
Traversability, Reconfiguration, and Reachability

in the Gadget Framework

Joshua Ani∗ Erik D. Demaine∗ Yevhenii Diomidov∗ Dylan Hendrickson∗

Jayson Lynch∗

Abstract

Consider an agent traversing a graph of “gadgets”, where each gadget has local state that
changes with each traversal by the agent according to specified rules. Prior work has studied
the computational complexity of deciding whether the agent can reach a specified location,
a problem we call reachability . This paper introduces new goals for the agent, aiming to
characterize when the computational complexity of these problems is the same or differs from
that of reachability. First we characterize the complexity of universal traversal—where the
goal is to traverse every gadget at least once—for DAG gadgets (partially), one-state gadgets,
and reversible deterministic gadgets. Then we study the complexity of reconfiguration—where
the goal is to bring the system of gadgets to a specified state. We prove many cases PSPACE-
complete, and show in some cases that reconfiguration is strictly harder than reachability, while
in other cases, reachability is strictly harder than reconfiguration.

1 Introduction

The motion-planning-through-gadgets framework , introduced in [8] and further developed in
[10, 2, 9, 5, 3, 15, 13], captures a broad range of combinatorial motion-planning problems. It also
serves as a powerful tool for proving hardness of games and puzzles that involve an agent moving in
and interacting with an environment where the goal is to reach a specified location. Prior work [10]
fully characterizes the complexity of 1-player motion planning with two natural classes of gadgets:
DAG k-tunnel gadgets, which naturally lead to bounded games, and reversible deterministic
k-tunnel gadgets, which naturally lead to unbounded games. Section 2 reviews these and other
important definitions.

All of the prior work considers reachability , where the decision problem is whether the agent
can reach a target location.1 In this paper, we extend the gadget model to victory conditions other
than reaching a target location. In particular, we examine the complexity of reconfiguring a system
of gadgets and of visiting every single gadget. These extensions seem natural and interesting, and
are motivated by past uses of the gadgets framework to show hardness of reconfiguration problems
and problems with Hamiltonian-path-like constraints. In particular, the gadgets framework has
already been used to prove complexity results about reconfiguration problems related to swarm [6]

∗Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA
02139, USA, {joshuaa,edemaine,diomidov,dylanhen,jaysonl}@mit.edu

1Assembly and motion planning literature often use the term “reachability” to refer to whether an agent can reach
a target location. However, reconfiguration literature uses the same term to refer to whether a target state in the
configuration space is reachable from another. This would be equivalent to our “reconfiguration” problem, which
specifies a target state for every gadget.

1

{joshuaa,edemaine,diomidov,dylanhen,jaysonl}@mit.edu


Gadget Type Universal Traversal Complexity Reachability Complexity

DAG Tunnel
[§3.1]

NP-complete ⇐ true 2-tunnel
⇐ distant opening or
forced distant closing [Thm. 3.6];

∈ P ⇐ single-use 1-tunnel [Lem. 3.2]

NP-complete ⇔ distant opening
or forced distant closing;

∈ NL otherwise [10]

One-State
Tunnel [§3.2]

NP-complete ⇔ ≥ 3 tunnels & directed;
NL-complete ⇔ ≤ 2 tunnels & directed;
∈ L ⇔ undirected [Thm. 3.12]

∈ NL because non-interacting
[10]

Reversible
Deterministic
Tunnel [§3.3]

PSPACE-complete ⇔
interacting tunnels;

∈ NL otherwise [Thm. 3.19]

PSPACE-complete ⇔
interacting tunnels;

∈ NL otherwise [10]

Table 1: Summary of our results about universal traversal (visiting every gadget at least once)
from Section 3, and a comparison to related results about reachability.

and modular robotics [1], so understanding reconfiguration in the gadgets model may provide an
easier and more powerful base for such applications.

More precisely, we first consider the universal traversal problem of whether the agent can
visit every gadget. In Section 3, we characterize the complexity of this problem for three classes
of k-tunnel gadgets: DAG gadgets (partial characterization), one-state gadgets, and reversible
deterministic gadgets. See Table 1. Of particular note is that universal traversal can be harder
than reachability with the same gadget.In particular, there are DAG k-tunnel gadgets for which
reachability is in NL but universal traversal is NP-complete.

In Section 4, we consider the reconfiguration problem of whether the agent can cause the
entire system of gadgets to reach a target configuration. (The configuration does not specify the
location of the agent.) Refer to Table 2. We exhibit a gadget with non-interacting tunnels for which
reconfiguration is PSPACE-complete, but reachability is in P. For reversible gadgets, we show that
reconfiguration is at least as hard as reachability. By contrast, we exhibit a nonreversible gadget
for which the reconfiguration is contained in P while reachability is NP-complete.

2 Gadget Model

We now define the gadget model of motion planning, introduced in [8] and expanded upon in
[10, 15, 13].

A gadget G consists of a finite set Q(G) of states, a finite set L(G) of locations (en-
trances/exits), and a finite set T (G) of transitions of the form (q, a) → (r, b) where q, r ∈ Q(G)
are states and a, b ∈ L(G) are locations. The transition (q, a)→ (r, b) ∈ T (G) means that an agent
can traverse the gadget when it is in state q by entering at location a and exiting at location b
which changes the state of the gadget from q to r. We use the notation a → b for a traversal by
the agent that does not specify the state of the gadget before or after the traversal. A traversal
sequence [a1 → b1, . . . , ak → bk] on the locations L(G) is legal from state q0 if there is a corre-
sponding sequence of transitions [(a1, q0)→ (b1, q1), . . . , (ak, qk−1)→ (bk, qk)], where the start state
of each transition matches the end state of the previous transition (q0 for the first transition).

Equivalently, a gadget is specified by its transition graph , a directed graph whose vertices
are state/location pairs, where a directed edge from (q, a) to (r, b) represents that the agent can

2



Gadget Type Reconfiguration Complexity Reachability Complexity

Reversible
[§4.1.1]

PSPACE-complete ⇐ reachability
is PSPACE-complete [Thm. 4.1]

PSPACE-complete ⇐ deterministic
interacting tunnels [10]

Non-Interacting
Box [§4.1.2]

PSPACE-complete [Thm. 4.2] ∈ NL because non-interacting [10]

All Traversals
Available [§4.2]

PSPACE-complete sometimes
[Cor. 4.4]

∈ L by reduction to
undirected graph reachability

Monotonically
Opening or
Closing [§4.2]

PSPACE-complete sometimes
[Cor. 4.4]

PSPACE-complete sometimes
[Cor. 4.6 & 4.7]

NPReDAG [§4.3] ∈ NP [Thm. 4.8] ∈ NP [Cor. 4.10]

Labeled
Two-Tunnel
Single-Use [§4.4]

∈ P [Thm. 4.11] NP-complete [10]

Table 2: Summary of our results about reconfiguration (bringing the system of gadget to a specified
state) from Section 4, and related results about reachability (some old and some new).

3

21

1

3

2

3

Figure 1: A diagram describing the locking 2-toggle gadget. Each box represents the gadget in a
different state, in this case labeled with the numbers 1, 2, 3. Arrows represent transitions in the
gadget and are labeled with the states to which those transition take the gadget. We call state 3
the central state and states 1 and 2 the leaf states. In the center state, the agent can traverse
either tunnel going down, which blocks off the other tunnel until the agent reverses that traversal.
Dotted lines help visualize the associated transitions between states.

traverse the gadget from a to b if it is in state q, and that such traversal will change the gadget’s
state to r. Figure 1 shows an example. Gadgets are local in the sense that traversing a gadget
does not change the state of any other gadgets.

3



A system of gadgets consists of gadgets, the initial state of each gadget, and an undirected
connection graph on the gadgets’ locations. If two locations a and b of two gadgets (possibly
the same gadget) are connected by a path in the connection graph, then an agent can traverse
freely between a and b along the connection graph. (Equivalently, we can think of locations a
and b as being identified, effectively contracting connected components of the connection graph.)
These are all the ways that the agent can move: exterior to gadgets using the connection graph,
and traversing gadgets according to their current states. An agent’s path is a sequence of valid
transitions through gadgets and moves in the connection graph.

2.1 Decision Problems

Previous work has focused on the reachability problem [8, 10]:

Definition 2.1. For a finite set of gadgets F , reachability with F is the following decision
problem. Given a system of gadgets consisting of n copies of gadgets in F , and a starting location
and a win location in that system of gadgets, is there a path the agent can take from the starting
location to the win location?

We introduce and study two new decision problems:

Definition 2.2. For a finite set of gadgets F , universal traversal with F is the following
decision problem. Given a system of gadgets consisting of n copies of gadgets in F and a starting
location in that system of gadgets, is there a path the agent can take from the starting location
which makes at least one traversal in every gadget?

Definition 2.3. For a finite set of gadgets F , reconfiguration with F is the following decision
problem. Given a system of gadgets consisting of n copies of gadgets in F , a target state for each
gadget in the system, and a starting location in that system of gadgets, is there a path the agent
can take from the starting location which puts each gadget in its target state?

A configuration of a system of gadgets specifies a state for each of the gadgets in the system.
We can equivalently think of the reconfiguration problem as consisting of two configurations (initial
and target) for the system of gadgets, along with an initial location (but no target location).

2.2 Gadget Types

We will consider several specific classes of gadgets first defined in prior work [8, 10].

