traverse a gadget more than two times, so the
difference between the toggle switch and the set switch is irrelevant. As in the proof of Theorem 3.7,
we will describe the reduction in terms of the set-down switch, but it is equivalent for the toggle
switch.

Vertex-Partizan Directed Vertex Geography is a game played on a directed graph with
specified start vertex, where each vertex is assigned to a player. Two players each move a marker
along an edge whenever it is at one of their vertices, with the rule that the marker cannot visit
the same vertex multiple times. A player loses if they have no moves. In Vertex-Partizan Max-
Degree-3 Directed Vertex Geography, we assume every vertex has degree at most three, with at
most two incoming edges and at most two outgoing edges. This problem is introduced and shown
PSPACE-complete in [BCC+20]; vertex-partizan is a slight variation on bipartite Geography. We
will refer to Vertex-Partizan Max-Degree-3 Directed Vertex Geography as simply Geography .

We construct an instance of two-player shared-agent motion planning with the set-down switch
from an instance of Geography as follows. Each Geography vertex will be a single gadget, with
tunnels in the connection graph corresponding to Geography edges. If a vertex has in-degree 1
and out-degree 2, we replace it with a fan-out gadget labeled with the player who is assigned that
vertex. If a vertex has in-degree 2 and out-degree 1, we replace it with a set-down switch initially
set to ‘up’, with the ‘up’ exit leading to the edge out of the vertex and the ‘down’ exit leading to
the goal location if the vertex is assigned to White and a dead-end otherwise. The agent starts at
the location corresponding to the start vertex.

26

Play on this system of gadgets proceeds as follows. When the agent reaches a fan-out gadget,
the player assigned the corresponding vertex chooses which output to take. When the agent reaches
a set-down switch for the first time, it continues along the outgoing edge to another vertex. When
it reaches a set-down switch for the second time, the game ends and the player who is assigned
the corresponding vertex wins. This is the same as the game of Geography: a player loses if the
agent moves from one of their vertices to a set-down switch it visited before, which is equivalent to
players not being allowed to move the marker to an already-visited vertex.

5 Applications

In this section, we use the results in this paper to prove PSPACE-completeness of the mechan-
ics in several video games: one-train colorless Trainyard, [the Sequence], trains in Factorio, and
transport belts in Factorio.4 For each of these problems, the decision problem is the long-term
behavior of a deterministic system, e.g., whether a train ever reaches a specific location. Another
interesting decision problem, which we do not consider here, is the design problem: given some set
of constraints, is it possible to build a configuration with a desired behavior? This is perhaps more
natural because, for example, it captures the question of deciding whether a level in Trainyard is
solvable.

5.1 Trainyard

The study of the complexity of Trainyard began with [ALP18b], which showed that finding a
solution to a Trainyard level is NP-hard. Later, [ALP18a] showed that checking a solution to a
Trainyard level is PSPACE-complete—verifying solutions may be harder than finding them. We
improve on this result by showing that checking a solution to a Trainyard level is PSPACE-hard
even with only one train, and with no color changes.

Trainyard is a puzzle game in which the goal is to build a system of rails so that trains of the
correct colors reach certain stations. We consider one-train colorless Trainyard, where solutions
consist of only rails, crossings, and switches5 There is a single train which moves forward along
the rails; it succeeds if it reaches a designated location, and crashes and fails if the track it is on
ends. Rails can be traversed in both directions.

The only nontrivial behavior comes from switches, which have two states. A switch changes
state every time the train moves through it. It has three locations: two of them always route the
train to the third, and the third routes the train to one of the first two depending on the state. We
can model this as a toggle line/toggle line/toggle switch with some locations identified; we call this
the Trainyard gadget , which is shown in Figure 25. Since tracks can bend and cross each other,
the planarity of a system of Trainyard gadgets does not matter. Now one-train colorless Trainyard
is equivalent to zero-player motion planning with the Trainyard gadget—except that the Trainyard
gadget is not input/output, so we have not defined zero-player motion planning with it.

Definition 5.1. Zero-player motion planning with the Trainyard gadget takes place in a
system of Trainyard gadgets where the connection graph is a partial matching. That is, each location
is either paired with one other location or a dead-end.

4Factorio in general is already known to be PSPACE-complete, as players have explicitly built computers using
the circuit network; for instance, see https://forums.factorio.com/viewtopic.php?t=42708 or https://redd.it/6imjhv.
We consider the restricted problems with only train-related objects and only transport belt-related objects.

