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Abstract

We demonstrate a new connection between fixed-parameter
tractability and approximation algorithms for combinatorial
optimization problems on planar graphs and their generaliza-
tions. Specifically, we extend the theory of so-called “bidi-
mensional” problems to show that essentially all such prob-
lems have both subexponential fixed-parameter algorithms
and PTASs. Bidimensional problems include e.g. feedback
vertex set, vertex cover, minimum maximal matching, face
cover, a series of vertex-removal problems, dominating set,
edge dominating set,r-dominating set, diameter, connected
dominating set, connected edge dominating set, and con-
nectedr-dominating set. We obtain PTASs for all of these
problems in planar graphs and certain generalizations; of
particular interest are our results for the two well-known
problems of connected dominating set and general feedback
vertex set for planar graphs and their generalizations, for
which PTASs were not known to exist. Our techniques gen-
eralize and in some sense unify the two main previous ap-
proaches for designing PTASs in planar graphs, namely, the
Lipton-Tarjan separator approach [FOCS’77] and the Baker
layerwise decomposition approach [FOCS’83]. In particu-
lar, we replace the notion of separators with a more power-
ful tool from the bidimensionality theory, enabling the first
approach to apply to a much broader class of minimization
problems than previously possible; and through the use of a
structural backbone and thickening of layers we demonstrate
how the second approach can be applied to problems with a
“nonlocal” structure.

1 Introduction

The recent theory of fixed-parameter algorithms and param-
eterized complexity [32] has attracted much attention in its
less than ten years of existence. In general the goal is to
understand when the exponentiality of NP-hard problems
can be contained within a parameter of the problem that
in some cases is independent of the problem size. Fixed-
parameter algorithms whose running time is polynomial for
fixed parameter values make these problems efficiently solv-
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able whenever the parameter is reasonably small. In several
applications, e.g., finding locations to place fire stations, we
prefer exact solutions at the cost of running time: we can
afford high running time (e.g., several weeks of real time)
if the resulting solution builds fewer fire stations (which are
extremely expensive).

A general result of Cai and Chen [16] says that if
an NP optimization problem has an FPTAS, i.e., a PTAS
with running time(1/ε)O(1)nO(1), then it is fixed-parameter
tractable. Others [10, 17] have generalized this result to any
problem with an EPTAS, i.e., a PTAS with running time
f(1/ε)nO(1) for any functionf . On the other hand, no
reverse transformation is possible in general, because for
example vertex cover is an NP optimization problem that is
fixed-parameter tractable but has no PTAS in general graphs
(unlessP = NP ).

Nonetheless, in this paper, we present a general (reverse)
transformation from fixed-parameter algorithms to PTASs
for a broad class of optimization problems in planar graphs
and their generalizations.

In the last three years, several researchers have ob-
tained exponential speedups in fixed-parameter algorithms
for various problems on several classes of graphs. While
most previous fixed-parameter algorithms have a running
time of O(2O(k)nO(1)) or worse, the exponential speedups
result in subexponential algorithms with typical running
times of O(2O(

√
k)nO(1)). For example, the first fixed-

parameter algorithm for finding a dominating set of size
k in planar graphs [2] has running timeO(8kn); sub-
sequently, a sequence of subexponential algorithms and
improvements have been obtained, starting with running
time O(46

√
34kn) [1], then O(227

√
kn) [47], and finally

O(215.13
√

kk + n3 + k4) [36]. Other subexponential algo-
rithms for other domination and covering problems on planar
graphs have also been obtained [1, 3, 18, 50, 46].

However, all of these algorithms apply only to planar
graphs. In another sequence of papers, these results have
been generalized to other classes of graphs that include pla-
nar graphs: map graphs [22], bounded-genus graphs [24],
single-crossing-minor-free graphs [29, 30], apex-minor-free
graphs [23, 26], andH-minor-free graphs [24]. These algo-
rithms [22, 24, 30, 29, 23, 26] apply to several combinatorial



optimization problems related to domination and covering.
All subexponential fixed-parameter algorithms devel-

oped so far are based on showing a “treewidth-parameter
bound”: any graph with parameter valuek has treewidth at
most some functionf(k). (A parametersimply assigns a
nonnegative integer to every graph.) In many cases,f(k) is
sublinear ink, oftenO(

√
k). Combined with algorithms that

are singly exponential in treewidth and polynomial in prob-
lem size, such a bound immediately leads to subexponential
fixed-parameter algorithms.

Essentially all treewidth-parameter bounds proved so far
are captured by the broad class of “bidimensional” problems
introduced in a series of papers [30, 22, 24, 23]. Roughly
speaking, a parameterized problem isbidimensionalif the
parameter is large (e.g., linear) in a grid and closed un-
der contractions (contraction-bidimensional) or closed un-
der minors (minor-bidimensional). (A parameter isclosed
under an operation if performing that operation on a graph
never increases the parameter value.) Examples of bidi-
mensional problems include e.g. feedback vertex set, ver-
tex cover, minimum maximal matching, face cover, a series
of vertex-removal problems, dominating set, edge dominat-
ing set,r-dominating set, diameter, connected dominating
set, connected edge dominating set, connectedr-dominating
set, and planar set cover. Treewidth-parameter bounds have
been established for all bidimensional problems in planar
graphs [22], bounded-genus graphs [24], single-crossing-
minor-free graphs [30], and apex-minor-free graphs [23, 25],
and for all minor-bidimensional problems inH-minor-free
graphs [24]. In particular, the established bound is sublinear
for planar graphs, bounded-genus graphs, single-crossing-
minor-free graphs, and in some cases for apex-minor-free
graphs. In summary, bidimensionality is the most powerful
method so far for establishing treewidth-parameter bounds
and therefore for designing subexponential fixed-parameter
algorithms, encompassing all such previous results for pla-
nar graphs and their generalizations.

In this paper, we demonstrate that bidimensionality al-
lows us to not only design fast fixed-parameter algorithms
but also to design fast PTASs. More precisely, we prove that
any bidimensional problem satisfying a few straightforward
constraints not only has a subexponential fixed-parameter al-
gorithm but also has a PTAS for planar graphs and some
generalizations. Thus bidimensionality enables us to eas-
ily obtain both subexponential fixed-parameter algorithms
and PTASs for a wide variety of problems in planar graphs
and their generalizations, and provides a connection between
fixed-parameter tractability and approximation in this set-
ting. In particular, our results lead to new PTASs for sev-
eral well-known problems that were previously not known
to have PTASs on planar graphs. Our novel approach of us-
ing tools from fixed-parameter tractability to design PTASs
can be considered as the reverse of the layerwise-separation

approach in [1, 34, 37] which uses tools from approximation
(Baker’s approach) to design fixed-parameter algorithms.

Our original motivation was that the bidimensional-
ity theory almost trivially gave us subexponential fixed-
parameter algorithms for some minor-bidimensional prob-
lems, such as general feedback vertex set, yet PTASs for
these problems in planar graphs and their generalizations
such as single-crossing-minor-free graphs remained elusive.
Here we obtain an EPTAS for general feedback vertex set in
planar graphs and more generally single-crossing-minor-free
graphs as a simple by-product of our general approach for
minor-bidimensional parameters. Another motivating prob-
lem is connected dominating set, which is bidimensional, yet
lacks a fast enough bounded-treewidth algorithm for the the-
ory to apply; indeed, the existence of subexponential fixed-
parameter algorithms for connected dominating set in pla-
nar graphs was implicitly asked by Alber et al. [1]. Here
we not only establish a subexponential fixed-parameter al-
gorithm for this problem (see Theorem 8.1) but also use our
machinery to obtain a PTAS for the same problem, which
was not previously known to exist.