Definition 2.4. A k-tunnel gadget has 2k locations, which are partitioned into k pairs called
tunnels, such that every transition is between the two locations in the same tunnel.

Definition 2.5. The state-transition graph of a gadget is the directed graph which has a vertex
for each state, and an edge q → q′ for each transition from state q to q′. A DAG gadget is a gadget
whose state-transition graph is acyclic. An LDAG gadget is a gadget whose state-transition graph
would be acyclic if self-loops were removed.

Definition 2.6. A gadget has a distant opening if there is a transition across a tunnel in some
state that opens a different tunnel, i.e., the tunnel was not traversable in some direction before the
transition but becomes traversable in that direction after this transition.

A gadget has a forced distant closing if there is a traversal across a tunnel in some state and
an orientation of some other tunnels such that, for each transition corresponding to the traversal, the
traversal closes some directed traversal in the orientation, i.e., the directed tunnel was traversable
before the transition but becomes untraversable after this transition.

4



DAG gadgets naturally lead to problems with a polynomially bounded number of transitions,
because each gadget can be traversed a bounded number of times. Prior work [10] characterizes
the complexity of the reachability problem for DAG k-tunnel gadgets: reachability is NP-complete
if and only if the gadget has a distant opening or forced distant closing, and in NL otherwise. The
same work also characterizes the complexity of the same gadgets in 2-player and team games.

Definition 2.7. A gadget is deterministic if every traversal goes to only one state and every
location has at most 1 traversal from it. More precisely, its transition graph has maximum out-
degree 1.

Definition 2.8. A gadget is reversible if every transition can be reversed. More precisely, its
transition graph is undirected.

Definition 2.9. A k-tunnel gadget has interacting tunnels if a transition across one tunnel can
change the traversability of another tunnel. That is, there is some transition from state q to state
q′ across a tunnel a→ b and a different tunnel with locations x and y, such that there is a traversal
x→ y in one of the states q and q′ but not the other.

Reversible deterministic gadgets are gadgets whose transition graphs are partial matchings,
and they naturally lead to unbounded problems. Prior work [10] characterizes the complexity of
reachability with reversible deterministic k-tunnel gadgets: reachability is PSPACE-complete if
and only if the gadget has interacting tunnels, and in NL otherwise. The same work also partially
characterizes the complexity of the same gadgets in 2-player and team games.

3 Universal Traversal

In this section, we consider the question of whether an agent in a system of gadgets can make a
traversal across every gadget, called the universal traversal problem (Definition 2.2).

We provide a full characterization for the complexity of this problem for three classes of gadgets.
In Section 3.1, we characterize DAG k-tunnel gadgets. In particular, we find that universal traversal
is NP-hard for some DAG gadgets for which reachability is in P. Intuitively, this finding is similar
to the distinction between finding paths and finding Hamiltonian paths. In Section 3.2, we further
emphasize this difference by characterizing one-state k-tunnel gadgets. Reachability is always in NL
for one-state gadgets, but we find that universal traversal is often NP-complete. Finally, Section 3.3
considers the unbounded case by characterizing universal traversal with reversible deterministic k-
tunnel gadgets. In this case, the dichotomy is the same as for reachability.

We start with a basic containment result:

Lemma 3.1. Universal traversal for any gadget is in PSPACE.

Proof. An NPSPACE algorithm repeatedly guesses the next traversal, keeping track of which gad-
gets have been used, and accepts once they have all been. By Savitch’s Theorem [18], universal
traversal is in PSPACE.

3.1 DAG Gadgets

In this subsection, we consider universal traversal with k-tunnel DAG gadgets. We find that this
problem is NP-hard for any DAG gadget which has and actually uses at least 2 tunnels, in the
sense defined below. By contrast, at least some simple 1-tunnel DAG gadgets are in P. Define a
single-use tunnel to be the 1-tunnel gadget with two states: in one state, the tunnel can be

5



traversed in either one direction (directed) or both directions (undirected); traversal leads to the
other state, in which the tunnel cannot be traversed.2 Figure 2 shows state diagrams for these
gadgets.

2
2

1

(a) Directed single-use tunnel

2
2

1
2

(b) Undirected single-use tunnel

Figure 2: State diagrams for single-use tunnel gadgets.

Lemma 3.2. Universal traversal with a directed and/or undirected single-use tunnel is in P.

Proof. Universal traversal with a directed and/or undirected single-use tunnel is equivalent to
finding an Euler path in the mixed graph resulting from the system of gadgets when we contract
each connected component of the connected graph to a single vertex, so every remaining directed or
undirected edge corresponds to a gadget’s tunnel. When the graph has only undirected edges, this
problem can be solved using Euler’s characterization of having at most two odd-degree vertices [7,
Corollary 4.1]. For directed graphs, the characterization is when all vertices have equal in-degree
and out-degree, except for possibly two whose in-degree is 1 larger and smaller respectively than
their out-degree [7, Exercise 10.3.2]. For mixed graphs with both directed and undirected edges
(corresponding to a mix of directed and undirected single-use tunnels), Papadimitriou [16] gave a
polynomial-time algorithm.

More generally, 1-tunnel DAG gadgets might require traversing the tunnel in a specific pattern
of directions, or a set of such patterns. We leave this case open:

Problem 3.3. Is universal traversal with any 1-tunnel DAG gadget in P? Are there 1-tunnel DAG
gadgets for which universal traversal is NP-complete?

3
3

1 2 3

Figure 3: A 2-tunnel DAG gadget which is not true 2-tunnel.

Some k-tunnel DAG gadgets with k > 1 act like 1-tunnel gadgets in the sense that it is never
possible to make use of multiple tunnels. Figure 3 shows a simple example. We formalize this
notion in the following definition.

Definition 3.4. A state of a k-tunnel gadget is true 2-tunnel if there are at least two tunnels,
each of which is traversable in some state reachable (through any number of transitions) from that
state. A gadget is true 2-tunnel if it is a k-tunnel gadget and has a true 2-tunnel state.

2Ani et al. [3] call the directed version a “dicrumbler” or “single-use diode”.

6



Note that a k-tunnel gadget does not need multiple tunnels traversable in the same state to
be true 2-tunnel: perhaps traversing the single traversable tunnel opens another tunnel. To justify
this definition, we prove the following result.

Theorem 3.5. Let G be a k-tunnel which is not true 2-tunnel. Then there is a 1-tunnel gadget G′

and a bijection between states of G to states of G′ such that replacing each copy of G in a system
of gadgets with a copy of G′ in the corresponding state gives an equivalent system of gadgets with
respect to reachability and universal traversal.

What counts as equivalent differs for different victory conditions. For example, any gadget
simulation is sufficient to show hardness for reachability, but this may not suffice for universal
traversal because traversing the simulation does not necessarily involve traversing every gadget
inside it. In the case at hand, the systems of gadgets are equivalent in the sense that the answers
to the reachability and universal traversal problems are the same, and the proof should extend to
other victory conditions of interest, though not necessarily all of them.

Proof. To construct G′, we simply collapse the 2k locations in G to 2 locations by merging all of
the tunnels. Because G is not true 2-tunnel, from any state in G, there is only one tunnel that can
ever be traversable. Hence ignoring all of the other tunnels yields the same gadget. If there are
different states in G that have different traversable tunnels, we can move them to the same tunnel
because these states are never reachable from each other.

We will use the fact that every nontrivial DAG gadget—meaning one that has at least one
transition in some state—simulates either a directed or an undirected single-use tunnel, by taking
a “final” nontrivial state of the gadget [10, Lemma 17].

The rest of this subsection is devoted to proving NP-completeness for universal traversal with
true 2-tunnel DAG gadgets.

Theorem 3.6. Universal traversal with any true 2-tunnel DAG gadget is NP-complete.

To prove Theorem 3.6, we will focus on a “final” true 2-tunnel state of a DAG gadget, and
only use the two tunnels which make this state true 2-tunnel. A final true 2-tunnel state is a true
2-tunnel state from which no other true 2-tunnel state can be reached. Such a state exists because
the state-transition graph is a DAG. After making a traversal in this state, any resulting state is
not true 2-tunnel, so only one of the two tunnels can be traversed in the future. If the gadget is
nondeterministic, the agent may be able to choose which of the two tunnels this is. We consider
several cases for the form of the last true 2-tunnel state, and show NP-hardness for each one.

The first case we consider is when the final true 2-tunnel state being considered has a distant
opening.

Lemma 3.7. Let G be a true 2-tunnel gadget and let q be a final true 2-tunnel state of G. If there
exists a transition from q across one tunnel which opens a traversal across another tunnel, then
universal traversal with G is NP-hard.

Proof. We will only use the two tunnels involved in the opening transition from q to q′ where q′

has some traversal which was not possible in q. Suppose traversing the top tunnel from left to right
allows the agent to open the left-to-right traversal on the bottom tunnel. Then state q has one of
the two forms shown in Figure 4, depending on whether the bottom tunnel can be traversed right
to left in q. In either case, the top tunnel may or may not be traversable from right to left in q.
Because q is a final true 2-tunnel state, only the bottom tunnel is traversable in S′.

7



S' 

S S'

(a)

S' 

S S'

(b)

Figure 4: Two cases for the form of the gadget in Lemma 3.7, assuming traversing the top tunnel
to the right opens the bottom tunnel to the right. In (a) the bottom tunnel is not traversable to the
left in state q and in (b) it is. Unfilled arrows are traversals that may or may not exist depending
on the gadget. Unlabeled transitions may be to arbitrary states not specified here.

