
Trains, Games, and Complexity:
0/1/2-Player Motion Planning through

Input/Output Gadgets

Joshua Ani1, Erik D. Demaine1[0000−0003−3803−5703], Dylan
Hendrickson1[0000−0002−9967−8799], and Jayson Lynch2[0000−0003−0801−1671]

1 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar Street, Cambridge, MA 02139, USA

2 University of Waterloo, Waterloo, ON, Canada

Abstract. We analyze the computational complexity of motion plan-
ning through local “input/output” gadgets with separate entrances and
exits, and a subset of allowed traversals from entrances to exits, each of
which changes the state of the gadget and thereby the allowed traver-
sals. We study such gadgets in the zero-, one-, and two-player settings, in
particular extending past motion-planning-through-gadgets work [3,4] to
zero-player games for the first time, by considering “branchless” connec-
tions between gadgets that route every gadget’s exit to a unique gadget’s
entrance. Our complexity results include containment in L, NL, P, NP,
and PSPACE; as well as hardness for NL, P, NP, and PSPACE. We ap-
ply these results to show PSPACE-completeness for certain mechanics in
Factorio, [the Sequence], and a restricted version of Trainyard, improving
the result of [1]. This work strengthens prior results on switching graphs,
ARRIVAL [5], and reachability switching games [6].

Keywords: gadgets · motion planning · hardness of games

1 Introduction

Imagine a train proceeding along a track within a railroad network. Tracks are
connected together by “switches”: upon reaching one, the switch chooses the
train’s next track deterministically based on the state of the switch and where
the train entered the switch; furthermore, the traversal changes the switch’s
state, affecting the next traversal. ARRIVAL [5] is one game of this type, where
every switch has a single input and two outputs, and alternates between sending
the train along the two outputs; the goal is to determine whether the train ever
reaches a specified destination. Even this seemingly simple game has unknown
complexity, but is known to be in NP ∩ coNP [5], so cannot be NP-hard unless
NP = coNP. More recent work shows a stronger result of containment in UP ∩
coUP as well as CLS [9], PLS [11], and UEOPL [7]. But what about other types
of switches?



2 Joshua Ani, Erik D. Demaine, Dylan Hendrickson, and Jayson Lynch

In this paper, we introduce a very general notion of “input/output gadgets”
that models the possible behaviors of a switch, and analyze the resulting com-
plexity of motion planning/prediction (does the train reach a desired destina-
tion?) while navigating a network of switches/gadgets. This framework gives us
an expressive set of problems with different complexity classes to use as the basis
for reductions for other problems of interest. For example, it is related to the
generalization of ARRIVAL in [6] which define Reachability Switching Games.
The paper further also describes how these Reachability Switching Games are
related to switching systems and Propp machines, both of independent interest.
In addition to ARRIVAL, our model captures other toy-train models, includ-
ing those in the video game Factorio or the puzzle game Trainyard. In some
cases, we obtain PSPACE-hardness, enabling building of a (polynomial-space)
computer out of a railway system with a single train. Intuitively, our model is
similar to a circuit model of computation, but where the state is stored in the
gates (gadgets) instead of the wires, and gates update only according to visits
by a single deterministically controlled agent (the train).

This work builds off of prior work on the computational complexity of agent-
based motion planning [3, 4], extending it zero-player situations. An analogous
generalization of computational problems based on the number of players and
boundedness of moves can be found in Constraint Logic [10] which has served as
a basis for a large number of hardness proofs for reconfiguration problems, as well
as games and puzzles. However this line of work differs from Constraint Logic
because it involves the changes to the system being localized in a single agent,
whereas all edges in a constraint logic puzzle are available for any given move.
This is helpful in constructing hardness proofs where action is geographically
constrained. Further Constraint Logic is an inherently reversible system and
generalizing beyond that constraint can be helpful in hardness reductions.