5This use of the word ‘switch’ is unrelated to the component of input-output gadgets.

27

https://forums.factorio.com/viewtopic.php?t=42708
https://redd.it/6imjhv

1
2

2

2
1

1

Figure 25: The Trainyard gadget.

An agent moves through the system similarly to with input/output gadgets. When it enters a
Trainyard gadget, it takes the unique available transition. When it exits a Trainyard gadget, it
moves to the unique paired location, or stops and crashes if it is at a dead-end.

Theorem 5.2. Zero-player motion planning with the Trainyard gadget, or equivalently checking a
solution to one-train colorless Trainyard, is PSPACE-hard.

Proof. We will reduce from zero-player motion planning with the toggle switch/toggle line. For-
mally, we actually reduce from a restricted version of this problem, where we are promised that
the agent does not enter an infinite loop—it either reaches the goal location or a dead-end. The
system constructed by Theorem 2.3.2 satisfies this property, and the simulations in Section 2.3.3
preserve it, so the restricted promise problem is still PSPACE-hard.

We cannot quite directly simulate a toggle switch/toggle line, for a few reasons:

• The Trainyard gadget, and thus any gadget simulated by it, can be entered at any location,
not just input locations. To account for this, we will denote some vertices in the simulation
as input and output, and the arrangement of gadgets will ensure that the agent always
enters simulated gadgets at input-denoted locations and exits and output-denoted locations.
In particular, paths emerging from output-denoted locations always lead to input-denoted
locations.

• Zero-player motion planning with the Trainyard gadget does not include fan-ins. However,
we can easily simulate fan-in in the above sense by denoting two locations as input and one as
output on the Trainyard gadget—the Trainyard gadget is a fan-in provided the agent never
enters at the left location.

• Even with the above caveats, we have not been able to simulate the toggle switch/toggle line
(or any unbounded output-disjoint deterministic 2-state input/output gadget with multiple
nontrivial inputs) with the Trainyard gadget. Instead, we simulate a toggle switch/toggle
line for exponentially long . Formally, we describe a network of Trainyard gadgets for each
natural number k such that the kth network has the same behavior as the toggle switch/toggle
line for at least 2k transitions, and can be constructed in time polynomial in k. Consider a
system of n toggle switch/toggle lines in which the agent never enters an infinite loop (such
as the one used to prove PSPACE-hardness). The system has at most 2n configurations
and 5n locations for the agent; thus after at most 5n2n transitions, the agent reaches either
the goal location or a dead-end. If we pick a polynomial-size k such that 2k > 5n2n (e.g.,
k = 2n + 3 suffices), then the network of Trainyard gadgets we obtain by replacing each
toggle switch/toggle line with the kth simulation has the same behavior long enough for the
agent to either reach the goal location or crash at a dead-end. Hence these exponentially long
simulations suffice for PSPACE-hardness.

28

Thus it suffices to find an exponentially long simulation of the toggle switch/toggle line. Before
describing this simulation, we present an exponentially long simulation of an intermediate gadget
called the reverse branch , shown in Figure 26. This gadget has one state and three locations.
We assume the top right location is only used as an entrance, and the bottom right location is only
used as an exit.

Figure 26: The reverse branch gadget.

Figure 27 shows our exponentially long simulation of a reverse branch. The k gadgets in the
bottom row serve as fan-ins, since we assume the agent never enters at the bottom right. Consider
the states of the top row of k+1 gadgets as describing a number in binary: up (state 1) is 0, down
(state 2) is 1, and the bits are read right to left. When the agent enters at the left, it increments
this number (mod 2k+1) and exits at the bottom right, unless the states are all up so the number
is 0, in which case it exits the top right. When the agent enters at the top right, it flips the state
of every gadget in the top row and exits at the left; this changes the number by x 7→ −x − 1. In
particular, the distance from 0 changes by at most 1 with each transition. By starting at 2k as in
Figure 27, it takes at least 2k transitions to reach 0, so the simulation is correct for 2k transitions.

Now we simulate a toggle switch/toggle line using a Trainyard gadget and two reverse branches,
as shown in Figure 28. When the agent enters at a, it exits at b, flipping the state of the Trainyard
gadget (in the middle); this is the toggle line. When the agent enters at c, it exits at d or e
depending on the state of the Trainyard gadget, and flips the state; this is the toggle switch. Each
transition through the simulated gadget makes at most one transition through each reverse branch,
so if the reverse branches are correct for 2k transitions, so is the toggle switch/toggle line.