While our focus is on our general techniques, we point
out that the two problems mentioned above—general feed-
back vertex set and connected dominating set—are impor-
tant problems that have been studied extensively in the lit-
erature. Feedback vertex set—finding a minimum-size set
F of vertices whose removal leaves the graph acyclic—is
a basic problem in graph algorithms with applications to
e.g. deadlock resolution. The first approximation algorithms
for this problem were aO(lg n)-approximation for general
graphs and a10-approximation for planar graphs [9]. Subse-
quently,2-approximation algorithms for general graphs have
been discovered [7, 11]. Goemans and Williamson [39] ap-
ply the primal-dual method to obtain a(9/4)-approximation
for this problem. Although9/4 > 2, the LP relaxation
they consider has interesting implications on the Akiyama-
Watanabe Conjecture about the size of a feedback vertex set
in a planar graph. Their results also apply to a generalized
form of feedback vertex set. The approximation factor of
the primal-dual method in undirected planar graphs has been
further improved to two (see e.g., [21]). Connected dominat-
ing set—finding a minimum-size setD of vertices such that
every vertex not inD is adjacent to at least one vertex inD
and in addition the subgraph induced byD is connected—
is a fundamental problem in connected facility location, a
basic problem in operations research and computer science;
see e.g. [57, 48, 45]. Another more recent application of this
problem is in finding a “virtual backbone-based routing strat-
egy” in a wireless ad-hoc network; see e.g. [4, 58]. The first
and so-far best approximation algorithm in general graphs is
the(ln∆ + O(1))-approximation of Guha and Khuller [44],
where∆ is the maximum degree in the graph. For unit-disk
graphs, several approximation algorithms have been devel-



oped (see e.g. [4, 52]), culminating with a recent PTAS [19].
There are two main general approaches for designing

PTASs for problems on planar graphs. The first approach
is based on planar separators [51]. The approximation algo-
rithms resulting from this approach are generally impracti-
cal; for example, just to achieve an approximation ratio of2,
the base case of the planar-separator approach requires ex-
haustive solution of graphs of up to22400

vertices [20]. To
address this impracticality, Baker [8] introduced the second
approach for PTASs in planar graphs, based on decompo-
sition into overlapping subgraphs of bounded outerplanarity.
Specifically, Baker’s approach obtains(1+ε)-approximation
algorithms with running times of2O(1/ε)nO(1) for many
problems on planar graphs, such as maximum independent
set, minimum dominating set, and minimum vertex cover.
Eppstein [34, 33] generalized Baker’s approach to a broader
class of graphs called graphs of bounded local treewidth,
i.e., where the treewidth of the subgraph induced by the
set of vertices at distance at mostr from any vertex is
bounded above by some functionf(r) independent ofn. Re-
cently there has been much work on graphs of bounded local
treewidth [37, 43, 29, 26, 24, 34, 23]. In particular, Epp-
stein [34] characterized all minor-closed families of graphs
that have bounded local treewidth, showing that they are pre-
cisely apex-minor-free graphs, where anapex graphhas a
vertex whose removal leaves a planar graph. Khanna and
Motwani [49] use Baker’s approach in an attempt to syn-
tactically characterize the complexity class of problems ad-
mitting PTASs, establishing a family of problems on planar
graphs to which it applies. Frick and Grohe [37] use Baker’s
approach to obtain efficient (near-linear) algorithms to de-
cide arbitrary properties definable in first-order logic.

Unfortunately, both of these approaches for PTASs in
planar graphs seem to be limited, at least in their current
use. In the separation approach, the separator is bounded in
terms ofn (O(

√
n)), which can be large compared to the cost

of the optimal solution. As a result, the approach has been
used so far only in a few limited minimization problems (to
the best of our knowledge, just vertex cover [53] and forms
of TSP [41, 6, 40, 42]) where, after some graph reductions
(linear kernelization), the cost of the optimum solution can
be lower bounded in terms ofn. For example, Grohe [43]
states that dominating set is a problem “to which the tech-
nique based on the separator theorem does not apply”. On
the other hand, all applications of Baker’s approach so far
are to optimization problems arising from “local” proper-
ties (such as those definable in first-order logic). Intuitively,
such local properties can be decided by locally checking ev-
ery constant-size neighborhood. In particular, this restriction
has limited attempts at characterizing the complexity class of
problems admitting PTASs [37, 49].

In this paper we demonstrate that the bidimensionality
theory enables us to bypass these limitations and generalize

both approaches.
First in Sections 4–5 we generalize the separation ap-

proach to obtain PTASs for all bidimensional problems that
satisfy a few straightforward constraints, and to general-
izations of planar graphs. In particular, this includes all
problems and graph classes for which subexponential fixed-
parameter algorithms have been obtained. Our technique is
based on evenly dividing the optimum solution instead of the
whole graph, using a tree decomposition found by treewidth-
approximation algorithms for certain classes of graphs, and
using the small treewidth guaranteed by bidimensionality.
Evenly dividing the optimum solution is difficult because we
do not know the optimum solution; nonetheless, we show
that such a division can be done approximately using exist-
ing constant-factor (or even logarithmic-factor) approxima-
tions. We also use the fast fixed-parameter algorithms from
the bidimensionality theory to remove an extra log factor in
the exponent of the running time. Through our approach we
immediately obtain an EPTAS for general feedback vertex
set in planar and more generally single-crossing-minor-free
graphs. Combined with our fixed-parameter results men-
tioned above, we obtain a PTAS for connected dominat-
ing set in planar and single-crossing-minor-free graphs. For
these problems in bounded-genus graphs and apex-minor-
free graphs, we also obtain “almost PTASs” with almost-
polynomial running timenO(lg lg n) for fixed ε.1 We refer
the reader to Corollaries 4.3 and 5.1 for a complete list of
important problems for which we obtain new PTASs and al-
most PTASs.

Second in Section 6 we generalize Baker’s approach
(which is generally considered faster than the previous ap-
proach) to obtain PTASs for nonlocal problems using two
main techniques. Our first technique is to use a constant-
factor (or even logarithmic-factor) approximation to the
problem as a “backbone” for achieving the needed nonlocal
property. Of course, we cannot use the entire approximate
solution, so we take aΘ(ε) fraction by slicing at (intersect-
ing with) a small number of layers in the graph and remov-
ing the rest. Now we are left with two challenges: we need
to restore the nonlocal property of the full backbone, and we
need the subproblems in the layers between these slices to
form a global solution comparable to the overall optimum.
The second technique addresses both of these problems by
using thicker subproblems extending beyond the slices by
Θ(log n) layers instead of the usualΘ(1) in Baker’s ap-
proach. Of course, the devil is in the details. We are left with
the task of solving the subproblems, which are a generalized
form of the original problem in order to restore the nonlo-
cal property of the backbone. For connected dominating set,
these generalized subproblems can be solved using our fixed-

1This time bound is substantially better than the existing notion of
quasipolynomial time,nO(lg n). Also, lg lg n is at most8 for n ≤ 2256,
which is nearly the number of particles in the known universe.



parameter algorithm mentioned above. A final challenge is
that the running time of this algorithm is superpolynomial,
(lg n)Θ(lg n), because the thickness of a subproblem is now a
function ofn, Θ(lg n), instead of a constant as in Baker’s ap-
proach. Using planarity of the subproblems, or more specif-
ically their low outerplanarity, together with properties of a
simple, direct, and efficient construction of a tree decomposi-
tion for such graphs of low outerplanarity [1, 13], we obtain
in Section 7 more efficient encodings of subproblems and
reduce the running time to2Θ(lg n) = nO(1) for fixedε.