Motion Planning through Gadgets. Our model is a natural zero-player
adaptation of the motion-planning-through-gadgets framework developed
in [4] (after its introduction at FUN 2018 [3]), so we begin with a summary of that
framework. A gadget consists of a finite set L of locations (entrances/exits),
a finite set S of states, and for each state s ∈ S, a labeled directed graph Gs =
(L,Es) on the locations, where a directed edge (a, b) with label s′ means that an
agent can traverse the gadget by entering the gadget at location a and exiting at
location b while changing the state of the gadget to s′. In general, a location might
serve as the entrance for one traversal and the exit for another traversal; however,
we consider in this paper the special case where each location serves exclusively
as an entrance or an exit, but not both. Equivalently, a gadget is specified by
its transition graph , a directed graph whose vertices are state/location pairs
∈ S×L, where a directed edge from (s, a) to (s′, b) represents that an agent can
traverse the gadget from a to b if it is in state s, and that such traversal changes
the gadget’s state to s′. We sometimes also consider the state-transition graph
of a gadget, which is the directed graph with a vertex for each state ∈ S and a
directed edge (s, s′) for each transition from (s, a) to (s′, b) for any a, b ∈ L.



0/1/2-Player Motion Planning through Input/Output Gadgets 3

A system of gadgets consists of a set of gadgets, their initial states, and a
connection graph on the gadgets’ locations. If two locations a, b of two gadgets
(possibly the same gadget) are connected by a path in the connection graph, then
an agent can traverse freely between a and b (outside the gadgets). (Equivalently,
we can think of locations a and b as being identified.) Gadgets are local in the
sense that traversing a gadget does not change the state of any other gadgets.

In one-player motion planning , we are given the initial location of a
single agent in a system of gadgets, and the problem asks whether there is a
sequence of traversals that brings that agent to its goal location.

Past work [4] analyzed (and in many cases, characterized) the complexity of
these motion-planning problems for gadgets satisfying a few additional proper-
ties, specifically, gadgets that are “reversible deterministic k-tunnel” or that are
“DAG k-tunnel”, defined as follows:

– A gadget is k-tunnel if it has 2k locations and there is a perfect matching,
whose matching edges are called tunnels, such that the gadget only allows
traversals between endpoints of a tunnel.

– A gadget is deterministic if its transition graph has maximum out-degree
≤ 1, i.e., an agent entering the gadget at some location a in some state s
can exit at only one location b and in only one state s′.

– A gadget is reversible if its transition graph has the reverse of every edge,
i.e., every traversal could be immediately undone.

– A gadget is a DAG if it has an acyclic state-transition graph. Such gadgets
can necessarily be traversed only a bounded number of times (at most the
number of states).

Input/Output Gadgets and Zero-Player Motion Planning. We define
a gadget to be input/output if its locations can be partitioned into input loca-
tions (entrances) and output locations (exits) such that every traversal brings
an agent from an input location to an output location, and in every state, there
is at least one traversal from each input location. In particular, deterministic in-
put/output gadgets have exactly one traversal from each input location in each
state. Note that input/output gadgets cannot be reversible nor DAGs, so prior
characterizations [4] do not apply to this setting.

An input/output gadget is output-disjoint if, for each output location, all
of the transitions to it (including those from different states) are from the same
input location. This notion is still more general than k-tunnel: it allows a one-
to-many relation from a single input to multiple outputs.

With deterministic input/output gadgets, we can define a natural zero-
player motion-planning game as follows. A system of gadgets is branchless
if each connected component of the connection graph contains at most one input
location.3 Intuitively, if an agent finds itself in such a connected component, then
there is only one gadget location it can enter, uniquely defining how it should

3 Originally in [3] the gadget model was inherently branchless and non-deterministic,
1-state ‘branching hallway’ gadgets were used to connect multiple locations.



4 Joshua Ani, Erik D. Demaine, Dylan Hendrickson, and Jayson Lynch

Set-Up Line
A tunnel that can always be traversed in one direction
and sets the state of the gadget to a specific state.