Figure 27: An exponentially long simulation of a reverse branch using Trainyard gadgets.

29

a

b

c

d

e

Figure 28: A simulation of a toggle switch/toggle line using a Trainyard gadget and reverse branches.

(a) The mover module. (b) The turner module. (c) The puller module. (d) A fixed block.

Figure 29: [the Sequence] modules used in our proof, and the fixed block.

5.2 [the Sequence]

[the Sequence] is a puzzle game in which the player attempts to place modules to move binary
units from a source to a target . There are seven different modules which have different effects; for
instance, the pusher moves anything immediately in front of it one square away.6 In this section,
we prove that determining the correctness of a solution to a [the Sequence] puzzle is PSPACE-
complete.

First we describe the mechanics of [the Sequence] that are necessary for our proof. The game
takes place on a bounded square grid, containing the source and target, some fixed blocks, and some
modules (which the player has placed, and which have an orientation). A deterministic simulation
occurs in a series of rounds. Each round begins with the source creating a binary unit if it does
not already have one. Then each module acts in a specified order; their actions are detailed below.
Only modules and binary units can be moved. A binary unit disappears when it reaches the target.
If objects (binary units, modules, or walls) ever collide, the simulation stops. The solution is correct
if it moves an arbitrary number of binary units from the source to the target.7

The modules used in our proof are the following, shown in Figure 29:

• The mover moves one square forward, bringing any module or binary unit immediately to
its left with it.8

• The turner rotates any module immediately in front of it 90◦ counterclockwise.

• The puller moves any module or binary unit two squares in front of it to only one square in
front of it.

Theorem 5.3. Determining correctness of a solution to a [the Sequence] puzzle is PSPACE-
complete.

6Module names are not given in the game, so we use our own names.
7The game checks that four binary units are successfully moved, but an unlimited number is more natural.
8These modules can also be reflected, but we do not use that.

30

Figure 30: Bending paths and a fan-in for [the Sequence]. The movers represent where the mover
might enter; they do not simultaneously exist. If the mover enters in either location, it is turned
and possibly pulled, and then exits the right. The fixed blocks are only to help visualize the paths
taken.

We prove hardness using a reduction from zero-player motion planning with the switch/set-up
line/set-down line. Our proof is robust to the definition of correctness, in the following sense: if
the agent reaches the goal location, the solution moves arbitrarily many binary units to the target.
If the agent does not reach the goal location, the solution runs forever without moving any binary
units. A simple modification to the reduction makes the simulation crash if the agent does not
reach the goal (though this requires the property of the proof of PSPACE-hardness of zero-player
motion planning that the agent reaches a specific location exactly when it does not reach the goal).

Proof. The game is a deterministic simulation with a polynomial amount of state (each square has
at most one module or binary unit, which takes a constant amount of memory), so the simulation
can be carried out in polynomial space. Determining whether arbitrarily many binary units will
be delivered to the target is harder, but can still be done in PSPACE by detecting a cycle in the
configuration, perhaps using a tortoise-and-hare algorithm.

For PSPACE-hardness, we give a reduction from zero-player motion planning with the switch/
set-up line/set-down line. The agent is represented by a single mover. Turners rotate the mover
to control its path. Fan-in is accomplished using a puller to merge to adjacent parallel paths, as
shown in Figure 30. Paths can easily cross each other since they only require modules at corners
and fan-ins.

The switch/set-up line/set-down line, shown in Figure 31, is built using three pullers. When
the agent enters the set-up or set-down line, the mover moves the central puller to a particular side.
When the agent enters the switch, the mover is pulled if the puller is on the appropriate side; the
path it exits depends on the state of the gadget.

If the agent reaches the goal location, the mover reaches a cycle which has it deliver binary
units to the target, shown in Figure 32. Otherwise it gets stuck in the maze of modules forever,
and never moves any binary units.

5.3 Factorio Trains

Our first application for the factory-building video game Factorio is showing that trains in Factorio
are PSPACE-complete. The decision problem we consider is whether a particular target train

31

(a) The gadget in the down state, with a mover
entering to set it to the up state.

(b) The gadget in the up state, with a mover
entering to set it to the down state.

(c) The gadget in the down state, with a mover
entering the switch.

(d) Separating the adjacent paths, analogous to
Figure 30.