Last but not least, bidimensionality provides new strong
connections between fixed-parameter algorithms, approxi-
mation algorithms, and the two existing approaches to find-
ing PTASs in planar graphs and their generalizations. In
particular, essentially every bidimensional problem has both
a subexponential fixed-parameter algorithm and a PTAS in
such graphs. At a deeper level, Baker’s approach itself can be
viewed as a special case of the bidimensional theory, as it is
just a combination of a “shifting strategy” and the bidimen-
sionality of the diameter of a graph [25]. The bidimension-
ality of diameter, or more precisely the resulting parameter-
treewidth relation, was the point of Eppstein’s work [34].

2 Definitions and Preliminary Results
Our graph terminology is as follows. All graphs are finite, simple,
and undirected, unless indicated otherwise. For a graphG, we
denote its vertex set byV (G) and its edge set byE(G). Let
n = |V (G)| denote the number of vertices whenG is clear from
context. For every nonemptyW ⊆ V (G), the subgraph ofG
induced byW is denoted byG[W ]. We define ther-neighborhood
of a vertex setS ⊆ V (G), denoted byNr

G(S), to be the set of
vertices at distance at mostr from at least one vertex ofS ⊆ V (G);
if S = {v} we simply use the notationNr

G(v). Thediameterof G,
denoted bydiam(G), is the maximum over all distances between
pairs of vertices ofG. We assume the reader is familiar with other
general concepts of graph theory such as directed graphs, trees, and
planar graphs. The reader is referred to standard references for
appropriate background [14]. In addition, for exact definitions of
various NP-hard graph-theoretic problems in this paper, the reader
is referred to Garey and Johnson [38].

Given an edgee = {x, y} of a graphG, the graphG/e is
obtained fromG by contracting the edgee; that is, to getG/e we
identify the verticesx andy and remove all loops and duplicate
edges. A graphH obtained by a sequence of edge contractions is
said to be acontractionof G. A graphH is a minor of a graph
G, denotedH � G, if H is a subgraph of a contraction ofG. A
graph classC is minor-closedif any minor of any graph inC is also
a member ofC. A minor-closed graph classC is H-minor-freeif
H 6∈ C. For example, a planar graph is a graph excluding both
K3,3 andK5 as minors.

The notion of treewidth was introduced by Robertson and
Seymour [54] and plays an important role in their fundamental
work on graph minors. To define this notion, first we consider
the representation of a graph as a tree, which is the basis of our
algorithms.

DEFINITION 2.1. ([54]) A tree decompositionof a graphG =
(V, E), denoted byTD(G), is a pair (χ, T ) in whichT = (I, F )
is a tree andχ = {χi | i ∈ I} is a family of subsets ofV (G) such
that: (1)

S
i∈I χi = V ; (2) for each edgee = {u, v} ∈ E there

exists ani ∈ I such that bothu and v belong toχi; and (3) for
all v ∈ V , the set of nodes{i ∈ I | v ∈ χi} forms a connected
subtree ofT .

To distinguish between vertices of the original graphG and
vertices ofT in TD(G), we call vertices ofT nodesand their
correspondingχi’s bags. The maximum size of a bag inTD(G)
minus one is called thewidth of the tree decomposition. The
treewidthof a graphG, denoted bytw(G), is the minimum width
over all possible tree decompositions ofG.

Eppstein [34] introduced the notion of “bounded local
treewidth”, which is a generalization of the notion of treewidth. A
graph hasbounded local treewidth(or locally bounded treewidth) if,
for all r ∈ N, the treewidth of ther-neighborhood of every vertex
v ∈ V (G) is bounded above by a functionf(r). Indeed, the bidi-
mensionality of diameter, or more precisely the resulting parameter-
treewidth relation, was the point of Eppstein’s work (see [25]) in
introducing such a class of graphs.

A graph is called anapex graphif deleting one vertex produces
a planar graph. Eppstein [34] showed that a minor-closed graph
classE has bounded local treewidth if and only ifE is H-minor
free for some apex graphH. In particular, he proved that any apex-
minor-free class of graphs has at most doubly exponential local

treewidth, i.e.,f(r) = 22O(r)
. See also [25] for a simplified proof

and slightly better bounds. It is known that planar graphs, bounded-
genus graphs [34], and single-crossing-minor-free graphs [29] have
linear local treewidth, i.e.,f(r) = O(r). Recently, the authors [26]
proved that all apex-minor-free classes of graphs have linear local
treewidth. We use this linearity of local treewidth throughout this
paper.

A simpler kind of apex graph is asingle-crossing graph, which
can be drawn in the plane with at most one crossing. Single-
crossing-minor-free graphs have been studied in [55, 30, 29].

3 Bidimensionality

A series of papers [30, 22, 24, 23] introduce the the-
ory of bidimensionalityas a general approach for obtain-
ing treewidth-parameter bounds and subexponential fixed-
parameter algorithms. This framework is sufficiently broad
that an algorithmic designer only needs to check two simple
properties of any desired parameter to determine the appli-
cability and practicality of the approach. Indeed, the bidi-
mensionality theory captures essentially all subexponential
algorithms obtained so far, and in this paper we show that
the theory extends to obtain PTASs as well.

Define theparametercorresponding to an optimization
problem to be the function mapping graphs to the solution
value of the optimization problem; this converts any opti-
mization problem into a parameterized problem. A param-
eterized problem ish(r)-minor-bidimensionalif the param-
eter is at leasth(r) in an r × r “grid-like graph” and if the
parameter does not increase when taking minors. A parame-



terized problem ish(r)-contraction-bidimensionalif the pa-
rameter is at leasth(r) in anr×r “grid-like graph” and if the
parameter does not increase when contracting edges. Our re-
sults of course depend on the functionh(r). For all bidimen-
sional parameters considered in this paper,h(r) = Θ(r2).
An example of a different kind of bidimensional parameter
is diameter (not interesting from an approximation point of
view, but the basis of locally bounded treewidth), which has
h(r) = Θ(log r) [25].

Treewidth-parameter bounds have been established for
all minor-bidimensional problems inH-minor-free graphs
for any fixed graphH [24, 23]. In this case, the no-
tion of “grid-like graph” is precisely the regularr × r
square grid. However, contraction-bidimensional prob-
lems (such as dominating set) have proved substantially
harder. In particular, the largest class of graphs for which
a treewidth-parameter bound can be obtained is apex-minor-
free graphs instead of generalH-minor-free graphs [23].
Such a treewidth-parameter bound has been obtained for
all contraction-bidimensional problems in apex-minor-free-
graphs [23]. In this case, the notion of “grid-like graph” is
anr×r grid augmented to have, for each vertex,O(1) edges
from that vertex to nonboundary vertices. (HereO(1) de-
pends onH.) Unfortunately, this treewidth-parameter bound
is large in general: the treewidth is at most(

√
k)O(

√
k) for

a Θ(r2)-bidimensional parameterk. For a fast approxima-
tion algorithm, we typically need a bound sublinear ink. For
apex-minor-free graphs, such a bound is known only for the
special cases of dominating set and vertex cover [26, 24].