Toggle Line
A tunnel that can always be traversed in one direction
and toggles the state with each crossing.

Switch
A three-location gadget with one input which transitions
to one of two outputs depending on the state, without
changing the state.

Set-Up Switch
A switch which also sets the state of the gadget to a
specific state.

Toggle Switch
A switch which also toggles the state of the gadget with
each crossing.

Table 1: Five subunits for 2-state, output-disjoint, input/output gadgets. We
consider the 2-state gadgets to have the states Up and Down. Some subunits
will set the state to a specific value such as Up, while some others always change
the state when they are traversed.

proceed. (If an agent finds itself in a connected component with no input loca-
tions, it is stuck in a dead-end and the game ends.) We can think of edges in
the connection graph as directed wires that point from output locations to the
input location in the same connected component. Note branchless systems can
still have multiple output locations in a connected component which functions
as a fan-in.

In a branchless system of deterministic input/output gadgets, there are never
any choices to make: in the connection graph, there is at most one reachable
input location, and when the agent enters an input location there is exactly
one transition it can make. Thus we define zero-player motion planning
with a set of deterministic input/output gadgets to be the one-player motion-
planning game restricted to branchless systems of gadgets. Lacking any agency,
the decision problem is equivalent to whether the agent ever reaches the goal
location while following the unique path available to it.

Classifying Output-Disjoint Deterministic 2-State Input/Output
Gadgets. In this paper, we are primarily interested in output-disjoint deter-
ministic 2-state input/output gadgets. In this section, we omit the adjectives
and refer to them simply as “gadgets”, and give a categorization of these gad-
gets, into ‘trivial,’ ‘bounded,’ and ‘unbounded’ gadgets. For each category, we
will show that every gadget in the category can simulate at least one of a finite
set of gadgets. The behavior of an input location to a gadget is described by how
it changes the state and which output location it sends the agent to in each state.
If the input location doesn’t change the state and always uses the same output
location, it can be ignored (the path can be ‘shortcut’ to skip that transition).
Otherwise, the input location corresponds to one of the following five nontrivial
subunits, and the gadget is a disjoint union of some of these subunits (which
interact by sharing state). These subunits are given in Table 1.



0/1/2-Player Motion Planning through Input/Output Gadgets 5

The ARRIVAL problem [5] is equivalent to zero-player motion planning with
the toggle switch: we replace each vertex in their switch graph with a toggle
switch, or vice versa. We will use their terminology when referring to switch
graphs in the ARRIVAL paper; however, when referring to gadgets in our model,
a switch is a gadget (or part of a gadget) which does not change state when
crossed. More generally, zero-player motion planning with an arbitrary set of
deterministic single-input input/output gadgets (with gadgets specified as part
of the instance) is equivalent to explicit zero-player reachability switching games,
as defined in [6].

We call the states of any such two state gadget up and down , and assume
that each switch transitions to the top output in the up state and the bottom
output in the down state; because we are not concerned with planarity, this
assumption is fully general. There are two versions of the set line and set switch:
one to set the gadget to each state. For example, a gadget with a set-up line and
set-down switch is meaningfully different from a set-up line and set-up switch.
We draw the set-down line and switch as the reflections of the set-up version.
To represent the current state of a gadget, we make one of the lines in each
switch dashed, so that the next transition would be made along a solid line. We
categorize gadgets into three families:

1. Trivial gadgets have either no state change or no state-dependent behavior;
they are composed entirely of either switches or toggle and set lines. They are
equivalent to collections of simple tunnels, and zero-player motion planning
with them is in L by straightforwardly simulating the agent for a number of
steps equal to the number of locations.

2. Bounded gadgets have state-dependent behavior (i.e., some kind of switch)
and one-way state change, either only to the up state or only to the down
state. They naturally give rise to bounded games (a game in which the max-
imum number of turns is polynomially bounded before ending or repeating),
because each gadget can change its state at most once.