To show NP-hardness of universal traversal with a true 2-tunnel gadget G, we reduce from
reachability with G. Because the gadget has a distant opening, reachability is NP-complete [10].
We modify the system of gadgets in an instance of the reachability problem by adding a construction
to each gadget which allows the agent to go back and make a traversal in it after reaching the win
location. If the agent can reach the win location, it can then use any gadgets it did not already
use, and if it cannot reach the win location, it cannot use the gadgets in this construction.

S'

S'

Figure 5: The construction to allow the agent to use a gadget after reaching the win location, when
the bottom tunnel is not traversable in state q (the case of Figure 4a). The star denotes the goal
location.

The construction is slightly different depending on whether the bottom tunnel can be traversed
from right to left in state q. We use the construction in either Figure 5 or Figure 6. In either
case, the agent cannot use the newly added gadgets until it first reaches the win location. Once it
reaches the win location, it can open tunnels in the added gadgets, traverse the (top) gadget the
construction is attached to, and return. If the agent already used the gadget this is attached to, it
can instead use a traversal in each added gadget without visiting that gadget. So it is possible to
make a traversal in every gadget if and only if the original reachability problem is solvable.

Now we will assume the final true 2-tunnel state has no distant opening. If only one tunnel is
traversable in this state, then it cannot be true 2-tunnel because the other tunnel will never become
traversable. So both tunnels are traversable, and after making any traversal, only one tunnel will

8



S'S'

Figure 6: The construction to allow the agent to use a gadget after reaching the win location, when
the bottom tunnel is traversable from right to left in state q (the case of Figure 4b).

ever be traversable. With no distant opening, we first consider the case where at least one of the
tunnels is directed in the final true 2-tunnel state.

Lemma 3.8. Let G be a true 2-tunnel gadget and let q be a final true 2-tunnel state of G. Suppose
no transition from q across one tunnel opens a traversal across the other tunnel. If, in q, some
tunnel can be traversed in one direction but not in the other, then universal traversal with G is
NP-hard.

Proof. A directed tunnel with a single-use path on each side is a single-use directed path; because
G has a directed tunnel in state q, it simulates a single-use directed path.

We reduce from finding a Hamiltonian path in a directed 3-regular graph with specified start
and end vertices s and t [17].3 Each vertex of the graph other than s and t becomes one of the
vertex gadgets in Figure 7, depending on its in-degree. We replace s with the right half of the
appropriate vertex gadget and t with the left half. The agent begins at s.

If there is a Hamiltonian path, the agent can follow it and thereby make a traversal in every
gadget by going through every vertex gadget. Suppose the universal traversal problem is solvable.
The agent must use the single-use directed path in each vertex gadget, and thus must go through
every vertex. Suppose it enters a vertex gadget with in-degree 2 along the top path, and reaches
the vertex in the center. Because, by assumption, making a traversal across a tunnel in q cannot
open a traversal on the other tunnel, the bottom tunnel of the left gadget still is not traversable to
the left, so the agent cannot exit on the bottom path. Similarly it cannot enter on the bottom path
and exit on the top path. Next, the agent cannot enter a vertex gadget with in-degree 1 for the
first time on either path on the right, because this would require exiting another vertex gadget to
the left on a path it has not used before. If the agent exits a vertex gadget with in-degree 1 on the
left, that copy of G is now not true 2-tunnel, so the agent cannot later enter and exit on different
paths on the right. Summarizing, the agent always enters vertex gadgets on the left and exits on
the right, and it cannot use all three entrances or exits of a vertex gadget. Thus the agent’s path
corresponds to a path in the graph, and because it must use each single-use directed path this path
is Hamiltonian.

3Plesńık [17] considers Hamiltonian cycle, but it has many edges that are forced to be included in the cycle (for
example, the one on top, or the outgoing edge from any vertex of out-degree 1). If (t, s) is such a forced edge, then
there is a Hamiltonian path starting at s and ending at t if and only if there is a Hamiltonian cycle.

9



Figure 7: Vertex gadgets for Lemma 3.8. The first construction is for vertices with in-degree 1
and out-degree 2, and the second construction is for vertices with in-degree 2 and out-degree 1.
Each construction contains one or two copies of G in state q and one single-use directed path. By
assumption, state q contains two traversable tunnels, at least one of which is directed. If both
tunnels are directed, we only need one of the gadgets in state q for the in-degree 2 vertex gadget.

The remaining case is when, in the final true 2-tunnel state, there is no distant opening and all
tunnels are undirected. We branch into two cases one last time, based on whether traversing one
tunnel requires closing the other tunnel.

Lemma 3.9. Let G be a true 2-tunnel gadget and let q be a final true 2-tunnel state of G. Suppose
there are two tunnels a and b which can both be traversed in both directions in q. Furthermore,
suppose that every transition from q across a from left to right goes to a state in which b cannot be
traversed from right to left. Then universal traversal with G is NP-hard.

Proof. The form of state q is shown in Figure 8. We reduce from finding a Hamiltonian path in a
directed 3-regular graph with specified start and end vertices s and t [17], as in Lemma 3.8. We
replace each vertex other than s and t with the appropriate vertex gadget in Figure 9, and replace
s and t with the appropriate half of one of these vertex gadgets. If there is a Hamiltonian path,
then the agent can follow it to make a traversal in every gadget.

S' 

S S'

Figure 8: The form of the gadget in Lemma 3.9. Every transition from state q across the top tunnel
to the right closes the right-to-left traversal on the bottom tunnel.

Suppose the agent can make a traversal in every gadget; we consider how it moves through
each vertex gadget. It must go across the single-use path in each vertex gadget. Suppose the agent
enters a vertex gadget with in-degree 1 on the single-use path. It must exit on a path on the right.
If it returns to the vertex gadget along a path on the right, it cannot leave on the other path
because at this point that copy of G is not true 2-tunnel; so the agent cannot accomplish anything
by returning to the vertex gadget. Now suppose it enters a vertex gadget with in-degree 2 along
a path on the left. Because every transition from q crossing a to the right closes the right-to-left

10



traversal of b, the agent cannot exit the vertex gadget across the other left path. It can return to
where it was, or exit across the single-use path.

S'

S'

Figure 9: Vertex gadgets for Lemma 3.9. The first construction is for vertices with in-degree 1 and
out-degree 2, and the second construction is for vertices with in-degree 2 and out-degree 1. Each
construction contains one or two copies of G in state q and one single-use path.

In particular, by induction the agent must always enter a vertex gadget on one of the in-edges
and exit on an out-edge. It cannot use more than two edges on each vertex gadget, and must use
the single-use path. So its path corresponds to a Hamiltonian path from s to t.

Lemma 3.10. Let G be a true 2-tunnel gadget and let q be a final true 2-tunnel state of G. Suppose
there are two tunnels a and b which can both be traversed in both directions in q. Furthermore,
suppose that both traversals from state q across a can leave either direction across b traversable,
and vice versa. Then universal traversal with G is NP-hard.

Proof. We reduce from finding a Hamiltonian path in an undirected 3-regular graph with specified
start and end vertices s and t, assuming s and t have degree 1 (so the graph is not quite 3-regular)
[11].4 We will only use state q and the tunnels a and b. Each vertex of the graph other than s and
t is replaced with the construction in Figure 10, where each of the nine gadgets is in state q and
the tunnels involved are a and b. The start location is at s. There is a single-use path leading to
t; this forces the agent to end by entering t.

Suppose there is a Hamiltonian path. Then the agent will follow this path through the system of
gadgets, and thereby traverse every vertex gadget. At each vertex, by assumption all four traversals
across each gadget are currently open. As the agent moves towards the center of the vertex gadget,
it will choose transitions so that the path out the edge it intends to exit on stays open; this is
possible by assumption. So it is able to follow the Hamiltonian path. Traversing a vertex gadget
in this way goes through every gadget in it, so because the path is Hamiltonian the agent uses all
of these gadgets. Because the path ends at t, it also uses the single-use path to t.

Conversely, suppose the agent is able to make a traversal in every gadget. It must start at s,
and because it traverses the single-use path to t, it must end at t. We will argue that it must
pass through each vertex gadget—meaning that it enters along one edge and exits along a different
edge—exactly once. Given this claim, we can extract a Hamiltonian path in the graph: consider

4Garey, Johnson, and Tarjan [11] consider Hamiltonian cycle in undirected 3-regular graphs, but it has many
edges that are forced to be included in the cycle (every instance of the “required-edge graph” has one such edge). If
(x, y) is such a forced edge, then we can delete the edge and add a degree-1 neighbor s to y and a degree-1 neighbor
t to x, and there is a Hamiltonian path starting at s and ending at t if and only if there is a Hamiltonian cycle in
the original graph.

11



A

B C

AC1

AC2

AC3

AB1

BC3

BC2

BC1

AB2

AB3

Figure 10: A vertex gadget for Lemma 3.10. The individual gadgets are true 2-tunnel gadgets
and are shown elongated and curved in this diagram. Incident edges are labeled A through C,
and gadgets are labeled with the two edges going through them and a number counting from the
outside in.

the sequence of edges between vertex gadgets the agent visits. The agent can only switch edges by
passing through a vertex gadget. So once it arrives at an edge via one vertex gadget, it must exit
via the other: it cannot backtrack without passing through a vertex gadget multiple times. Thus
this sequence of edges gives a walk in the graph from s to t. Because the agent passes through
each vertex gadget exactly once, the walk uses each vertex exactly once: in other words, it is a
Hamiltonian path.