The biggest graph classes for which we know a
sublinear (indeed,O(

√
k)) treewidth-parameter bound for

all Θ(r2)-contraction-bidimensional problems are single-
crossing-minor-free graphs and bounded-genus graphs. For
single-crossing-minor-free graphs [30, 29] (in particular, pla-
nar graphs [22]), the notion of “grid-like graph” is anr × r
grid partially triangulated by additional edges that preserve
planarity. For bounded-genus graphs [31], the notion of
“grid-like graph” is such a partially triangulatedr × r grid
with up to g additional edges (“handles”), whereg is the
genus of the original graph. (The same result was estab-
lished for a subset of contraction-bidimensional problems,
calledα-splittable problems, previously in [24].)

4 Generic PTAS for Minor-Bidimensional Parameters

We consider families of problems in which we are given a
graph and our goal is to find a minimum-size set of vertices
and/or edges satisfying a certain property. In this section we
prove the following result.

THEOREM 4.1. Consider a Θ(r2)-minor-bidimensional
problem that satisfies the separation property described
below. Suppose that the problem can be solved on a graph
G with n vertices inf(n, tw(G)) time. Suppose also that

the problem can be approximated within a factor ofα in
g(n) time. Then there is a(1 + ε)-approximation algorithm
whose running time isO(nf(n, O(α2/ε)) + n3g(n))
for planar and single-crossing-minor-free graphs and
O(nf(n, O(α2 lg n/ε)) + n3g(n)) for bounded-genus
graphs.

More generally, this theorem holds whenever the minor-
bidimensional problem has an exact algorithm with run-
ning timef ′(n, k) wherek is the size of the optimal solu-
tion. In the theorem we use the bidimensional property that
k = O(

√
tw(G)). Without this property, we would replace

the instances off(n, tw(G)) with f ′(n, tw(G)2). In gen-
eral it is harder forf ′(n, O(α4 lg2 n/ε2)) to be polynomial
because the typical dependence onk is at least2k.

This theorem has several immediate consequences:

COROLLARY 4.1. Supposeg(n) = nO(1) and α = O(1).
If f(n, w) = nwO(1)

, then we obtain a PTAS for pla-
nar and single-crossing-minor-free graphs. Iff(n, w) =
2O(w)nO(1), then we obtain a PTAS for bounded-genus
graphs. If f(n, w) = 2O(w lg w)nO(1), then we obtain
an almost-PTAS for bounded-genus graphs. Iff(n, w) =
h(w)nO(1), then we obtain an EPTAS for planar and single-
crossing-minor-free graphs.

COROLLARY 4.2. Supposeg(n) = nO(1) and α =
O(lg n). If f(n, w) = 2O(w)nO(1), then we obtain a PTAS
for planar and single-crossing-minor-free graphs.

COROLLARY 4.3. There is an EPTAS for feedback ver-
tex set, face cover, vertex cover, minimum maximal match-
ing, and a series of vertex-removal problems in planar and
single-crossing-minor-free graphs. There is an almost-PTAS
for all of these problems in bounded-genus graphs. Further-
more, there is a PTAS for vertex cover in apex-minor-free
graphs.

The last result follows from the reduction from vertex
cover to dominating set [24, Lemma 5.1] together with the√

k bound for dominating set in apex-minor-free graphs [26].

4.1 Separation Property. Our PTAS for minor-
bidimensional parameters requires three additional
straightforward conditions on the problem, all of which are
commonly satisfied. Specifically, for the duration of this
section, a problem has theseparation propertyif it satisfies
the following three conditions:

1. If a graphG hask connected componentsG1, G2, . . . , Gk,
then an optimal solution forG is the union of optimal solu-
tions for each connected componentGi.

2. There is a polynomial-time algorithm that, given any graph
G, given any vertex cutC whose removal disconnectsG
into connected componentsG1, G2, . . . , Gk, and given an



optimal solutionSi to each connected componentGi of
G − C, computes a solutionS for G such that the number
of vertices and/or edges inS within the induced subgraph
G[C ∪ ∪i∈IV (Gi)] consisting ofC and some connected
components ofG − C is

P
i∈I |Si| ± O(|C|) for any I ⊆

{1, 2, . . . , k}. In particular, the total cost ofS is at most
OPT(G− C) + O(|C|).

3. Given any graphG, given any vertex cutC, and given an
optimal solutionOPT to G, for any union G′ of some
subset of connected components ofG − C, |OPT ∩ G′| =
|OPT(G′)| ±O(|C|).

Condition 2 states that the extra cost introduced by
“merging” the components ofG − C along the cutC is
O(|C|).

4.2 Algorithm. The algorithm proceeds as follows:

1. Maintain an overall vertex cutC in the original graph; initially
C = ∅.

2. Maintain a set of graphs and their approximate solution costs
according to theα-approximation algorithm. Initially, this set
consists of just the input graph.

3. For any graphG in this set whoseα-approximate solution
cost is larger thanb(ε), we cut the graph into two replacement
graphs as follows:

(a) Compute a tree decomposition ofG of width w approx-
imately equal to the treewidthtw(G) of G. For planar
graphs [56] and single-crossing-minor-free graphs [29],
we obtain a constant-factor approximation:w =
O(tw(G)). In general, we obtain a log-OPT approx-
imation [5]: w = O(tw(G) lg tw(G)).

(b) For each node in the tree decomposition, consider
the cut formed by the vertices in the corresponding
bag. Apply theα-approximation algorithm to each
connected component resulting from the cut, and call
the approximate solution cost theweight of the con-
nected component. Cluster the connected components
into two groups by repeatedly placing the heaviest con-
nected component into the lighter group. Among all
cuts, choose the one for which the ratio between the
weights of the heavier group and lighter group is clos-
est to1. Add the vertices of this cut to the overall vertex
cut C. The two replacement graphs are formed by the
two groups.

4. Replace each graph in the set with its connected components.
Apply thef(|H|, tw(H))-time algorithm to find the optimal
solution to each graphH in the set. Combine these solutions
into an approximate solution for the original input graph using
the Separation Property.

4.3 Analysis. Before we can analyze the approximation
ratio and running time of our algorithm, we need two basic
results. These results generalize existing results on separa-
tors in low-treewidth graphs [13] to balanced partitions of

arbitrary subsets of vertices and/or edges in a low-treewidth
graph. Here a tree decomposition gives us extensive addi-
tional structure to find such balanced partitions.

LEMMA 4.1. For any graphG, for any tree decomposition
of G of widthw, and for any setS of vertices and/or edges,
we can remove all (≤ w+1) vertices in some bag so that each
remaining connected component has at most|S|/2 vertices
and/or edges fromS.

COROLLARY 4.4. For any graphG, for any tree decompo-
sition ofG of widthw, and for any setS of vertices and/or
edges, we can remove all (≤ w+1) vertices in some bag and
cluster the remaining connected components into exactly two
groups such that the number of vertices and/or edges fromS
in each group is at most(2/3)|S|.

Now we proceed to the analysis.

LEMMA 4.2. Letβ > 1/(1+1/(4α2+α)) and suppose that
|OPT(G)| is sufficiently large. If Step 3 of the algorithm
splits graphG into graphsG1 and G2 using cutC, then
|OPT(Gi)| ≤ β|OPT(G)| for i ∈ {1, 2}.