3. Unbounded gadgets have state-dependent behavior and can change state
in both directions. They naturally give rise to unbounded games.

We will find that the complexity of motion planning with a given gadget
also depends on whether the gadget is single-input , meaning it has only one
input location, or multiple nontrivial inputs. A non-trivial input must contain
at least one transition from it, and that transition must either change the state
of the gadget or must not exist in all states of the gadget. The only nontrivial
single-input gadgets are the set switch and the toggle switch, which are bounded
and unbounded, respectively. Recall Table 1 gives definitions for the pieces of
2-state input-output gadgets. The full version of the paper proves for all 2-state
input-output gadgets with multiple inputs, there is a system of those gadgets
with the same behavior as one of eight gadgets made of pairs of the subunits.

Lemma 1. Let G be an output-disjoint deterministic 2-state input/output gad-
get with multiple nontrivial inputs.



6 Joshua Ani, Erik D. Demaine, Dylan Hendrickson, and Jayson Lynch

Trivial (No
state change
or on
tunnels)

Bounded,
multiple
nontrivial
inputs

Unbounded, multiple
nontrivial inputs

Zero-player (Fully
Deterministic) [§2]

L P-complete PSPACE-complete

One-player [§??] NL-complete NP-complete PSPACE-complete

Table 2: Summary of results for output-disjoint deterministic 2-state in-
put/output gadgets.

Contained in Hard for

Zero-player (Fully
Deterministic)

UP ∩ coUP [9] NL (cf. [6])

One-player NP (cf. [6]) NP (cf. [6])

Two-Player EXPTIME (cf. [6]) PSPACE (cf. [6])

Table 3: Summary of results for single-input input/output gadgets. These results
can be found in the full version of the paper [2].

– If G is bounded, then it simulates either a switch/set-up line or a set-up
switch/set-up line.

– If G is unbounded, then it simulates one of the following gadgets:

1. switch/toggle line,

2. switch/set-up line/set-down line,

3. set-up switch/toggle line,

4. set-up switch/set-down line,

5. toggle switch/toggle line, or

6. toggle switch/set-up line.

Our Results. Table 2 summarizes our results on output-disjoint determin-
istic 2-state input/output gadgets. While our main motivation was to analyze
zero-player motion planning, we also characterize the complexity of one-player
motion planning for contrast. A full version of this paper is available [2].

We also consider motion planning with single-input input/output gadgets
summarized in Table 3. This is a more immediate generalization of ARRIVAL
[5], and is equivalent to the reachability switching games studied in [6]. We
strengthen the results of [6] by showing that the containments in NP and EXP-
TIME still hold when we allow nondeterministic gadgets, and by showing hard-
ness with specific gadgets—the toggle switch for zero-player, and each of the
toggle switch and set switch for one- and two-player—instead of having gadgets
specified as part of the instance.



0/1/2-Player Motion Planning through Input/Output Gadgets 7

In the full version of the paper, we apply this framework to prove PSPACE-
completeness of the mechanics in several video games: one-train colorless Train-
yard, the game [the Sequence], trains in Factorio, and transport belts in Fac-
torio are all PSPACE-complete. The first result improves a previous PSPACE-
completeness result for two-color Trainyard [1] by using a strict subset of game
features. Factorio in general is trivially PSPACE-complete, as players have ex-
plicitly built computers using the circuit network; here we prove hardness for
the restricted problems with only train-related objects and only transport-belt-
related objects.

2 Zero Players

In this section, we consider unbounded gadgets with multiple inputs, which are
naturally PSPACE-complete. The full version of the paper considers unbounded
gadgets with only a single input and bounded gadgets with multiple inputs,
which are naturally P-complete.

We show that zero-player motion planning with any unbounded output-
disjoint deterministic 2-state input/output gadget which has multiple nontrivial
inputs is PSPACE-complete through a reduction from Quantified Boolean For-
mula (QBF), which is PSPACE-complete, to zero-player motion planning with
the switch/set-up line/set-down line, and by showing that every such gadget
simulates the switch/set-up line/set-down line.