To show that the agent passes through each vertex gadget exactly once, we will make heavy
use of the fact that q is the final true 2-tunnel state of G. In particular, after the agent traverses
one of the two tunnels on a gadget, it cannot later traverse both tunnels.

Suppose the agent passes through a vertex gadget. It must make a traversal on every individual
gadget, leaving them in non-true 2-tunnel states. In order to pass through the vertex gadget a
second time, the agent would need to traverse both tunnels on the gadgets which intersect both the
entrance and exit edges it uses, but this is impossible because they are not true 2-tunnel anymore.

Now suppose the agent does not pass through some vertex gadget. It may still visit the vertex
gadget by entering and exiting along the same edge. We will show that the agent cannot traverse
every gadget in the vertex gadget this way. In order to traverse the single-use path to t, the agent
must end at t, and in particular cannot end inside the vertex gadget. Consider the first time it
traverses one of the innermost gadgets, without loss of generality AC3. Because this is the first
such time, the agent must have entered at A and traversed the tunnel of AC3 on A. The agent
needs to later exit along A, and thus traverses the tunnels of AC1, AC2, AC3, AB1, and AB2 on A

12



4
4

2 3 4

3

1

2

Figure 11: A DAG gadget for which reachability is in NL but universal traversal is NP-hard.
Crossing either directed tunnel closes that tunnel without affecting the other tunnel.

each twice. Because q is final true 2-tunnel, the agent never uses the tunnels of these gadgets on B
or C. This mostly cuts off BC2: the only way the agent can make a traversal on BC2 is by entering
at A, walking to the tunnel of BC2 on B, turning around, and exiting at A again. In doing so, the
agent would use each tunnel of AB3 twice, but this is impossible because q is final true 2-tunnel.
Hence it is impossible for the agent to make a traversal in every gadget without passing through
the vertex gadget.

These cases together cover every true 2-tunnel DAG gadget, so we can now prove Theorem 3.6:
universal traversal with any true 2-tunnel DAG gadget is NP-complete.

Proof. Because the gadget is a DAG, the agent can make a bounded number of traversals in each
copy of the gadget. So the solution path has polynomial length, and thus the problem is in NP.

For NP-hardness, we consider a final true 2-tunnel state q and use one of the preceding lemmas.
If a transition from q across some tunnel opens a traversal across a different tunnel, NP-hardness
follows from Lemma 3.7. Otherwise, if q contains a directed tunnel, we have NP-hardness from
Lemma 7. Otherwise, all tunnels traversable in q are traversable in both directions, and no transi-
tion from q opens a tunnel. If traversing some tunnel in some direction from q forces the agent to
close some traversal across another tunnel, NP-hardness follows from Lemma 3.9. Finally, if there
is no traversal with that property, Lemma 3.10 gives NP-hardness. Together these lemmas cover
all true 2-tunnel DAG gadgets.

For a DAG gadget, universal traversal and reachability can have different complexity. Reach-
ability is NP-hard if and only if the gadget has a distant opening or a forced distant closing [10,
Theorem 22]. Each of these properties implies that the gadget is true 2-tunnel, so universal traver-
sal is NP-hard whenever reachability is. However, sometimes reachability is in P while universal
traversal is NP-hard. For example, for the gadget shown in Figure 11, NP-hardness of universal
traversal is given by Lemma 3.8, whereas reachability is in NL because there are not interacting
tunnels.

More generally, the gadgets considered in Lemmas 3.7 and 3.9 all have NP-hard reachability as
well as universal traversal, but those considered in Lemmas 3.8 and 3.10 do not necessarily have
NP-hard reachability despite universal traversal being NP-hard.

The proofs of Lemmas 3.8, 3.9, and 3.10 can be considered as reductions from finding Hamil-
tonian paths in planar graphs, which shows the universal traversal problem NP-hard even when
restricted to planar systems of gadgets. This leaves open the question of whether this is also true
for the gadgets considered in Lemma 3.7.

Problem 3.11. Is universal traversal restricted to planar systems of gadgets NP-hard for all true
2-tunnel DAG gadgets?

13



3.2 One-State Gadgets

In this subsection, we consider universal traversal with a k-tunnel gadget that has only one state.
Because such gadgets have non-interacting tunnels, reachability with them is in NL [10], but we will
see that universal traversal is often NP-complete. This is another example of the distinction between
reachability and universal traversal that we saw for DAG gadgets in the previous subsection.

A one-state k-tunnel gadget consists of directed and undirected tunnels, and is determined by
the number of each type; we assume there is no untraversable tunnel because such a tunnel can be
removed without affecting the problem. We fully characterize the complexity of universal traversal
with such gadgets.

Theorem 3.12. Let G be a one-state k-tunnel gadget. If G has no directed tunnels, then universal
traversal with G is in L. Otherwise, if k ≤ 2, then universal traversal with G is NL-complete; and
if k ≥ 3, then universal traversal with G is NP-complete.

We will prove each portion of Theorem 3.12 in a separate lemma.

Lemma 3.13. Universal traversal with any one-state gadget is in NP.

Proof. If there is a way to use every gadget, this can be done in a number of traversals at most
quadratic in the number of tunnels: list the gadgets in an order they can all be visited, and take the
shortest path between each pair. The number of gadgets and each such shortest path has length at
most the total number of tunnels. So the full solution path can be described in polynomial space.
We use this as a certificate; clearly we can check in polynomial time whether a potential solution
works.

Lemma 3.14. Universal traversal with any one-state k-tunnel gadget with no directed tunnel is
in L.

Proof. We solve the universal traversal problem as follows. Iterate over each gadget. For each one,
iterate over its locations. For each location, we check whether there is a path from the start location
to that location; this is reachability in an undirected graph which can be solved in logarithmic space
[19]. If there is a path, we move on to the next gadget. If there is no path, we move on to the next
location on the gadget, unless this was the last location, in which case we reject. After finishing all
gadgets, we accept.

This algorithm can clearly run in logarithmic space. Because all tunnels are undirected, the
agent can visit each gadget in turn and return to the start location after each one. So the agent
can use every gadget exactly when there is a path to every gadget from the start location, which
is what the algorithm checks.

Lemma 3.15. Universal traversal with any one-state k-tunnel gadget with a directed tunnel is
NL-hard.

Proof. We reduce from s-t connectivity in directed graphs, which is NL-complete [19]. We will use
only one directed tunnel in each gadget.

Given a directed graph with vertices s and t, we first add edges t → v and v → s for each
vertex v. Then we replace each edge with a directed tunnel in a gadget. This can clearly be done
in logarithmic space.

If there is no path from s to t, then the agent can never traverse the tunnel t → s. If there is
such a path, the agent can go to t, go to the entrance of a tunnel, go through the tunnel, and return
to s. By doing this for each edge in the graph, the agent can make a traversal in every gadget. So
the universal traversal problem is solvable exactly when there is a path from s to t.

14



Lemma 3.16. Universal traversal with any one-state k-tunnel gadget is in NL if k ≤ 2.

Proof. We provide an algorithm which runs in nondeterministic logarithmic spaces with an oracle
for reachability in directed graphs. This shows that the universal traversal problem is in NLNL.
We will then explain how the algorithm can be adapted to run in NL. The algorithm first uses the
oracle to convert the problem to an instance of 2SAT. It then solves this instance, because 2SAT
is in NL.

The 2SAT formula has a variable for each tunnel in the system of gadgets; a satisfying assign-
ment will provide a set of tunnels we can traverse to solve the universal traversal problem. For
each gadget with tunnels x1 and x2, we have a clause x1 ∨ x2 (if the gadget has only one tunnel,
x1 = x2). For each pair of distinct tunnels x and y, we query the reachability oracle to determine
whether there is a path from the exit of x to the entrance of y or from the exit of y to the entrance
of x (if x or y is undirected, we can use either location as the entrance or exit). If there is no path
in either direction, we have a clause ¬x ∨ ¬y.

We prove that this algorithm works, and then adapt it to an LNL algorithm which is known to
equal NL [14].

Lemma 3.17. The 2SAT formula above is satisfiable if and only if the universal traversal problem
has a solution.

Proof. First suppose the universal traversal problem is solvable, and consider the assignment which
contains the tunnels which are used in the solution. Because the solution must use a tunnel in
every gadget, each clause x1 ∨ x2 is satisfied. If the solution uses both tunnels x and y, there must
be a path in some direction between x and y, namely the path the agent takes between the two
tunnels. For each clause ¬x∨¬y in the formula, there is no such path, so the solution does not use
both tunnels x and y, so the clause is satisfied.

Now suppose the 2SAT formula is satisfiable, and consider the set T of tunnels corresponding
to true variables in a satisfying assignment. Because of the clauses x1∨x2, T must contain a tunnel
in each gadget. We define a relation → on T where x → y if there is a path from the exit of x to
the entrance of y. As suggested by the notation, this relation is transitive: if x → y → z, there is
a path from the exit of x to the entrance of y, across y, and then to the entrance of z, so x → z.
Because each clause ¬x ∨ ¬y is satisfied, for any distinct x, y ∈ S we have x → y or y → x. That
is, → is a strict total pre-order.