Proof. First we bound the ratio between the weights of the
heavier group and the lighter group chosen in Step 3. By
Corollary 4.4, there is a bagC in the tree decomposi-
tion of G whose removal disconnectsG into two groups
G1 and G2 such that OPT(G) is roughly evenly split be-
tween G1 and G2. More precisely, if we defineOPT′

i =
OPT(G) ∩ Gi, then 1

2
|OPT′

2| ≤ |OPT′
1| ≤ 2|OPT′

2|.
Define OPTi = OPT(Gi) and assume by symmetry that
|OPT2| ≥ |OPT1|. By the Separation Property (3),|OPT′

i| =
|OPTi|±Θ(|C|) = |OPTi|±Θ(

p
|OPT| lg |OPT|). Therefore,

1
2
|OPT2| − O(

p
|OPT| lg |OPT|) ≤ |OPT1| ≤ 2|OPT2| +

O(
p
|OPT| lg |OPT|).
By the separation property,|OPT| ≤ |OPT1| +

|OPT2| + O(
p
|OPT| lg |OPT|), or equivalently |OPT| −

O(
p
|OPT| lg |OPT|) ≤ |OPT1| + |OPT2|. Thus, |OPT| −

O(
p
|OPT| lg |OPT|) ≤ 2max{|OPT1|, |OPT2|} = 2|OPT2|

by our assumption that|OPT2| ≥ |OPT1|.
For any δ > 0, if OPT is sufficiently large,p

|OPT| lg |OPT| ≤ δ|OPT| and (1 − δ)|OPT| ≤ 2|OPT2|.
Thus,

p
|OPT| ≤ 2 δ

1−δ
|OPT2|. Therefore, for any de-

sired δ′ > 0, we can chooseδ sufficiently small so that
1
2
|OPT2| − δ′|OPT2| ≤ |OPT1| ≤ 2|OPT2| + δ′|OPT2|.

Because1/(1/2− δ′) > 2 + 4δ′ > 2 + δ′, (1/2− δ′)|OPT2| ≤
|OPT1| ≤ 1

1/2−δ′ |OPT2|.
The algorithm considers theα-approximate solutionAPXi

for Gi. Because |OPTi| ≤ |APXi| ≤ α|OPTi|,
1/2−δ′

α
|APX2| ≤ |APX1| ≤ α

1/2−δ′ |APX2|. Therefore,APXi

(and hence each connected component ofAPXi) has size at most

λ(|APX1| + |APX2|) where λ = 1/
“
1 + 1/2−δ′

α

”
. Repeat-

edly adding the largest connected component to the smallest group
according to Step 3b of the algorithm results in a clustering into
two groupsG′

1 andG′
2 where 1−λ

1+λ
|APX(G′

2)| ≤ |APX(G′
1)| ≤

1+λ
1−λ

|APX(G′
2)|.



The algorithm considers this clustering for bagC, as well as all
other bags, and takes the clustering that is most balanced. Therefore
the clustering found by the algorithm satisfies the balance property
above. Call the two groups in this clustering̃G1 andG̃2. Define

ÃPXi, ÕPTi, andÕPT
′
i as before but withGi replaced byG̃i.

Because|ÕPTi| ≤ |ÃPXi| ≤ α|ÕPTi|, 1−λ
α(1+λ)

|ÕPT2| ≤
|ÕPT1| ≤ α(1+λ)

1−λ
|ÕPT2|. By minor bidimensionality and the

separation property,|ÕPT1| + |ÕPT2| ≤ |OPT|. Therefore,

|ÕPTi| ≤ 1

1+ 1−λ
α(1+λ)

|OPT| = 1

1+
1/2−δ′

α(2α+1/2−δ′)

|OPT|. Thus we

obtain the theorem withβ = 1/
“
1 + 1/2−δ′

α(2α+1/2−δ′)

”
. Because

δ′ > 0 can be chosen arbitrarily small,β can be made arbitrary

close to1/
“
1 + 1/2

α(2α+1/2)

”
. 2

In the following results we letβ denote any number
satisfying the condition in Lemma 4.2.

LEMMA 4.3. The size of the overall vertex cut
is O(|OPT(G)|/(

√
b(ε)(1 −

√
β))) for planar

and single-crossing-minor-free graphs, and is
O((|OPT(G)| lg |OPT(G)|)/(

√
b(ε)(1 −

√
β))) for

bounded-genus graphs.

Proof. Define thelevel of each graph in the final set in Step 4
to be 0. Define thelevel of each graph that is split in Step 3
to be1 larger than the maximum level of each of the two pieces
resulting from the split. LetK1, K2, . . . , Kp be the graphs at
level ` ≥ 1. From the algorithm we obtain a vertex cut in the
original graphG whose removal leaves a graphG′ consisting
of exactly K1, K2, . . . , Kp as disconnected pieces. By minor-
bidimensionality,|OPT(G′)| ≤ |OPT(G)|. By the Separation
Property, |OPT(K1)| + |OPT(K2)| + · · · + |OPT(Kp)| ≤
|OPT(G′)| ≤ |OPT(G)|. By Lemma 4.2, |OPT(Ki)| ≥
b(ε)/β`−1. Therefore,p ≤ |OPT(G)|β`−1/b(ε).

The size of the cut introduced in Step 3 for splittingKi is
w(Ki) + 1, which isO(

p
|OPT(Ki)| lg |OPT(Ki)|). The total

cut size over allKi’s is O(
Pp

i=1

p
|OPT(Ki)| lg |OPT(Ki)|),

which is at mostO(
Pp

i=1

p
|OPT(Ki)| lg |OPT|). This sum

is maximized when|OPT(Ki)| = |OPT(G)|/p. Thus the
total cut size at level̀ is O(

√
p

p
|OPT(G)| lg |OPT(G)|) =

O(|OPT(G)| lg |OPT(G)| · β(`−1)/2/
p

b(ε)). Therefore,
the total cut size is O

`P∞
`=1 |OPT(G)| lg |OPT(G)|·

β(`−1)/2/
p

b(ε)
”

= O

„
|OPT(G)| lg |OPT(G)|√

b(ε)(1−
√

β)

«
. For planar

and single-crossing-minor-free graphs, we avoid thelg |OPT(Ki)|
factor and thus thelg |OPT(G)| factor. 2

THEOREM 4.2. The approximate solution produced by the
algorithm is within a factor of1 + ε times optimal if we set
b(ε) = Ω(1/(ε2(1−

√
β)2)) for planar and single-crossing-

minor-free graphs andb(ε) = Ω((lg2 n)/(ε2(1−
√

β)2)) for
general graphs.

Proof. We concentrate on the case of general graphs;
planar and single-crossing-minor-free graphs simply
omit the log factor. Lemma 4.3 bounds the error by

O((|OPT(G)| lg |OPT(G)|)/(
p

b(ε)(1 −
√

β))). The PTAS
needs this error to be at mostε|OPT(G)|. This bound is guaran-

teed to hold ifb(ε) ≥ (2 lg |OPT(G)|+1)2

ε2(1−
√

β)2
. Applying the Separation

Property withC = V (G), we know that|OPT(G)| = O(n).

Therefore it suffices to setb(ε) ≥ Ω
“

lg2 n
ε2(1−

√
β)2

”
. 2

COROLLARY 4.5. If we setb(ε) = Θ(1/(ε2(1 −
√

β)2)),
then the running time of the(1+ε)-approximation algorithm
is O(nf(n, O(α2/ε)) + n3g(n)) for planar and single-
crossing-minor-free graphs andO(nf(n, O(α2 lg n/ε)) +
n3g(n)) for bounded-genus graphs.

Proof. A simple asymptotic analysis shows that1/(1−
√

β) ∼ 8α2

and thusb(ε) ∼ 64α4/ε2. Therefore the size of the optimal
solution for every graph in the final set (in Step 4) isO(α4/ε2). By
bidimensionality, the treewidth of these graphs isO(α2/ε). There
areO(n) such graphs, so we makeO(n) calls to the exact algorithm
with running timef(n, O(α2/ε)). In Step 3b we makeO(n2)
calls to theα-approximation algorithm,O(n) for each candidate
cut. Step 3 iteratesO(n) times, so we makeO(n3) calls to the
approximation algorithm with running timeg(n). 2

This result proves Theorem 4.1.