Edge Duplicators. Many of our simulations involve building an edge duplicator
An edge duplicator is a construction which allows us to effectively make a copy
of a line from X to X ′ in a gadget. For example, we might want to take a
switch/toggle-line and build a three input gadget made of a switch and two
separate toggle-lines. Edge duplication is achieved by routing two inputs A and
B to X, and then sending the agent from X ′ to one of two exits A′ or B′

corresponding to the input used. The details of the construction of an edge
duplicator depend on the gadget used; see Fig. 1 for an example.

2.1 PSPACE-hardness of the switch/set-up line/set-down line

In this section, we show that zero-player motion planning with the switch/set-
up line/set-down line is PSPACE-hard through a reduction from QBF. The
switch/set-up line/set-down line is a 2-state input/output gadget with three
inputs: one sets the state to up, one sets it to down, and one sends the agent to
one of two outputs based on the current state.

Theorem 2. Zero-player motion planning with the switch/set-up line/set-down
line is PSPACE-hard.

A full proof can be found in the full version of the paper but a sketch is
provided here. We first build an edge duplicator, shown in Fig. 1. This allows
us to use gadgets with multiple set-up or set-down lines. Each quantifier gadget



8 Joshua Ani, Erik D. Demaine, Dylan Hendrickson, and Jayson Lynch

A

B

A'

B'
X X'

Fig. 1: An edge duplicator for the
switch/set-up line/set-down line. A robot
entering on the left sets the state of the
switch, goes across the duplicated tunnel,
and exits based on the state it set the
switch to.

Fig. 2: An edge duplicator for the
toggle switch/toggle switch. The
tunnel on the left is duplicated.

Out 

True-Out 

False-Out 

In 

True-In 

False-In 

Fig. 3: The universal quantifier for
the switch/set-up line/set-down
line. An edge duplicator (Fig. 1)
is used to give the bottom gadget
two set-down lines.

True-Out

False-Out

In

Fig. 4: Three clauses of CNF evaluation
for the switch/set-up line/set-down line;
each clause is a row of three switches. The
switches are part of gadgets in the quanti-
fiers. We assume the top exit of each switch
corresponds to that literal being true.

has three inputs, called In, True-In, and False-In, and three outputs, called Out,
True-Out, and False-Out. The agent will always first arrive at In. This sets the
variable controlled by that quantifier to true, and the agent leaves at Out, which
sends it to the next quantifier gadget. The universal quantifier gadget is shown in
Fig. 3. The existential quantifier is identical except that True-Out and False-Out
are swapped, and True-In and False-In are swapped.



0/1/2-Player Motion Planning through Input/Output Gadgets 9

Fig. 5: A simulation of three toggle lines
and three toggle switches from gadgets
with one toggle switch and 5, 6, and 7 tog-
gle lines. The red tunnels are toggle lines
and the blue tunnels are toggle switches.

Fig. 6: A simulation of a switch/set-
up line/set-down line from the gad-
get built in Fig. 5. The switch, set-
up line, and set-down line are red,
green, and blue, respectively.

2.2 Other gadgets simulate the switch/set-up line/set-down line

In this section, we show that every unbounded output-disjoint deterministic
2-state input/output gadget with multiple nontrivial inputs can simulate the
switch/set-up/set-down. We only need to show that the five other gadgets from
Lemma 1 simulate the switch/set-up/set-down. It follows that zero-player motion
planning with any such gadget is PSPACE-complete, since we can replace each
gadget in a system of switch/set-up/set-down with a simulation of it. Some cases
are presented here, see the full version of the paper for the remaining cases.