Then there must be a (strict) total order ≺ on T such that x ≺ y =⇒ x→ y: define another
relation ∼ where x ∼ y if x = y or both x → y and y → x. Then ∼ is clearly an equivalence
relation, and → is a total order on T/∼. We can construct ≺ by putting the equivalence classes
under ∼ in order according to →, and arbitrarily ordering the elements of each equivalence class.

The agent can traverse the tunnels in T in the order described by ≺. This is a solution to the
universal traversal problem.

We run the algorithm in nondeterministic logarithmic space as follows. Begin with an NL
algorithm that solves 2SAT, and assume the input is given in a format where we can check whether
a clause a∨ b is in the formula by checking a single bit for literals a and b. For example, the input
can be given as a matrix with a row and column for each literal. We run this nondeterministic
2SAT algorithm, except that whenever we would read a bit of the input, we perform a procedure
to determine whether that clause is in the formula.

Suppose the algorithm to solve universal traversal wants to know whether a∨b is in the formula.
If a and b are both positive literals, we simply check whether they correspond to tunnels in the
same gadget. If a and b have different signs, the clause is not in the formula. The interesting case

15



is when a = ¬x and b = ¬y for tunnels x and y, where we need to determine whether there is a
path from the exit of x to the entrance of y or vice versa.

In this case, we nondeterministically guess whether the clause exists, and then check whether
the guess was correct. If we guess it does exist, we run a coNL algorithm to verify that there is no
path from the exit of x to the entrance of y or vice versa; this can be converted to an NL algorithm.
If the verification succeeds, we proceed; if it fails, we halt and reject. Similarly, if we guess the
clause does not exist, we run an NL algorithm to verify that there is such a path, proceeding on
success and rejecting on failure.

Consider the computation branches which have not rejected after this process. If the clause
exists, the branch which attempted to verify it does not exist has entirely rejected, and the branch
which attempted to verify it does exist has succeeded in at least one branch. So there is at least
one continuing branch, and every such branch believes that the clause exists. Similarly if the clause
does not exist, we end up with only branches which guessed that it does not exist.

At this point, we continue with the 2SAT algorithm, because every remaining branch knows
the correct value for the input bit we have read.

Lemma 3.18. Universal traversal with any one-state k-tunnel gadget with a directed edge is NP-
hard when k ≥ 3.

Proof. Let G be any one-state k-tunnel gadget with a directed edge. We will only use three tunnels
in each copy of G, at least one of which is directed. We begin by building the one-state gadget
with three directed tunnels. To do this, we connect six copies of G along three paths, such that
each path goes through all six copies and the first and last tunnel on each path is directed. Six
copies of G is enough to supply these directed edges. The agent can only enter each tunnel of this
construction from one side. When it does, it has no choice but to continue all the way through the
construction, and in the process it uses all six gadgets involved. So this simulates the one-state
gadget with three directed tunnels, and it suffices to show NP-hardness for this specific gadget.

We prove NP-hardness by a reduction from 3SAT. Each clause becomes a copy of the gadget
with three directed tunnels. There are a sequence of branches corresponding to variables, which
go through tunnels in the gadgets corresponding to clauses containing the variable or its negation.
At the branch corresponding to x, the agent must choose between a path which goes through the
gadgets corresponding to clauses with x and a path which goes through gadgets corresponding to
clauses with ¬x. These paths merge before the branch for the next variable. The start location is
at the first branch.

A path through this system of gadgets is exactly an assignment for the formula, and the gadgets
visited correspond to satisfied clauses. So it is possible to visit every gadget if and only if the formula
is satisfiable.

Combining Lemmas 3.13 through 3.18, we have Theorem 3.12 characterizing the complexity of
universal traversal with one-state k-tunnel gadgets.

3.3 Reversible Deterministic Gadgets

In this subsection, we prove that the complexity of the universal traversal problem for a reversible
deterministic k-tunnel gadget is the same as the complexity of the reachability problem for that
gadget (as previously characterized in [10]).

Theorem 3.19. Let G be a reversible deterministic k-tunnel gadget. Then universal traversal (and
reachability) with G is PSPACE-complete if G has interacting tunnels, and is in NL otherwise.

16



Proof. Suppose first that G has no interacting tunnels. Then reachability with G is in NL [10,
Theorem 2]. It follows that the question of whether the agent can make a traversal in a target
gadget is in NL, because we can solve the reachability question for each usable location of the
gadget. To solve universal traversal with G, we check for each gadget whether the agent can use
that gadget from the original configuration. If every gadget passes this check, we accept; otherwise
we reject.

The output of this algorithm is the and of the outputs of polynomially many NL algorithms,
so it runs in NL. The algorithm works because the agent can follow the path to a gadget, use that
gadget, and then reverse its path back to the initial configuration. Doing this for each gadget in
series, the agent can make a traversal in every gadget exactly when each gadget can be reached
from the initial configuration.

Now suppose G has interacting tunnels. Containment in PSPACE is given by Lemma 3.1.
To show PSPACE-hardness, we reduce from reachability with G, which is PSPACE-complete [10,
Corollary 7]. By [10, Lemma 5], G simulates a 1-toggle , the gadget whose state diagram is shown
in Figure 12. Furthermore, when the agent traverses the simulation of the 1-toggle, it visits every
gadget in the simulation; this is clear from examining the proof of this lemma.

2
2

1
1

Figure 12: The state diagram of the 1-toggle.

Given an instance of the reachability problem for G, we modify it by adding a 1-toggle from the
win location to each location in the system of gadgets. We also add a gadget at the win location
which is usable if and only if the agent reaches the win location. This can clearly be done in
polynomial time.

If the agent can reach the win location, then it can travel along one of these 1-toggles, cross
back and forth across a gadget, and return along the 1-toggle. In this way, the agent can make a
traversal in every gadget, including those in the simulated 1-toggles and the gadget added at the
win location. Conversely, in order to traverse every gadget, the agent most traverse the gadget at
the win location, which requires being able to reach the win location in the original reachability
instance. Thus the reachability instance is solvable if and only if the constructed universal traversal
instance is solvable.

4 Gadget Reconfiguration

In this section, we study the question of whether an agent can traverse a system of gadgets to
bring the system to a target configuration, called the reconfiguration problem (Definition 2.3.
In Section 4.1, we show that, with reversible deterministic gadgets, reconfiguration is at least as
hard as reachability. On the other hand, we give an example of a reversible nondeterministic
gadget with non-interacting tunnels for which the reconfiguration problem is PSPACE-complete,
whereas reachability with any gadget with non-interacting tunnels is always in NL [10, Theorem 2].
Section 4.2 shows some methods for constructing new PSPACE-complete gadgets from known ones,
and uses these methods to show that the reconfiguration problem can be PSPACE-complete even
when a gadget does not change traversability, while reachability can be PSPACE-complete even
when a gadget monotonically opens or monotonically closes tunnels. Finally, in Section 4.3, we show

17



an interesting connection between reconfiguration and bounded reachability problems, expanding
the classes of gadgets we know of for which these problems are in NP. We also exhibit a gadget
with which reachability is NP-complete but reconfiguration is in P.

4.1 Reconfiguring Reversible Gadgets

In this subsection, we first show that, for reversible gadgets, reconfiguration is at least as hard
as reachability. We then exhibit a reversible deterministic gadget with non-interacting tunnels for
which the reconfiguration problem is PSPACE-complete, providing an example where reconfigura-
tion is harder than reachability.

4.1.1 Reconfiguration is as Hard as Reachability

Theorem 4.1. Let S any set of reversible gadgets where at least one has a transition that changes
state. There is a polynomial-time reduction from reachability with S to reconfiguration with S.

Proof. We use the same trick as the one used to show reconfiguration Nondeterministic Constraint
Logic is PSPACE-complete [12]. Given an instance of reachability, at the win location we add a
gadget with a state-changing transition and a loop which allows the agent to take this transition.
We set the target states of all but the newly added gadget to be the same as the initial states,
and we set the target state of the added gadget to be the one the transition leads to. If the
reconfiguration problem has a solution, the agent must be able to visit the added gadget, so the
reachability problem has a solution. Conversely, if the reachabality problem has a solution, the
agent can perform it, make the transition in the added gadget, and then take the inverse of all
transitions of the reachability solution (in reverse order). This is possible and leaves all gadgets in
their target state because the gadgets are reversible.

The assumption that some gadget is nontrivial is a very minor one, but it isn’t strictly needed:
if no gadget in S has a state-changing transition, then reconfiguration with S is trivial: the only ob-
tainable configuration is the starting one. Reachability with S reduces to reachability in a directed
graph, and thus is in NL.5 Since both problems are in P, there are polynomial-time reductions in
both directions except for the degenerate case where the answer is always the same such is if every
gadget in S has only one state so reconfiguration is always possible.

4.1.2 PSPACE-complete Reversible Deterministic Gadget with Non-Interacting Tun-
nels

There are cases where the reconfiguration problem is strictly harder. In this section we describe a
reversible deterministic gadget with non-interacting tunnels, so the reachability problem is in NL
[10, Theorem 2], but for which the reconfiguration problem is PSPACE-complete.

The Non-Interacting Box gadget is a reversible, deterministic, 12-state, two-tunnel gad-
get shown in Figure 13. Each tunnel can be traversed either once or twice consecutively in the
same direction, depending on the state. Although going through one tunnel never changes the
traversability of the other tunnel, it does sometimes change how many times the other tunnel can
be traversed in the same direction. We will refer to the four rightmost states (B, C, G and H) as
the right square , and the four bottommost states (I, J , K, and L) as the bottom square .