Figure 31: A switch/set-up line/set-down line for [the Sequence]. The puller in the middle encodes
the state. When the mover enters the bottom right (a) or top left (b), it moves the middle puller
to the top or bottom and then gets pulled away, setting the state. When it enters the left, which
row it exits on the right depends on whether the middle puller was at the bottom to pull the mover
down. Finally, we separate these two paths with appropriate turners (d).

ever reaches its target station, in a world with only a train system and no player interaction. Other
work on the computational power of Factorio Train systems includes the simulation of cellular

32

Figure 32: A cycle for the mover to deliver binary units. The two objects in the middle are the
source and target. If the mover enters at the left as shown, it is pulled into the loop similarly to
the fan-in. The turners then keep it moving in a rectangle, and it moves a binary unit from the
source to the target on each loop.

automata Rule 110 on a bounded tape [Min20]. The logical infrastructure used to implement Rule
110 is significantly more sophisticated and is likely sufficient to show PSPACE-completeness given
proper analysis. We provide our own construction and prove PSPACE-completeness by reducing
from zero-player motion planning with the switch/set-up line/set-down line.

Next we describe the train components of Factorio, illustrated in Figure 33. Trains in Factorio
are constrained to rails, which can bend, fork, and cross each other. Stations are locations which
trains will try to reach. Each train is provided with a schedule , which is a list of stations; the
train will move to each station in the list in cyclic order. If there are multiple stations with the
same name, the train will find the cheapest path to any of them, where the cost of a path depends
on its length and also on properties including the number of other trains blocking the path and
the amount of time the train has been waiting so far. Trains are prevented from crashing into each
other using rail signals and chain signals. These partition the rail system into blocks, and
(roughly) trains will not enter a block that is already occupied by another train.

Here are some caveats applying to our hardness proof:

• We assume that the only objects in the world are rails, locomotives (we make no use of cargo
wagons), train stations, rail signals, and chain signals. In particular, there are no players,
construction robots, circuit networks, or biters.

• We ignore fuel requirements of trains, assuming they have unlimited fuel. Without this
assumption, and without allowing some mechanism to provide fuel, the problem would be in
NP (since each train would move a bounded distance before running out of fuel).

• We do not use the complexity in train wait conditions: the only wait condition used is
0 seconds. In fact, every train’s schedule consists of just two stations A and B, which the
train will alternate between.

• We do not know all of the details of the behavior of trains, but under the plausible assumptions
that a single game tick is simulated in polynomial time and the amount of memory associated
with each train (and other train-related component) is polynomially bounded, the decision
problem is clearly in PSPACE.

33

Figure 33: A demonstration of the train-related objects in Factorio. From left to right, we have a
rail signal, locomotive, rail signal, rail fork, rail crossing, train station, rail signal, and chain signal.
The leftmost rail signal is red, indicating the presence of a train in the block in front of it.

Figure 34: A wire of Factorio trains. The leftmost rail signal is green, so the leftmost train is free
to move left. Then the train behind it can also move left, and so on, moving the gap right.

Theorem 5.4. In a Factorio world with only rails, locomotives, train stations, rail signals, and
chain signals, and where each train’s schedule alternates between the same two stations A and B

with the trivial wait condition, it is PSPACE-hard to determine whether a specified target train
ever reaches its next station.

Proof. We show PSPACE-hardness through a reduction from zero-player motion planning with the
switch/set-up line/set-down line. The rail network is mostly full of trains, one in each block, and
the motion-planning agent is represented by a gap (not by a train), a block which does not contain
a train and thus which a train can move into. A simple ‘wire’ is constructed by a line of blocks all
occupied by trains, as shown in Figure 34. When the gap reaches the front of the line, each train
in turn is able to move forward one block, moving the gap to the end of the line. The movement
of the gap is in the opposite direction of the movement of the trains.

Fan-ins are achieved using a fork in a track, as shown in Figure 35. When the gap arrives at
either branch of the fork, the train just entering the fork will move forward to fill the gap, since
trains prefer paths with fewer other trains in the way. To ensure the path-finding works as expected,
we place stations before and after the fork which make the paths the train at the fork needs to find
short.

Since the network of gadgets in zero-player motion planning may be nonplanar, we need a
crossover. This is easy to build using two crossing rail lines with the appropriate configuration of
rail and chain signals, shown in Figure 36.

The initial location of the agent is represented by an empty block—in fact, the only empty
(nonchain signaled)9 block in the network. We place the target train on a short rail line blocked by

9There is also an empty block at each intersection. However, these blocks have chain signals at their entrances,
so trains will never stop in them, and the fact that they are empty does not allow any trains to move.