5 Generic PTAS for Contraction-Bidimensional
Parameters

Consider a problemP where the input is a graph and the
output is a minimum-size setS of vertices and/or edges with
a certain propertyπ. Thegeneralized formof such a problem
P is another problem where the input is a graph and a setC
of vertices and the output is a minimum-size setS of vertices
and/or edges such thatS∪C∪E(G[C]) satisfies propertyπ.
Thecostof such a solution is the size ofS, not counting the
size ofC ∪ E(G[C]). (Thus anα-approximation algorithm
for the generalized form of problemP is an algorithm whose
outputS is within anα factor of the optimal size ofS.) In
other words, we get vertices inC and edges inE(G[C]) “for
free” (assuming their addition helps to satisfyπ).

THEOREM 5.1. Consider a contraction-bidimensional
problem that satisfies the separation property described
below. Suppose that the generalized problem can be
solved on a graphG with n vertices in f(n, tw(G))
time. Suppose also that the generalized problem can
be approximated within a factor ofα in g(n) time.
Then there is a (1 + ε)-approximation algorithm
whose running time isO(nf(n, O(α2/ε)) + n3g(n))
for planar and single-crossing-minor-free graphs and
O(nf(n, O(α2 lg n/ε)) + n3g(n)) for bounded-genus
graphs (or any graph class where the parameter satisfies the
O(
√

k) parameter-treewidth bound).

Corollaries 4.1 and 4.2 therefore also generalize to the
contraction-bidimensional case under the additional assump-
tions stated in Theorem 5.1. In addition, we obtain the fol-
lowing corollary about specific problems:



COROLLARY 5.1. There is a PTAS for dominating set, edge
dominating set,r-dominating set, and clique-transversal
set in apex-minor-free graphs. There is a PTAS for con-
nected dominating set, connected edge dominating set, and
connectedr-dominating set in planar and single-crossing-
minor-free graphs; and almost-PTASs for the same problems
in apex-minor-free graphs. Furthermore, all of these PTASs
are EPTASs for planar graphs.

Here we use that dominating set, and therefore any
parameter bounded above by dominating set, satisfies the

√
k

bound for apex-minor-free graphs [26].

5.1 Separation Property. For contraction-bidimensional
parameters, the exact requirements on the problem are
slightly different but similarly straightforward. The main
distinction is that the connected components are always con-
sidered together with the cutC. Specifically, for the duration
of this section, a problem has theseparation propertyif it
satisfies the following two conditions:

1. There is a polynomial-time algorithm that, (a) given any graph
G, (b) given any vertex setC, (c) given a set of graphs
{G1, G2, . . . , Gr} such that{V (Gi) − C | 1 ≤ i ≤
r} partitions V (G) − C, and (d) given a solutionSi to
the generalized problem for each graphGi with vertex set
C ∩ V (Gi), computes a solutionS to the original problem
for G such that the number of vertices and/or edges inS
within any unionG′ = ∪i∈IGi of some of theGi’s isP

i∈I |Si| ±O(|C|) for anyI ⊆ {1, 2, . . . , r}. In particular,
the total cost ofS is at most

Pr
i=1 |Si|+ O(|C|).

2. Given (a) any graphG, (b) any vertex setC, (c) a set of graphs
{G1, G2, . . . , Gr} such that{V (Gi) − C | 1 ≤ i ≤ r}
partitionsV (G) − C, and (d) an optimal solutionOPT to
G, any unionG′ = ∪i∈IGi of some of theGi’s, I ⊆
{1, 2, . . . , r} satisfies|OPT ∩G′| = |OPT(G′)| ±O(|C|).

5.2 Algorithm. The algorithm proceeds as follows:

1. Maintain an overall vertex cutC in the original graph. Ini-
tially C = ∅.

2. Maintain a set of graphs{G1, G2, . . . , Gr}. Initially, this set
consists of just the input graphG.

3. Maintain, for eachi ∈ {1, 2, . . . , r}, the α-approximate
solution cost to the generalized problem involving graphGi

and vertex setCi = C ∩ V (Gi).

4. For any graphGi in this set whoseα-approximate solution
cost is larger thanb(ε) and whoseα-approximate solution set
S is at most as large asCi ∪E(G[Ci]), we cut the graph into
two replacement graphs as follows:

(a) Compute a tree decomposition ofGi of width w ap-
proximately equal to the treewidthtw(Gi) of Gi.
For planar graphs [56] and single-crossing-minor-free
graphs [29], we obtain a constant-factor approximation:
w = O(tw(Gi)). In general, we obtain a log-OPT ap-
proximation [5]:w = O(tw(Gi) lg tw(Gi)).

(b) For each node in the tree decomposition, consider the
cutC′ formed by the vertices in the corresponding bag.
For each connected componentX resulting from the
cut, apply theα-approximation algorithm to the graph
G[X ∪ C′] with vertex setC′ ∪ (Ci ∩ X), and call
the approximate solution cost theweight of the con-
nected componentX. Cluster the connected compo-
nents into two groups by repeatedly placing the heavi-
est connected component into the lighter group. Among
all cuts, choose the one for which the ratio between the
weights of the heavier group and lighter group is closest
to 1. Add the vertices of this cutC′ to the overall vertex
cutC. For each of the two groups, we take the unionY
of all connected components in the group and form the
graphGi[Y ∪ C′]. The two graphs resulting from the
two groups are the replacement graphs forGi.

5. For graphGi in the set whoseα-approximate solution cost is
at mostb(ε), find the optimal solution to the generalized prob-
lem with graphGi and vertex setCi using a2O(tw(Gi))nO(1)

fixed-parameter algorithm. (For planar and single-crossing-
minor-free graphs, we can in fact use any fixed-parameter
algorithm for the treewidth parameter.) For graphsGi in
the set whoseα-approximate solution setS is larger than
Ci ∪ E(G[Ci]), we use the existingα-approximate solution.

6. Combine these solutions into an approximate solution for the
original input graph using the Separation Property.

Analysis sketch. The main difference in the analysis,
compared to the minor-bidimensional case of Section 4, is
that for some of the graphsGi in the final set in Step 5 we
use approximate solutions instead of exact solutions. This
approximation happens only when the vertex setCi becomes
too large. In this case we charge the excess cost from the
approximate solution to the nodes in that vertex cutCi. We
argue that each node ofC gets charged to at most twice, once
on each side of the recursion where that node ofC is split.

A smaller difference is that, as we split, we increase the
sums of the sizes of the optimal solutions among the graphs
in the set, because of the duplication of nodes in the vertex
set C. As a result, most bounds gain lower-order terms.
These terms can be compensated by enlargingb(ε) slightly.

6 APTAS for Graphs of Locally Bounded Treewidth

The main result of this section is as follows.

THEOREM 6.1. For any ε > 0, the minimum connected
dominating set problem on minor-closed graphs of lo-
cally bounded treewidth has an approximation scheme
with approximation ratio 1 + ε and running time
nO((1/ε) lg(1/ε) lg lg n).

The proof of this theorem captures the main ideas of
our extension of Baker’s approach to nonlocal properties like
connected dominating set. In particular, the same approach
can be used to obtain analogous results for connected vertex



cover, connected edge-dominating set, and connectedr-
dominating set. In Section 7, we show how we can reduce
the running time fromnO(lg lg n) to nO(1), i.e., obtaining a
PTAS, on planar graphs. We conjecture that in fact the same
trick can be applied to obtain a PTAS for apex-minor-free
graphs.