A key fact about the Non-Interacting Box gadget is that it is balanced , meaning the net number
of traversals across each tunnel is determined by the change in state. In other words, we can arrange

5For reversible gadgets with no state-changing transitions, traversals must be undirected, so in fact this is in L.

18



A B C

G H

ED

F

I

K L

J

Figure 13: The state diagram of the Non-Interacting Box gadget. Dashed edges indicate reversible
pairs of transitions when crossing the gadget in the same direction: for instance, a left-to-right
traversal in state A leaves the gadget in state B, and a right-to-left traversal in state B leaves the
gadget in state A. All Non-Interacting Box gadgets will be drawn in the same orientation.

the states in a grid, where B and E, F and I, and G and J are each in the same grid cell, such
that every transition moves one grid cell in the direction of the traversal. The coordinates of the
grid cell track the net number of traversals across each tunnel.

Theorem 4.2. Reconfiguration with the Non-Interacting Box gadget is PSPACE-complete.

Proof. To show PSPACE-completeness, we will reduce through two new decision problems. First,
targeted reconfiguration is a slight modification of reconfiguration first defined in [13], where
we also require the agent to end in a designated target location as in reachability. Theorem 4.1
can easily be adapted to prove targeted reconfiguration with the locking 2-toggle hard, simply by
making the target location the same as the start location.

In multi-agent motion planning , there are multiple agents in the system of gadgets. The
agents perform a sequence of transitions, each of which involves only one agent. There is no limit on
the number of agents at a location, but our constructions will ensure that there are at most two in
the same place simultaneously. Cooperative targeted reconfiguration is the following decision
problem about multi-agent motion planning: given a system of gadgets, a specified starting count
of agents at each location, a target configuration, and a target count of agents at each location, is
the a sequence of transitions resulting in the target configuration with the correct target counts?

The second step in our chain is a reduction to cooperative reconfiguration with the Non-

19



Interacting Box gadget, where each location is forced (by construction) to have at most two agents
simultaneously. Finally, we will reduce this problem to (single-agent) reconfiguration with the
Non-Interacting Box gadget, by enabling one agent to simulate the actions of many.

Multi-agent 1-Toggle. We will begin by simulating a multi-agent version of the 1-toggle, a
gadget whose state diagram is shown in Figure 12. A regular 1-toggle can be easily constructed
from the Non-Interacting Box gadget by taking a single tunnel in an appropriate state. Instead,
we will build a gadget that does not allow individual agents through at all, but if it has an agent
on either side of it, a third agent can use the gadget as though it were a 1-toggle.

Figure 14: The multi-agent 1-toggle. The two helper agents are denoted by red dots. The Non-
Interacting Box gadget is in either state L or H, depending on the state of the simulated 1-toggle.

To build our multi-agent 1-toggle we simply connect the tunnels together as shown in Figure 14
It will have helper agents standing ready at the two entrances. When the Non-Interacting Box
gadget is in state L or H (labeled in Figure 13, the simulated 1-toggle can be traversed bottom-to-
right or right-to-bottom, respectively.

Because the Non-Interacting Box gadget is balanced, we can determine the change in positions
of agents just from the change in state. So it suffices to consider the reachable states for different
numbers of agents present. We consider starting in state L; state H is similar. With only the
two helper agents, the only reachable states are the bottom square, depending on which subset of
helper agents have moved ‘inside’ the gadget. Since the reachable set of states are a simple grid,
the state is entirely determined by the net number of traversals across each tunnel. In particular,
the helper agents are not able to leave the multi-agent 1-toggle in the same direction, since doing
so would require a net of one upwards and one rightwards (or one leftwards and one downwards)
traversal (the helper agents can switch places, but this doesn’t accomplish anything).

If a third agent arrives on the right when the Non-Interacting Box gadget is in state L (or
equivalently, any configuration the helper agents can reach from L), this agent does not allow
anything new. This is because having an addition agent able to traverse right-to-left does not make
any additional states reachable from the bottom square.

If instead the third agent arrives on the bottom, then the 1-toggle can be used: the new agent
can move inside, putting the Non-Interacting Box gadget in state J . Now the two helper agents
can freely switch the gadget between states J and G, by both entering and then both exiting, going
through either D or A. This takes advantage of the fact that these traversals do not commute,
which is represented by the fact that the relevant portion of the state diagram is not a grid. Once
the gadget is in state G, the third agent can exit to the right, leaving it in H. Every path from
L to H has a net one upwards and one rightwards traversal, so by switching from from state L to
H the net effect is one agent entering the bottom and exiting the right. Since no state is further

20



right than H, once the gadget is in H it is not possible for an agent to move from the bottom to
the right.

To summarize: when there is at most one agent at each entrance, nothing interesting happens,
but if there are at least two at one entrance and one at the other, the gadget can be used as
a 1-toggle. The additional agents are needed to go around a noncommuting square in the state
diagram.

Multi-agent Locking 2-Toggle. The multi-agent locking 2-toggle will be comprised of one Non-
Interacting Box gadget, four multi-agent 1-toggles (which do not contain helper agents, and are
drawn with a wide arrow), and six helper agents. It will allow an additional agent to interact
with it as though it were a locking 2-toggle. Two helper agents will be located in the horizontal
and vertical connections next to the Non-Interacting Box gadget, and the other four agents will be
external, each adjacent to one of the multi-agent 1-toggles. Note, these external four agents will
be shared between gadgets rather than duplicated.

The center state (state 3 in Figure 1) is shown in Figure 15 where the Non-Interacting Box
gadget is in state A. Without any additional agents, the helper agents cannot do much: the multi-
agent 1-toggles prevent any additional agents from getting inside. The two agents with access to
the Non-Interacting Box gadget can change its state in a cycle of 8 states in a doubly-covered
square, but are unable to go anywhere else. Another agent arriving at the right or bottom does
not allow any new behavior because of the multi-agent 1-toggles.

Figure 15: The multi-agent locking 2-toggle in the center state. Red dots denote helper agents.
The middle gadget is a Non-Interacting Box gadget in state A, and the other four gadgets are
multi-agent 1-toggles.

If an agent arrives at the top, it is able (with help) to cross the first 1-toggle, both agents
can move down through the Non-Interacting Box gadget (leaving it in state K), and then the two
agents (and the agent at the bottom) can work together to have one of them move to the bottom.
An agent has traversed the simulated locking 2-toggle, leaving it in a leaf state. The resulting
configuration is shown in Figure 16. The other leaf state is similar.

From this configuration, if an agent arrives on the left, it could move through the multi-agent
1-toggle, but only one agent would be able to pass the Non-Interacting Box gadget: having a net
two traversals to the right requires going through state A. Thus it would not be able to pass the
second 1-toggle. So a left-to-right traversal is now impossible, as is needed for our simulation of a
locking 2-toggle. All other traversals other than reversing the one taken to get to the leaf state are
prevented by the multi-agent 1-toggles.

21



Figure 16: The multi-agent locking 2-toggle in the leaf state after traversing top-to-bottom. Red
dots denote helper agents. The middle gadget is a Non-Interacting Box gadget in state K, and the
other four gadgets are multi-agent 1-toggles.

Hardness for Cooperative Targeted Reconfiguration. We reduce from reconfiguration with
locking 2-toggles, by replacing each locking 2-toggle with our construction of a multi-agent locking
2-toggle in the appropriate state. We place the two helper agents inside each multi-agent locking
2-toggle, and one helper agent in each connected component of the original connection graph. Note
that adjacent multi-agent locking 2-toggles share external helper agents. We place an additional
agent at the start location. The target configuration and agent counts are defined similarly.

If we ignore the agent at the start location, there is exactly one agent that as access to each
side of each multi-agent 1-toggle; possibly involving crossing the Non-Interacting Box gadget inside
a multi-agent locking 2-toggle. In particular, no agent can cross a multi-agent 1-toggle.

The agent at the start location changes this, since there are now two agents there, which
is enough to activate a multi-agent 1-toggle. Because of the behavior of our constructions, by
induction it will always be the case that each side of each multi-agent 1-toggle has one agent that
can reach it, except for one that has two. The position of the two agents represents the agent in
the single-agent reconfiguration problem. This doubled agent can navigate the system in exactly
the same way as an agent navigating the original system of locking 2-toggles. So a solutions to
the original targeted reconfiguration problem correspond to solutions to the cooperative targeted
reconfiguration problem, though we may need to return helper agents to the appropriate locations
(without changing the states of simulated gadgets) at the end.

Simulating Extra Agents. Now we wish to simulate the multi-agent reduction with a single
agent. We can directly build a (single agent) 1-toggle out of the Non-Interacting Box gadget, by
using the vertical tunnel in states C and H. Recall that our reduction ensured that no connected
component of the connection graph has more than two agents at any given point in time. Starting
with such an instance of cooperative targeted reconfiguration with the Non-Interacting Box gadget,
we attach two 1-toggles to each connected component of the connection graph, each representing a
potential agent. The other end of all the one toggles are all connected to a hub, which is where the
agent starts. For each connected component, the number of added 1-toggles directed towards it is
the number of agents that start there. An example of this transformation is shown in Figure 17.