34

Figure 35: A fan-in for Factorio trains. Both stations on the left are named B and the station on
the right is named A. When either train on the left leaves, the train on the right will fill its spot:
it takes the cheapest path to B, and paths blocked by trains are considered more expensive. The
chain signal immediately before the fork prevents the train from choosing a branch before one of
them is empty.

Figure 36: A crossover for Factorio trains. The two crossing wires can move independently. Chain
signals prevent trains from blocking the intersection until the train in front moves out of the way.

the train in the block representing the goal location, as shown in Figure 37: the target train will
move forward and reach its target station if and only if the train blocking it moves, which happens
exactly when the agent reaches the goal location.

Finally, we need to build the switch/set-up line/set-down line using trains. This gadget is shown
in Figure 38. We have a train trapped in a loop in the gadget, which encodes the state. When the
gap traverses the set-up or set-down line, the trapped train is temporarily not blocked and moves
forward. When the gap enters the switch, the output it takes depends on what the trapped train
is currently blocking.

5.4 Factorio Transport Belts

In this section, we show that determining whether an item ever reaches a goal location in a Factorio
world with only transport belts, underground belts, and splitters is PSPACE-complete. This result
holds even with a small bounded number of mobile items: in Factorio 0.15 and earlier, we use a
single mobile item (and a polynomial number of immobile items for a technical reason), and in
Factorio 0.16 and later, we use two mobile items (and no immobile items).

35

Figure 37: The win gadget for Factorio trains. Once the gap arrives on the left, the green train
will be able to move forward and reach the station.

(a) The gadget in the up state. (b) The gadget in the down state.

Figure 38: A switch/set-up line/set-down line made of Factorio trains. The blue train is trapped
in the loop and encodes the state of the gadget; it alternates between the two train stations in the
loop. From the down state, if the gap enters the top track of white trains, the blue train is briefly
not blocked and moves to where it is blocked by a train in the bottom track. Similarly when the
bottom track advances the blue train moves to be blocked by a train in the top track. When the
gap enters the middle track and the red train leaves, whichever of the yellow or purple trains is not
blocked by the blue train moves forward.

Transport belts move any items on them in the direction the belt is facing. Items move
smoothly between transport belts, but will stop if there is not another transport belt (or similar
object) in front—transport belts will not dump items onto the ground. Underground belts can
be used to have belts cross; two matching underground belts with at most four tiles between them
will transfer items “underground”.10 Splitters can have up to two transport belts feeding in and
two transport belts feeding out. Splitters alternate which output they send items to, regardless
of the input they came from, except that if one output is blocked by items, all items will go to
the other output. The details of the alternation changed slightly in Factorio version 0.16; we will
explain and investigate the complexity of both versions of the mechanic.

10The distance is longer for fast and express underground belts, but we do not need them.

36

Figure 39: An example transport belt layout, demonstrating transport belts, underground belts,
splitters, lanes, and sideloading.

Transport belts have two lanes, one on each side of the belt, which move items independently,
are preserved going around corners and through splitters. A transport belt facing into the side
of another transport belt will deliver items to the nearer lane; this is called sideloading . When
sideloading onto an underground belt, only one lane of the incoming belt is able to move; the other
lane is blocked.

As with trains, containment in PSPACE is trivial assuming each game tick is simulated in
polynomial time.

Theorem 5.5. In a Factorio world with only transport belts, underground belts, splitters and items,
it is PSPACE-hard to determine whether an item ever reaches a goal location. In 0.15 and earlier,
this remains PSPACE-hard when only one item can move and a polynomial number of items are
stuck. In 0.16 and later, this remains PSPACE-hard when there are only two items.

Proof. For both versions of splitter behavior, we show PSPACE-hardness through a reduction from
zero-player motion planning with the toggle switch/toggle switch. Wires are simply chains of trans-
port belts, fan-in is accomplished by sideloading, and crossovers can be built using underground
belts.

The toggle switch/toggle switch is different for the two versions, and depends on the details of
splitter behavior.

Factorio 0.15 and earlier. Prior to 0.16, splitters alternate both lanes together and each item
type separately. For each item type, all items of that type entering the splitter will alternate which
output belt they take regardless of the lane they are on. The lane an item is on is preserved.11

We view a splitter as having two lanes as inputs, and four outputs: two lanes on each of two belts.
The splitter then behaves as a toggle switch/toggle switch—each lane is a toggle switch, and they
share a state.12

We need to make a toggle switch/toggle switch which uses transport belts instead of lanes as
inputs and outputs. This can be accomplished using sideloading onto the correct lane for the inputs
and sideloading onto an underground belt for the outputs, shown in Figure 40.