Toggle Switch/Toggle Switch. We begin with the toggle switch/toggle switch,
which is not part of our basis of gadgets but will be a useful intermediate gadget.
It builds an edge duplicator, shown in Fig. 2. We can merge the two outputs
of one of the toggle switches to simulate a toggle switch/toggle line, and then
duplicate the toggle line to make a gadget with one toggle switch and any number
of toggle lines.By putting such gadgets in series, we can simulate a gadget with
any number of toggle lines and any number of toggle switches. Fig. 5 shows this
for three toggle lines and three toggle switches, which is as large as we need.
This simulated gadget can finally simulate the switch/set-up line/set-down line,
shown in Fig. 6.

Switch/Toggle Line. We first build an edge duplicator, shown in Fig. 7. We
can then duplicate the toggle line and put one copy in series with the switch,
constructing a toggle switch/toggle line.

Set-Up Switch/Toggle Line. We first build an edge duplicator, shown in Fig. 8.
We then simulate the switch/toggle line, shown in Fig. 9.

Toggle Switch/Set-Up Line. We simulate a set-up line/set-down switch using
the toggle switch/ set-up line, as shown in Fig. 10; this is equivalent to a set-up
switch/set-down line.



10 Joshua Ani, Erik D. Demaine, Dylan Hendrickson, and Jayson Lynch

Fig. 7: An edge duplicator for the switch/toggle line. The leftmost tunnel is
duplicated.

Fig. 8: An edge duplicator for the
set-up switch/toggle line. The left-
most tunnel is duplicated.

Fig. 9: A simulation of the switch/toggle line
using the set-up switch/toggle line. Red is
the switch and blue is the toggle line.

These simulations, together with Lemma 1, give the following theorem. The
details of these cases are given in the full version of the paper.

Theorem 3. Every unbounded output-disjoint deterministic 2-state input/out-
put gadget with multiple nontrivial inputs simulates the switch/set-up line/set-
down line.

Corollary 4. Let G be an unbounded output-disjoint deterministic 2-state in-
put/output gadget with multiple nontrivial inputs. Zero-player motion planning
with G is PSPACE-complete.

Fig. 10: A simulation of a set-up line/set-down switch from the set-up line/toggle
switch. The state of the simulated gadget is the same as the state of the center
gadget. The red path corresponds to the set-up line. When it enters the set-down
switch, the robot goes along the blue lines if the state is down, the green lines if
the state is up, and the black lines in both cases.



0/1/2-Player Motion Planning through Input/Output Gadgets 11

3 Open Problems

One interesting problem left open by our paper and several before it [5, 6, 9] is
the complexity of zero-player motion planning with deterministic single-input
input/output gadgets, or equivalently ARRIVAL and zero-player reachability
switching games; this is known to be between NL-hard and NP ∩ coNP, which
is a large gap. We conjecture that many of these single input gadgets are P-
hard and we would be interested to see such a result. We also leave open the
complexity of two-player one-agent motion planning, or two-player reachability
switching games, which is between PSPACE-hard and EXPTIME.

Since input/output gadgets seem to be a natural and rich class of gadgets,
one could expand our characterization of zero-player motion planning to include
input/output gadgets beyond the output-disjoint deterministic 2-state ones. An-
other question is whether these gadgets remain hard in the planar case.

Finally, although we have only defined zero-player motion planning with
input/output gadgets (and the Trainyard gadget), many other classes of gadgets
could be explored in the zero-player model. This model begins to look a lot more
like a typical circuit or computing model with the unusual constraint that only a
single signal is ever propagating through the system. In particular, a reasonable
zero-player motion planning problem with reversible, deterministic gadgets (like
those studied in [3] and [4]) is similar to asynchronous ballistic reversible logic [8]
introduced to explore potential low-power computing architectures.