From the hub, the agent is able to cross a 1-toggle to ‘embody’ the agent it represents in the
multi-agent problem. The agent is then in the same location and able to interact with original
instance exactly how the embodied agent would. If the agent then traverses a 1-toggle back to the
hub, the virtual agent is now at the component that 1-toggle connects to. This ‘remembers’ where
the virtual agent is, and allows the real agent to embody it again later. Because the multi-agent
problem never has more than two agents in a connected component, the two 1-toggles we added are

22



+

Figure 17: Our construction for a single agent to simulate multiple using 1-toggles, applied to the
multi-agent 1-toggle (Fig. 14). The middle gadget is an Non-Interacting Box gadget, and other
gadgets are 1-toggles. The path along the top and left edges is the hub. 1-toggles pointing away
from the hub represent agents.

sufficient to record all virtual agents. When the agent is at the hub, the configuration of the entire
network corresponds to the configuration of the multi-agent network plus the number of agents in
each component, except that there are two ways to represent one agent in a component. To resolve
this ambiguity and complete the reduction, we can pick a consistent one of the 1-toggles to flip
when representing the presence of a single agent.

4.2 PSPACE-complete Monotonically Opening and Closing Gadgets

In this subsection, we will demonstrate hard gadgets in some classes which may seem as though
they should only contain easy gadgets. The main idea is to construct a gadget which behaves well
when used like a known-hard gadget, but might also have other transitions which are allowed but
put the gadget into some undesirable state.6

Let G be any gadget. Define a breakable G to be a gadget obtained from G by adding any
number of new states, which we call broken , and then adding any collection of transitions to
broken states. Many different gadgets are breakable Gs, including G itself. As suggested by the
terminology, one should think of a breakable G as “breaking” when the agent takes a transition to
a broken state; we will arrange that the game cannot be won if this happens, making breaking the
gadget effectively illegal.

The most useful breakable G is the simply breakable G, which has one broken state x, and

6The conference version of this paper [4] introduced “shadow states” and “verifiable gadgets”, which were a major
inspiration for checkable gadgets in [3]. We have reframed these results to better align with the terminology of
checkable gadgets.

23



has every possible breaking transition: it adds the transition (a, q) → (b, x) for all locations a
and b and states q (including x). For example, Figure 18 shows the simply breakable 2-toggle,
where the 2-toggle is the reversible deterministic 2-tunnel gadget obtained by removing state x
and the green arrows from Figure 18. Reachability with the 2-toggle is PSPACE-complete [8], so
by Theorem 4.1 reconfiguration is as well. While a simply breakable gadget allows any sequence
of traversals, if the agent does anything that would not be allowed by the base gadget, the gadget
becomes permanently stuck in the broken state.

2 1

1 2 x
12

Figure 18: The simply breakable 2-toggle. Green arrows are transitions to x.

Theorem 4.3. For any gadgets G and G′ where G′ is a breakable G, there is a polynomial-time
reduction from reconfiguration with G to reconfiguration with G′.

Proof. We simply replace each copy of G in a system with a copy of G′ in the same state, and use
the same target states. If the original instance has a solution, it is still a solution when each G is
replaced with a breakable G. If, in the system of G′s, the agent makes any transition to a broken
state, that gadget can never reach its target state, so the instance becomes unsolvable. Thus any
solution to this reconfiguration problem never puts any copy of G′ in a broken state, and so is also
a solution to the original instance.

For the remainder of this subsection, let G̃ be any gadget for which both reachability and
reconfiguration are PSPACE-complete. Any such gadget (for example, the 2-toggle) suffices for our
results.

Corollary 4.4. There is a gadget that never changes its traversability, and indeed all traversals
are available in every state, and for which reconfiguration is PSPACE-complete.

Proof. Because reconfiguration with G̃ is PSPACE-complete, so is reconfiguration with the simply
breakable G̃. The simply breakable G̃ has all traversals available in every state, and thus is such a
gadget.

By contrast, reachability with a gadget that never changes its traversability is in NL because it
reduces to directed graph reachability. When all tunnel traversals are possible, reachability is in L
because the graph is undirected.

Next we use these ideas to prove reachability PSPACE-complete for some new classes of gadget.
For a gadget G, a verifiable G is built from a breakable G by adding an unbroken state v, two

locations cin and cout, transitions (cin, q) → (cout, v) for each unbroken state q, and all transitions
(a, v) → (b, v) where a and b are locations of G. Call the traversal cin → cout the checking
traversal ; intuitively, making this traversal verifies that the gadget was not previously broken,
because it is possible only in an unbroken state (including v). The verifiable G built from the
simply breakable G is called the simply verifiable G. Figure 19 shows the simply verifiable
2-toggle.

24



2 1

1 2 x
12

v

v

v

v v

Figure 19: The simply verifiable 2-toggle. Green arrows are transitions to x.

Compared to the checkable gadgets framework [3], a verifiable G is a special case of a “simply
checkable G” (which is itself a special case of “postselection”), and our notions of broken states
coincide. Our next theorem is a direct consequence of these relations and the checkable gadgets
framework, but we provide a self-contained proof which is simpler because we do not need as much
generality.

Theorem 4.5. For any gadgets G and G′ where G′ is a verifiable G, there is a polynomial-time
reduction from reachability with G to reachability with G′.

Proof. Consider a system of Gs with start and target locations s and t. Replace each copy of G
with a copy of G′ in the same state. Add a path that goes from t through the checking traversal on
each gadget in series, and finally to a location t′. Consider reachability on this system with start
and target locations s and t′.

Any solution for the original reachability problem gives a solution for this one: after reaching
t, we can proceed through all of the checking traversals because no copy of G′ is in a broken state.
Conversely, a solution for the new system must reach t′ by passing through cin → cout on every
copy of G′ after reaching t. In order to do so, no gadget can be in a broken state, so the portion of
the solution up to arriving at t is a solution to the original problem.

Monotonically Opening and Closing Gadgets. A gadget is monotonically opening if its
traversability never decreases: if there is a transition from state q to r, and the traversal a → b is
available in q, then a → b is also available in r. Similarly, a gadget is monotonically closing if
its traversability never increases: if there is a transition from state q to r, and the traversal a→ b
is not available in q, then a→ b is also not available in r.

We now use verifiable gadgets to show that there are both monotonically opening gadgets and
monotonically closing gadgets with which reachability is PSPACE-complete. This may be surprising
because the number of changes of traversability in such a system of gadgets is bounded, so one
might suspect reachability with such gadgets to fall in NP.

Corollary 4.6. There exists a monotonically closing gadget for which reachability is PSPACE-
complete.

Proof. Because reachability with the G̃ is PSPACE-complete, so is reachability with the simply
verifiable G̃. The only way the simply verifiable G̃ changes traversability is when the checking
traversal closes because it enters a broken state. In particular, the simply verifiable G̃ is monoton-
ically closing.

Corollary 4.7. There exists a monotonically opening gadget for which reachability is PSPACE-
complete.

25



Proof. We construct a gadget G similar to the simply verifiable G̃, but with two sequential checking
traversals. Specifically, starting with the simply breakable G̃, add a state v and three locations cin,
c, and cout. Then add transition (cin, x)→ (c, x) and the transitions (cin, q)→ (c, v) for all states q
other than x, and add transition (c, v)→ (cout, v) and all transitions (a, v)→ (b, v) where a and b
are locations of G. Figure 20 shows the resulting gadget when G̃ is the 2-toggle. Note that cin → c
is traversable in every state.

2 1

1 2 x
12

v

v v x v v

v

Figure 20: The gadget constructed for Corollary 4.7, using a 2-toggle for G̃. The bottom three
locations are cin, c, and cout from left to right. Green arrows are transitions to x.

Gadget G is monotonically opening: the only change in traversability is that c→ cout becomes
available after traversing cin → c from an unbroken state.

Gadget G also simulates the simply verifiable G̃, simply by ignoring c. Then the only possible
use of the new locations is following cin → c → cout, which is legal from every state except x,
exactly matching the simply verifiable G̃. Thus, using the proof of Corollary 4.6, reachability with
G is also PSPACE-complete.

4.3 Reconfiguration and DAG-like Gadgets

Past work studies DAG gadgets [10] and LDAG gadgets [15] as naturally bounded classes of gadgets,
which leads to reachability questions in NP. We now define a related generalization and describe
cases in which the reachability question remains in NP.

Given a gadget G, a DAG-like decomposition is a partition of the states Q(G) into k clusters
Q1, Q2, . . . , Qk such that, if we take the state-transition graph of G and combine the vertices within
in each cluster Qi, we obtain a directed acyclic graph on the k cluster vertices. For each cluster
Qi, define the induced gadget Gi to be the gadget consisting of states in Qi and all transitions
(q, a) → (r, b) of G for which q, r ∈ Qi. Intuitively, G consists of k subgadgets G1, G2, . . . , Gk

connected by a DAG-like structure. Specifically, we call G F -DAG-like if every induced gadget
Gi comes from the family of gadgets F . For example, DAG gadgets are F -DAG-like where F is
the family of trivial gadgets with no transitions, and LDAG gadgets are F -DAG-like where F is
the family of single-state gadgets (which can have only loops in the state-transition graph).

Given that both DAG gadgets and LDAG gadgets have reachability in NP, we may wonder more
generally for what gadget families F the F -DAG-like gadgets have reachability or reconfiguration in
NP. We initially believed that this might be true for any gadgets F with non-interacting tunnels, but
this is not the case. Consider the gadget in Figure 20. We can perform a DAG-like decomposition
with two clusters of states, {1, 2, x} and {v}. Each induced gadget does not have interacting tunnels,
and in fact does not change its traversability. But we showed in Corollary 4.7 that reachability
with this gadget is PSPACE-complete.