11Since each item type alternates independently, the splitter requires one bit of state for each item type. One can
take advantage of this complexity for tasks including sorting items; we will not use it because there will be only one
mobile item.

12Really it is a separate toggle switch/toggle switch for each item type, but we will have only one mobile item.

37

Figure 40: Two layouts of a toggle switch/toggle switch for transport belts in Factorio 0.15 and
earlier. An incoming item is put on a lane depending on the input it enters. It passes through
the leftmost splitter, which encodes the state of the gadget. The other two splitters help separate
lanes: one lane of each output belt is blocked by items (by sideloading onto underground belts), so
the output belt is determined by the lane of an item that enters that splitter. This gadget requires
a constant number of immobile items: the layout on the left uses 16, and the layout on the right
uses only 8 (but is harder to parse).

The initial state of each toggle switch/toggle switch is encoded by the state of a splitter. We
place a single item at the start location, and it simulates the agent in zero-player motion planning,
reaching the goal location if and only if the agent does.

Factorio 0.16 and later. In 0.16, splitters were changed to alternate each lane separately and
all item types together. A splitter now has only two bits of state, one for each lane, and all items
of any type entering on the same lane will alternate output belts. We will always have items in the
left lane.13 Also in 0.16, splitters were given a setting to sort items: items of a specified type take
one exit belt, and all others take the other exit belt.

Now our toggle switch/toggle switch for 0.15 and earlier is two independent toggle switches,
and thus no longer suffices for PSPACE-hardness. Instead, we can use that item types alternate
together and item sorting to construct a toggle switch/toggle switch, shown in Figure 41. The
agent will now be simulated by a pair of items of different types; we use an advanced circuit (“red
circuit”) and a processing unit (“blue circuit”). The red circuit takes a natural path through the
gadget, while the blue circuit shadows it to keep two splitters in the same state.

The two items take different amount of times to get through the gadget and may become sepa-
rated. To fix this, after each toggle switch/toggle switch we place a grouper , shown in Figure 42,
which reduces the distance between the items by having item which arrives first take a longer path.
The amount of separation from a single traversal of a gadget is bounded, so we can keep the items
a bounded distance apart using an appropriate sequence of groupers after each gadget.

We place a single red circuit and a single blue circuit in the left lane at the start location. Both

13To ensure this, we make fan-ins using sideloading of the right handedness, or just sideload onto the left lane
immediately before entering each gadget.

38

Figure 41: A toggle switch/toggle switch for transport belts in Factorio 0.16 and later. Both middle
splitters encode the state of the gadget. Suppose the red and blue circuits enter the top entrance
when the gadget is in the up state. The red circuit goes to the upper of the two middle splitters,
takes the top exit belt, get sorted onto the topmost belt, and finally takes the topmost exit. The
blue circuit visits the lower middle splitter, takes the top exit, gets sorted onto the fourth belt
from the bottom (just after the splitters), and also takes the topmost exit. So both items took
the topmost exit, and both middle splitters flipped state. The other cases behave similarly. This
construction is due to Twan van Laarhoven.

Figure 42: A grouper, which reduces the space between the red and blue circuits. The front item is
delayed by about 8 tiles, and then the new front item is delayed by about 4 tiles. If the items are
within about 16 tiles of each other when they enter, they exit with at most about 4 tiles between
them. These distances are approximate; the actual distances are not integers since items take
different amounts of time to traverse curved vs straight transport belts.

items will reach the goal location if and only if the agent does.

Theorem 5.6. In Factorio 0.16 and later, in a world with only transport belts, underground
belts, splitters, and a single item, determining whether the item reaches a specified location is
in NP ∩ coNP.

Proof. As mentioned above, a splitter with the default settings is a pair of independent toggle
switches, one for each lane. A splitter set to filter will always send the item to the same output
belt. Splitters have another setting also added in 0.16: they can be set to prioritize a particular

39

input or output belt, meaning it will always use that input or output unless it is empty or blocked,
respectively, instead of alternating. With a single item in the world, a splitter in priority mode
always sends the item to the same output belt. Thus this problem can be reduced to zero-player
motion planning with the toggle switch or equivalently ARRIVAL, which is in NP ∩ coNP.