The following generalization of connected dominating
set plays an important role in our algorithms.

DEFINITION 6.1. The generalized connected dominating
set (GCDS)problem is defined as follows. Given a graphG
and a setI ⊆ V (G) called the interior, determine a subset
D of V (G) of minimum size with the property that, for every
connected componentC of I, the dominating vertices in or
neighboringC, D∩ (C ∪N(C)), dominateC and belong to
one connected component ofG[D].

In particular, if we setI = V (G), then the GCDS prob-
lem is the same as the connected dominating set problem.

In Section 6.1, we describe the APTAS algorithm except
for one dynamic programming subroutine. In Section 6.2,
we prove correctness and analyze the approximation ratio.
We require a dynamic programming subroutine for GCDS on
graphs of bounded treewidth given by the following theorem:

THEOREM 6.2. The GCDS problem for given graphG and
set I can be solved in timeO(ww · |V (G)|) when a tree
decomposition of widthw for G is given.

We omit the proof of this theorem because of lack of
space in this extended abstract. Even this theorem solves
an open problem of [1]. Previously it was not believed that
such nonlocal properties as connected dominating set could
be captured by bounded-treewidth dynamic programs.

6.1 Algorithm. In this section, we present the APTAS
algorithm for connected dominating set in a minor-closed
class of graphs of locally bounded treewidth. As a starting
point, we consider a simple constant-factor approximation
for connected dominating set:

THEOREM 6.3. For any δ > 0, there is a (3 + δ)-
approximation algorithm for the connected dominating
set problem on minor-closed graphs of locally bounded
treewidth.

Proof. Using the algorithm of Eppstein [34] or Demaine and
Hajiaghayi [26], we know that dominating set has a PTAS on
minor-closed graphs of locally bounded treewidth. Now, one can
easily observe that for any dominating setD in a connected graph
G, we can add at most2|D| − 2 vertices to makeD connected
(by adding two vertices we can decrease the number of connected
components by one). Thus we obtain a connected dominating set
whose size is(1+δ′)OPT +2(1+δ′)OPT−2 whereOPT is the
size of a minimum dominating set and thus a lower bound on the
size of a minimum connected dominating set. The result follows
immidiately by takingδ′ = δ/3. 2

We are now ready to describe the algorithm.
First we compute the(3 + δ)-approximate solutionB

from Theorem 6.3. Letk = 1
(16+4δ)ε (lg n + 1). We

assume thatε is small enough so thatk ≥ 4(lg n + 1);
otherwise, the(3 + δ)-approximate solutionB gives the
desired approximation factor.

Next we decompose the vertex set ofG into vertex
sets such that the subgraph induced on each set has small
(logarithmic) treewidth. In a breadth-first search tree from
an arbitrary vertexv ∈ V (G), let Lh denote the set of
vertices atlayer (or levelor distance) h in the tree. Also let
L[e, f ] = Le ∪ Le+1 ∪ · · ·Lf denote several consecutive
layers. Then the vertex sets in our decomposition are as
follows: for 1 ≤ i ≤ k and j ≥ 0, we defineLij =
L[(j − 1)k + i− 2(lg n + 1), jk + i + 2(lg n + 1)− 1].

By the results of Demaine and Hajiaghayi [26], the
treewidth of anyr consecutive layers in a graph from a
minor-closed class of graphs of locally bounded treewidth
is at mostcr + d for some constantsc and d. Thus, the
treewidth ofG[Lij ] is at mostc(k + 4(lg n + 1)) + d. Using
an algorithm of Amir [5], we construct a tree decomposition
of width at most113 (c(k + 4(lg n + 1)) + d) for eachG[Lij ]
in O(23.698(c(k+4(lg n+1))+d)n3+ε) time. Note that we could
not use existing exact tree-decomposition algorithms [12]
because the running time would be too high.

We solve a GCDS instance on eachLij with the interior
defined as the setIij = L[(j−1)k+i, jk+i−1]. In contrast
to Baker’s approach, here the number of layers (thickness)
outside the interior isΘ(lg n). This aspect plays a crucial
role in Lemma 6.1. By Theorem 6.2, we can compute
the optimal solutionsOptij for each instanceG[Lij ], Iij in
O((k + 2(lg n + 1))k+2(lg n+1)|V (G[Lij ])|) time.

Let Opti = ∪j≥0Optij ∪Bi, whereBi = ∪j≥0Bij and
Bij = B ∩ (L[(j − 1)k + i, (j − 1)k + i + 1] ∪ L[jk +
i− 1, jk + i]). Here we see another of the main differences
from Baker’s approach: the auxiliary approximate solution
B serves as a “backbone” to connect adjacentOptij ’s.
Because, for fixedi, each vertex ofG appears in at most
two Lij ’s, computing eachOpti takesO((k + 2(lg n +
1))k+2(lg n+1)n) time.

We takeOptm to be the solution of minimum weight
amongOpt1, Opt2, . . . , Optk as our solution on graphG.
In the next subsection, we show that it has at most a ratio
1 + ε of the optimal. A time bound ofnO((1/ε) lg(1/ε) lg lg n)

follows immediately from the time needed to construct the
tree decompositions, the number ofOpti’s, and the time to
compute each of them.

6.2 Correctness and Approximation Factor. First, we
show the correctness of the algorithm. By the properties of
Optij ’s, Opti is a dominating set forG (for fixed i, each ver-
tex appears once in some interior setIij and thus dominated
by at least one vertex). This meansOptm is a dominating set



for graphG. Next, we consider the connectivity ofOptm.
For anyj and for any connected componentC of the interior
of Lmj , if a connected componentC ′ of Bm has a vertex in
C, thenC ′ must connect to the connected componentDC for
C. In this wayDC makes up the connections of backboneB
lost from cutting a part inC. Thus, the connectivity ofOptm
follows from the connectivity of the backboneB. This is the
main part where we use the connectivity of backboneB.

We now compare the size ofOptm with respect to a
globalOPT , i.e., a minimum connected dominating set over
the whole graphG. More precisely, we show that|Optm|

|OPT | ≤
1 + ε.

Before starting the proof, we need the following facts
and the following important lemma.

FACT 6.1. Each vertex ofB appears in at most fourOpti,
1 ≤ i ≤ k.

FACT 6.2. For fixed i, Lij and Li(j+1) intersect only in
two consecutive layers. HoweverLij and Li(j+2) do not
intersect, becausek > 4(lg n + 1) (see the statement of
Theorem 6.1). This implies that each vertex appears in
exactlyk + 4(lg n + 1) setsLij .

LEMMA 6.1. LetOPT be an optimal solution to connected
dominating set in the whole graphG, letLij = L[(j−1)k+
i−2(lg n+1), jk+i+2(lg n+1)−1] bek+4(lg n+1) layers
of this graph, and letOptij be the solution to the GCDS
dynamic program in layerLij with interior Iij = L[(j −
1)k + i, jk + i− 1]. Then we have|OPT ∩ Lij | ≥ |Optij |.

Proof. We claim that we can reduceOPT ∩ Lij to a solution to
GCDS inG[Lij ] without increase in size. This claim immediately
implies the lemma becauseOptij is a solution of minimum size
to GCDS. Consider the intersectionOPTij = OPT ∩ I ′ij where
I ′ij = L[(j−1)k+ i−1, jk+ i] consists ofIij plus one additional
layer on each side. We easily observe thatOPTij is a dominating
set forIij . The only issue is that some vertices inOPTij are not
connected but need to be for a solution to GCDS.