26



On the positive side, we show that, if F is a family of gadgets for which the reconfiguration
problem is in NP, then reconfiguration and reachability with F and with F -DAG-like gadgets are
all also in NP. Define a NPReDAG gadget to be an F -DAG-like gadget where F is a family of
gadgets for which the reconfiguration problem is in NP.

Theorem 4.8. Reconfiguration with NPReDAG gadgets is in NP.

Proof. We give the following certificate for 1-player motion planning with an NPReDAG gadget.
We list all of the DAG-like transitions taken in the solution and the states of all of the gadgets
before and after the transition. Further, for each pair of adjacent DAG-like transitions we imagine
the reconfiguration problem on the system of gadgets which is only comprised by the reconfigurable
super-node gadgets and takes this system from the state after the last DAG-like transition to the
state before the next DAG-like transition. This problem is solvable in NP by definition, so we
provide each of these certificates. The verifier can now check in polynomial time that the final
state is the target state, that the polynomial many DAG-like transitions are valid transitions
and take the given pre-transition state to the post-transition state, and that the (polynomially
many) portions of the path between the DAG-like transitions have some valid path performing
that reconfiguration.

Theorem 4.9. Reachability is in NP for gadgets where reconfiguration is in NP.

Proof. We now essentially want to “guess” the final configuration that the system will be in when
the agent solves the reconfiguration problem and then solve the reconfiguration problem. However,
this strategy also needs to verify that the agent actually reaches the win location. To do this first
we take the reachability instance and add at the win location a loop with a gadget that has access
to a transition with a state change. If there is none, then both reconfiguration and reachability are
trivially in NL. To be able to change the state of the added gadget, an agent must have reached the
location of the loop. Thus we will take as a certificate a final configuration of the system of gadgets
which has the added gadget in a different state, as well as the certificate for the reconfiguration
problem from the initial state to this new target state.

Corollary 4.10. Reachability with NPReDAG gadgets is in NP.

4.4 Reconfiguration Can Be Easier

In this subsection, we introduce the Labeled Two-Tunnel Single-Use gadget, shown in Figure 21
with which reachability is harder than reconfiguration. This gadget is a DAG gadget where going
through either tunnel of the gadget closes both of them; however, the states are distinguished based
on which tunnel was traversed. This is a DAG gadget with a forced distant door closing, so it is NP-
complete by [10, Theorem 22]. We now give a polynomial-time algorithm for the reconfiguration
problem.

Theorem 4.11. Reconfiguration motion planning with the Labeled Two-Tunnel Single-Use gadget
is in P.

Proof. Call states 2 and 3 terminal states. Now consider what the initial and final configurations
of the gadgets can look like. If the initial state is terminal, then the gadget cannot be traversed.
Similarly, if the initial and final configuration are both state 1, then the gadget cannot have been
traversed, because there is no way to return the gadget to state 1 after traversal. Thus the only
case we need to consider is starting in state 1 and ending in a terminal state. In this case, the
labeling of the target state (2 or 3) tells us which of the two tunnels must have been traversed

27



2 3

2

1

3

Figure 21: The Labeled Two-Tunnel Single-Use gadget.

to reach that state. We can thus construct the directed graph which contains only those tunnels
and ask whether there is a path traversing them all exactly once. Because this problem is exactly
checking for the existence of an Eulerian path in a directed graph, we can solve it in polynomial
time [7, Exercise 10.3.2], [16].

It would be interesting to have an example of a gadget with different traversability in every
state, so that the easiness of reconfiguration with it would not be using a degeneracy which is
indistinguishable to reachability.

Acknowledgments

This work was initiated during open problem solving in the MIT class on Algorithmic Lower Bounds:
Fun with Hardness Proofs (6.892) taught by Erik Demaine in Spring 2019. We thank the other
participants of that class for related discussions and providing an inspiring atmosphere.

A preliminary version of the paper appeared at WALCOM 2022 [4].

References

[1] Hugo A Akitaya, Erik D Demaine, Andrei Gonczi, Dylan H Hendrickson, Adam Hesterberg,
Matias Korman, Oliver Korten, Jayson Lynch, Irene Parada, and Vera Sacristán. Character-
izing universal reconfigurability of modular pivoting robots. In 37th International Symposium
on Computational Geometry, 2021.

[2] Joshua Ani, Jeffrey Bosboom, Erik D. Demaine, Yevhenii Diomidov, Dylan Hendrickson, and
Jayson Lynch. Walking through doors is hard, even without staircases: Proving PSPACE-
hardness via planar assemblies of door gadgets. In Proceedings of the 10th International Con-
ference on Fun with Algorithms (FUN 2020), pages 3:1–3:23, September 2020.

[3] Joshua Ani, Lily Chung, Erik D Demaine, Yevhenii Diomidov, Dylan Hendrickson, and Jayson
Lynch. Pushing blocks via checkable gadgets: Pspace-completeness of push-1f and block/box
dude. In 11th International Conference on Fun with Algorithms (FUN 2022). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2022.

[4] Joshua Ani, Erik D. Demaine, Yevhenii Diomidov, Dylan H. Hendrickson, and Jayson Lynch.
Traversability, reconfiguration, and reachability in the gadget framework. In Petra Mutzel,
Md. Saidur Rahman, and Slamin, editors, Proceedings of the 16th International Conference
and Workshops on Algorithms and Computation (WALCOM 2022), volume 13174 of Lecture
Notes in Computer Science, pages 47–58, Jember, Indonesia, March 2022.

28



[5] Joshua Ani, Erik D. Demaine, Dylan Hendrickson, and Jayson Lynch. Trains, games, and
complexity: 0/1/2-player motion planning through input/output gadgets. In Petra Mutzel,
Md. Saidur Rahman, and Slamin, editors, Proceedings of the 16th International Conference
and Workshops on Algorithms and Computation (WALCOM 2022), volume 13174 of Lecture
Notes in Computer Science, pages 187–198, Jember, Indonesia, March 24–26 2022.

[6] Jose Balanza-Martinez, Austin Luchsinger, David Caballero, Rene Reyes, Angel A Cantu,
Robert Schweller, Luis Angel Garcia, and Tim Wylie. Full tilt: Universal constructors for
general shapes with uniform external forces. In Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 2689–2708. SIAM, 2019.

[7] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. North-Holland, 1976.

[8] Erik D. Demaine, Isaac Grosof, Jayson Lynch, and Mikhail Rudoy. Computational complexity
of motion planning of a robot through simple gadgets. In Proceedings of the 9th International
Conference on Fun with Algorithms (FUN 2018), pages 18:1–18:21, La Maddalena, Italy, June
2018.

[9] Erik D. Demaine, Robert A. Hearn, Dylan Hendrickson, and Jayson Lynch. PSPACE-
completeness of reversible deterministic systems. In Proceedings of the 9th Conference on
Machines, Computations and Universality (MCU 2022), pages 91–108, Debrecen, Hungary,
August–September 2022.

[10] Erik D. Demaine, Dylan Hendrickson, and Jayson Lynch. Toward a general theory of motion
planning complexity: Characterizing which gadgets make games hard. In Proceedings of the
11th Conference on Innovations in Theoretical Computer Science (ITCS 2020), pages 62:1–
62:42, Seattle, Washington, January 2020.

[11] Michael R. Garey, David S. Johnson, and Robert E. Tarjan. The planar Hamiltonian circuit
problem is NP-complete. SIAM Journal on Computing, 5(4):704–714, 1976.

[12] Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computation. Theoret-
ical Computer Science, 343(1–2):72–96, 2005.

[13] Dylan Hendrickson. Gadgets and gizmos: A formal model of simulation in the gadget frame-
work for motion planning. Master’s thesis, Massachusetts Institute of Technology, 2021.

[14] Neil Immerman. Nondeterministic space is closed under complementation. SIAM Journal on
Computing, 17(5):935–938, 1988.

[15] Jayson Lynch. A framework for proving the computational intractability of motion planning
problems. PhD thesis, Massachusetts Institute of Technology, 2020.

[16] Christos H. Papadimitriou. On the complexity of edge traversing. J. ACM, 23(3):544–554, jul
1976.

[17] Ján Plesńık. The NP-completeness of the Hamiltonian cycle problem in planar diagraphs with
degree bound two. Information Processing Letters, 8(4):199–201, April 1979.

[18] Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4(2):177–192, 1970.

29



[19] Avi Wigderson. The complexity of graph connectivity. In Ivan M. Havel and Václav Koubek,
editors, Proceedings of the 17th International Symposium on Mathematical Foundations of
Computer Science (MFCS 1992), pages 112–132, Prague, Czechoslovakia, 1992.

30


	1 Introduction
	2 Gadget Model
	2.1 Decision Problems
	2.2 Gadget Types

	3 Universal Traversal
	3.1 DAG Gadgets
	3.2 One-State Gadgets
	3.3 Reversible Deterministic Gadgets

	4 Gadget Reconfiguration
	4.1 Reconfiguring Reversible Gadgets
	4.1.1 Reconfiguration is as Hard as Reachability
	4.1.2 PSPACE-complete Reversible Deterministic Gadget with Non-Interacting Tunnels

	4.2 PSPACE-complete Monotonically Opening and Closing Gadgets
	4.3 Reconfiguration and DAG-like Gadgets
	4.4 Reconfiguration Can Be Easier