6 Open Problems

One interesting problem left open by our paper and several before it [DGK+17,GHH+18,FGMS21] is
the complexity of zero-player motion planning with deterministic single-input input/output gadgets,
or equivalently ARRIVAL and zero-player reachability switching games; this is known to be between
NL-hard and NP ∩ coNP, which is a large gap. For the set switch, we do not even know NL-hardness.
We conjecture that many of these single input gadgets are P-hard and we would be interested to
see such a result. We also leave open the complexity of two-player one-agent motion planning, or
two-player reachability switching games, which is between PSPACE-hard and EXPTIME.

Since input/output gadgets seem to be a natural and rich class of gadgets, one could expand
our characterization of zero-player motion planning to include input/output gadgets beyond those
that are output-disjoint deterministic 2-state. Is there a natural notion of “unbounded” that im-
plies PSPACE-hardness for a much larger class of input/output gadgets? Does every such gadget
simulate the switch/set-up line/set-down line, and thus all input/output gadgets? Extending our
characterization by removing any of the adjectives would be significant progress toward character-
izing all input/output gadgets.

Another question we leave open is whether these gadgets remain hard in the planar case.
Although our applications all contained simple crossovers, this may not always be the case, so
having hardness on planar systems of gadgets would be useful.

Finally, although we only defined zero-player motion planning with input/output gadgets (and
the Trainyard gadget), many other classes of gadgets could be explored in the zero-player model.
This model begins to look a lot more like a typical circuit or computing model with the unusual
constraint that only a single signal is ever propagating through the system. In particular, a reason-
able zero-player motion planning problem with reversible deterministic gadgets (like those studied
in [DGLR18] and [DHL20]) is similar to asynchronous ballistic reversible logic [Fra17] introduced
to explore potential low-power computing architectures.

Acknowledgments

We thank Jeffrey Bosboom for suggesting applying the gadget framework to railroad switches
(specifically, a switch/tripwire gadget) in 2017, and Mikhail Rudoy for pointing us to the subse-
quent analysis of ARRIVAL [DGK+17]. We also thank Jeffrey Bosboom for providing simplified
constructions for the set-up switch/set-down line and toggle switch/set-up line, and for general
discussion on topics in and related to this paper. We thank Twan van Laarhoven for providing the
construction in Figure 41. Some of this work was done during open problem solving in the MIT
class on Algorithmic Lower Bounds: Fun with Hardness Proofs (6.892) taught by Erik Demaine in
Spring 2019. We thank the other participants of that class for related discussions and providing an
inspiring atmosphere.

This is a full version of a paper appearing in WALCOM 2022.

40

References

[ABD+20] Joshua Ani, Jeffrey Bosboom, Erik D. Demaine, Yevhenii Diomidov, Dylan Hendrick-
son, and Jayson Lynch. Walking through doors is hard, even without staircases: Proving
PSPACE-hardness via planar assemblies of door gadgets. In Proceedings of the 10th In-
ternational Conference on Fun with Algorithms (FUN 2020), pages 3:1–3:23, Italy, 2020.
arXiv:2006.01256.

[ACD+22] Joshua Ani, Lily Chung, Erik D. Demaine, Yevhenii Diomidov, Dylan Hendrickson,
and Jayson Lynch. Pushing blocks via checkable gadgets: PSPACE-completeness of
Push-1F and Block/Box Dude. In Proceedings of the 11th International Conference on
Fun with Algorithms (FUN 2022), pages 2:1–2:30, Italy, 2022.

[ALP18a] Matteo Almanza, Stefano Leucci, and Alessandro Panconesi. Tracks from hell – when
finding a proof may be easier than checking it. In Hiro Ito, Stefano Leonardi, Linda
Pagli, and Giuseppe Prencipe, editors, Proceedings of the 9th International Confer-
ence on Fun with Algorithms (FUN 2018), volume 100 of LIPIcs, pages 4:1–4:13, La
Maddalena, Italy, June 2018.

[ALP18b] Matteo Almanza, Stefano Leucci, and Alessandro Panconesi. Trainyard is NP-hard.
Theoretical Computer Science, 748:66–76, 2018.