To abstract the connectivity requirements, we define a graph
H as follows. Start with the subgraph ofG induced byOPT − I ′ij .
For each connected componentC of OPTij , we add a vertexC
to H and connect it to every vertexv of H that has a neighbor
in connected componentC in the original graphG. We call
C a connected component (CC)vertex; intuitively, it represents
the contraction of vertices in a connected component ofOPTij .
BecauseOPT is a connected dominating set,H is connected.

To fix the connectivity requirements, we maintain a forest in
H, consisting initially of just a spanning tree ofH. We repeatedly
perform one of the following two modifications to a treeT in the
current forest. First, we try to remove fromT any vertexv that
leaves connected all CC vertices that should be connected in a
GCDS solution. This operation splitsT into possibly several trees
in the forest. Second, if there exist two degree-two verticesu and
v in Lij − I ′ij connected by an edge inT , then we remove both
u andv from T . As a result of this removal, we obtain exactly

two groups of CC vertices that are disconnected inT but some
pairs must be connected for a solution to GCDS. If we connect any
two CC vertices from the two groups, we will re-obtain the desired
connectivity. Any pair of CC vertices that must be connected for a
solution to GCDS must belong to a common connected component
of G[I ′ij ] (by definition of GCDS). Therefore, if we start from
such a pair of CC vertices and explore neighboring CC vertices,
which all come fromI ′ij and thus the same connected component of
G[I ′ij ], we eventually obtain two CC vertices whose corresponding
connected components inG are at distance at most three (because
OPTij is a dominating set forIij). Hence, there are at most two
vertices in a connected component of aIij which connect these
two connected components. We add these two vertices toT and
the resulting connections, restoring the property thatT is a tree.
Because these new vertices do not belong toLij−I ′ij , they will not
be removed as degree-two vertices in the future.

By the end of this process, we have connected any two
CC vertices that should be connected for a solution to GCDS,
without having increased the total number of vertices of the forest.
However, these connections may use vertices outsideLij , but a
solution to GCDS must be contained inLij . We claim that, in fact,
all vertices in the forest are insideLij . Define theheightof a vertex
to be the number of edges along a shortest path to a CC vertex
(roughly corresponding to which layer surroundingI ′ij contains the
vertex). Thus we view CC vertices asleaves. Along any path from a
leaf to a vertex of heighth, at leastbh/2c of the vertices must have
degree at least three. Hence, the number of leaves below a node of
heighth must be at least2bh/2c. Because there are at mostn leaves,
the height of any node is at most2 lg n+1. Therefore, every vertex
in the forest is contained inLij , so we obtain a solution to GCDS
of the desired size. 2

Roughly speaking, Lemma 6.1 implies that the thickness that
we have considered for boundary layers inLij is enough to get
connected all connected components of dominating vertices in its
interior.

Using Lemma 6.1 and Facts 6.1 and 6.2, we havek ·
|Optm| ≤[Fact 6.1]Pk

i=1 |Opti|+4|B| ≤
Pk

i=1

P
j≥0 |Optij |+

(12+4δ)|OPT | ≤[Lemma 6.1]Pk
i=1

P
j≥0 |OPT ∩Lij |+(12+

4δ)|OPT |=[Fact 6.2](k + 4(lg n + 1) + 12 + 4δ) · |OPT |.
Recalling thatk = 1

(16+4δ)ε
(lg n + 1), we have|Optm| ≤

k+4(lg n+1)+12+4δ
k

|OPT | ≤
“
1 + (4+12+4δ)(lg n+1)

(lg n+1)/[(16+4δ)ε]

”
|OPT | =

(1 + ε)|OPT |, as desired.

7 PTAS for Planar Graphs

In this section we prove the following strengthening of
Theorem 6.1 for planar graphs:

THEOREM 7.1. For any ε > 0, the minimum connected
dominating set problem on planar graphs has a polynomial-
time approximation scheme that achieves an approximation
ratio 1 + ε in nO(1/ε) time.

At a high level, our PTAS for planar graphs has only two
differences compared to the APTAS for graphs of bounded
local treewidth from Section 6. First, we change the layer-
ing of the graph from breadth-first layers to the “outerplanar



layering” of Baker’s original paper [8]. Second, we replace
the dynamic program for graphs of bounded treewidth with
a new dynamic program for graphs of bounded “outerpla-
narity” (a stronger condition than bounded treewidth). The
main difference is that the dynamic program must exploit
the planarity of the original graph and the bounded outer-
planarity of the subgraph given to the dynamic program, so
that its running time is2O(w)nO(1) instead ofwO(w)nO(1).
The basic idea is that we encode the second and third coor-
dinates of colors more efficiently using the planar structure
of the graph, leading to Catalan structures (which have car-
dinality 2O(w)) instead of general partition structures (which
have cardinalitywO(w)).

In the absence of space, we omit the formal proof in this
extended abstract.

8 Discussion

In this paper we have extended the separation approach and
Baker’s approach for designing PTASs in planar graphs and
their generalizations. Our generalized techniques substan-
tially extend the family of problems for which we can ob-
tain such PTASs. This family of problems closely matches
the state-of-the-art of what problems have subexponential
fixed-parameter algorithms, providing a strong connection
between fixed-parameter tractability and approximation al-
gorithms. Also our view illustrates that the two PTAS tech-
niques are in fact closely linked through bidimensionality.

It would be interesting to see to what extent Baker’s ap-
proach can be used to obtain PTASs for other “nonlocal”
problems on planar graphs such as feedback vertex set. We
conjecture that the weighted connected dominating set prob-
lem on planar graphs has a PTAS via the generalized Baker’s
approach. (In general, Baker layerwise decomposition seems
to handle weights better than separators or their extensions.)
We also believe that our techniques can be combined with the
techniques of Grohe [43] to further generalize our PTASs to
H-minor-free graphs.

Another consequence of our efficient bounded-treewidth
algorithms for connected dominating set is a subexponential
algorithm, which was implicitly asked for by Alber et al. [1].
(Note that a bounded-treewidth algorithm also follows from
expressing the problem in monadic second-order logic [15],
but the dependence on treewidth is highly super-exponential
and therefore not fast enough for a subexponential algorithm
or a PTAS.)

THEOREM 8.1. We can decide in 2O(
√

k)nO(1)

(2O(
√

k lg k)nO(1)) time whether a planar graph (apex-
minor-free graph) has a connected dominating set of size at
mostk.

Addendum. Recently, the bidimensionality theory, in
particular the treewidth-parameter bounds described in Sec-
tion 3, have been improved [27]. Specifically, in [28] it
is shown that everyΘ(r2)-minor-bidimensional parameter

k in H-minor-free graphs, and everyΘ(r2)-contraction-
bidimensional parameterk in apex-minor-free graphs, sat-
isfy a treewidth-parameter bound oftw(G) = O(

√
k). This

result allows us to extend our approximation algorithms for
bounded-genus graphs from Theorems 4.1 and 5.1 toH-
minor-free and apex-minor-free graphs, respectively.

Another recent result is anO(1)-approximation algo-
rithm for treewidth in H-minor-free graphs [35]. Us-
ing this algorithm instead of theO(lg OPT)-approximation
of [5], we avoid thelg n term in the bounds of Theorem
4.1 and 5.1. Thus we extend our bounds and PTASs for
planar and single-crossing-minor-free graphs to apply to
H-minor-free graphs forΘ(r2)-minor-bidimensional prob-
lems and to apex-minor-free graphs forΘ(r2)-contraction-
bidimensional problems. This PTAS result is the most gen-
eral one could hope for in the context of bidimensionality.
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