Acknowledgments

We thank Jeffrey Bosboom for suggesting applying the gadget framework to rail-
road switches (specifically, a switch/tripwire gadget) in 2017, and Mikhail Rudoy
for pointing us to the subsequent analysis of ARRIVAL [5]. We also thank Jeffrey
Bosboom for providing simplified constructions for the set-up switch/set-down
line and toggle switch/set-up line, and for general discussion on topics in and
related to this paper. Some of this work was done during open problem solving in
the MIT class on Algorithmic Lower Bounds: Fun with Hardness Proofs (6.892)
taught by Erik Demaine in Spring 2019. We thank the other participants of that
class for related discussions and providing an inspiring atmosphere.

References

1. Almanza, M., Leucci, S., Panconesi, A.: Tracks from hell – when finding a
proof may be easier than checking it. In: Ito, H., Leonardi, S., Pagli, L.,
Prencipe, G. (eds.) Proceedings of the 9th International Conference on Fun
with Algorithms (FUN 2018). LIPIcs, vol. 100, pp. 4:1–4:13. La Maddalena,
Italy (June 2018). https://doi.org/10.4230/LIPIcs.FUN.2018.4, https://doi.org/
10.4230/LIPIcs.FUN.2018.4

2. Ani, J., Demaine, E.D., Hendrickson, D.H., Lynch, J.: Trains, games, and complex-
ity: 0/1/2-player motion planning through input/output gadgets. arXiv preprint
arXiv:2005.03192 (2020)



12 Joshua Ani, Erik D. Demaine, Dylan Hendrickson, and Jayson Lynch

3. Demaine, E.D., Grosof, I., Lynch, J., Rudoy, M.: Computational complexity of
motion planning of a robot through simple gadgets. In: Proceedings of the 9th
International Conference on Fun with Algorithms (FUN 2018). LIPIcs, vol. 100,
pp. 18:1–18:21. La Maddalena, Italy (June 2018)

4. Demaine, E.D., Hendrickson, D., Lynch, J.: Toward a general theory of motion
planning complexity: Characterizing which gadgets make games hard. In: Pro-
ceedings of the 11th Conference on Innovations in Theoretical Computer Science
(ITCS 2020). pp. 62:1–62:42. Seattle, Washington (January 2020)

5. Dohrau, J., Gärtner, B., Kohler, M., Matoušek, J., Welzl, E.: Arrival: A zero-
player graph game in NP ∩ coNP. In: A journey through discrete mathematics,
pp. 367–374. Springer (2017)

6. Fearnley, J., Gairing, M., Mnich, M., Savani, R.: Reachability switching games. In:
Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) Proceedings of
the 45th International Colloquium on Automata, Languages, and Programming
(ICALP 2018). LIPIcs, vol. 107, pp. 124:1–124:14. Prague, Czech Republic (July
2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.124, https://doi.org/10.4230/
LIPIcs.ICALP.2018.124

7. Fearnley, J., Gordon, S., Mehta, R., Savani, R.: Unique end of potential line. Jour-
nal of Computer and System Sciences 114, 1–35 (2020)

8. Frank, M.P.: Asynchronous ballistic reversible computing. In: Proceedings of the
IEEE International Conference on Rebooting Computing (ICRC). pp. 1–8. Wash-
ington, DC (November 2017)

9. Gärtner, B., Hansen, T.D., Hubáček, P., Král, K., Mosaad, H., Sĺıvová,
V.: ARRIVAL: next stop in CLS. In: Chatzigiannakis, I., Kaklamanis,
C., Marx, D., Sannella, D. (eds.) Proceedings of the 45th International
Colloquium on Automata, Languages, and Programming (ICALP 2018).
LIPIcs, vol. 107, pp. 60:1–60:13. Prague, Czech Republic (July 2018).
https://doi.org/10.4230/LIPIcs.ICALP.2018.60, https://doi.org/10.4230/LIPIcs.
ICALP.2018.60

10. Hearn, R.A., Demaine, E.D.: Games, puzzles, and computation. CRC Press (2009)
11. Karthik, C.: Did the train reach its destination: The complexity of finding a witness.

Information Processing Letters 121, 17–21 (2017)