[BCC+20] Jeffrey Bosboom, Charlotte Chen, Lily Chung, Spencer Compton, Michael Coulombe,
Erik D. Demaine, Martin L. Demaine, Ivan Tadeu Ferreira Antunes Filho, Dylan Hen-
drickson, Adam Hesterberg, Calvin Hsu, William Hu, Oliver Korten, Zhezheng Luo,
and Lillian Zhang. Edge matching with inequalities, triangles, unknown shape, and two
players. arXiv:2002.03887, 2020. https://arXiv.org/abs/2002.03887.

[DGK+17] Jérôme Dohrau, Bernd Gärtner, Manuel Kohler, Jǐŕı Matoušek, and EmoWelzl. Arrival:
A zero-player graph game in NP ∩ coNP. In A journey through discrete mathematics,
pages 367–374. Springer, 2017.

[DGLR18] Erik D. Demaine, Isaac Grosof, Jayson Lynch, and Mikhail Rudoy. Computational
complexity of motion planning of a robot through simple gadgets. In Proceedings of
the 9th International Conference on Fun with Algorithms (FUN 2018), volume 100 of
LIPIcs, pages 18:1–18:21, La Maddalena, Italy, June 2018.

[DHL20] Erik D. Demaine, Dylan Hendrickson, and Jayson Lynch. Toward a general theory
of motion planning complexity: Characterizing which gadgets make games hard. In
Proceedings of the 11th Conference on Innovations in Theoretical Computer Science
(ITCS 2020), pages 62:1–62:42, Seattle, Washington, January 2020.

[FGMS20] John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique end of potential
line. Journal of Computer and System Sciences, 114:1–35, 2020.

[FGMS21] John Fearnley, Martin Gairing, Matthias Mnich, and Rahul Savani. Reachability switch-
ing games. Logical Methods in Computer Science, 17(2):10:1–10:29, 2021.

[Fra17] Michael P. Frank. Asynchronous ballistic reversible computing. In Proceedings of the
IEEE International Conference on Rebooting Computing (ICRC), pages 1–8, Washing-
ton, DC, November 2017.

[GHH+18] Bernd Gärtner, Thomas Dueholm Hansen, Pavel Hubáček, Karel Král, Hagar Mosaad,
and Veronika Sĺıvová. ARRIVAL: next stop in CLS. In Ioannis Chatzigiannakis, Chris-
tos Kaklamanis, Dániel Marx, and Donald Sannella, editors, Proceedings of the 45th
International Colloquium on Automata, Languages, and Programming (ICALP 2018),
volume 107 of LIPIcs, pages 60:1–60:13, Prague, Czech Republic, July 2018.

41

https://arXiv.org/abs/2002.03887

[GHR+95] Raymond Greenlaw, H James Hoover, Walter L Ruzzo, et al. Limits to parallel compu-
tation: P-completeness theory. Oxford University Press on Demand, 1995.

[HD09] Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. CRC Press,
2009.

[Hen21] Dylan Hendrickson. Gadgets and gizmos: A formal model of simulation in the gadget
framework for motion planning. Master’s thesis, Massachusetts Institute of Technology,
2021.

[Kar17] Karthik C. S. Did the train reach its destination: The complexity of finding a witness.
Information Processing Letters, 121:17–21, 2017.

[Min20] MiniBetrayal. Rule 110 train Turing machine explained. https://www.youtube.com/
watch?v=Ubc7iNZ7MV8, Feb 2020.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.

[Wig92] Avi Wigderson. The complexity of graph connectivity. In Ivan M. Havel and Václav
Koubek, editors, Proceedings of the 17th International Symposium on Mathematical
Foundations of Computer Science (MFCS 1992), pages 112–132, Prague, Czechoslo-
vakia, 1992.

42

https://www.youtube.com/watch?v=Ubc7iNZ7MV8
https://www.youtube.com/watch?v=Ubc7iNZ7MV8

	Introduction
	Motion Planning through Gadgets
	Input/Output Gadgets and Zero-Player Motion Planning
	Classifying Output-Disjoint Deterministic 2-State Input/Output Gadgets
	Our Results: Complexity
	Our Results: Simulation

	Zero Players
	Single Input
	Bounded Gadgets
	Unbounded Gadgets
	Edge Duplicators
	PSPACE-Hardness of the Switch/Set-Up Line/Set-Down Line
	Other Gadgets Simulate the Switch/Set-Up Line/Set-Down line
	Universality of the Switch/Set-Up Line/Set-Down Line

	One Player
	Containment in NP
	NP-hardness

	Two Players
	Applications
	Trainyard
	[the Sequence]
	Factorio Trains
	Factorio Transport Belts

	Open Problems

