K-ary Clustering with Optimal Leaf Ordering
for Gene Expression Data

Ziv Bar-Joseph; Erik D. Demaine, David K. Gifford, Nathan Srebro
Laboratory for Computer Science, MIT, 200 Technology Square, Cambridge, MA 02139, USA
{zivbj,edemaine,gifford,nati} @mit.edu

Angele M. Hamel
Wilfrid Laurier University, Dept. of Physics and Computing, Waterloo, On, N2L 3C5, Canada
ahamel@wlu.ca

Tommi S. Jaakkola
MIT Artificial Intelligence Laboratory, 200 Technology Square, Cambridge, MA 02139, USA
tommi@ai.mit.edu

Abstract

Motivation: A major challenge in gene expression
analysis is effective data organization and visualization.
One of the most popular tools for this task is hierarchical
clustering. Hierarchical clustering allows a user to view
relationships in scales ranging from single genes to
large sets of genes, while at the same time providing a
global view of the expression data. However, hierarchical
clustering is very sensitive to noise, it usually lacks
of a method to actually identify distinct clusters, and
produces a large number of possible leaf orderings of
the hierarchical clustering tree. In this paper we propose
a new hierarchical clustering algorithm which reduces
susceptibility to noise, permits up to & siblings to be
directly related, and provides a single optimal order for
the resulting tree.

Results: We present an algorithm that efficiently con-
structs a k-ary tree, where each node can have up to & chil-
dren, and then optimally orders the leaves of that tree. By
combining k& clusters at each step our algorithm becomes
more robust against noise and missing values. By opti-
mally ordering the leaves of the resulting tree we main-
tain the pairwise relationships that appear in the original
method, without sacrificing the robustness.

Our k-ary construction algorithm runs in O(n?) re-
gardless of k and our ordering algorithm runs in O(4*n?).
We present several examples that show that our k-ary
clustering algorithm achieves results that are superior to
the binary tree results in both global presentation and
cluster identification.

*To whom correspondence should be addressed

Availability: We have implemented the above algorithms
in C++ on the Linux operating system. Source code is
available upon request from zivbj@mit.edu.

1 Introduction

Hierarchical clustering is one of the most popular methods
for clustering gene expression data. Hierarchical cluster-
ing assembles input elements into a single tree, and sub-
trees represent different clusters. Thus, using hierarchi-
cal clustering one can analyze and visualize relationships
in scales that range from large groups (clusters) to single
genes. However, hierarchical clustering is very sensitive
to noise, since in a typical implementation if two clusters
(or genes) are combined they cannot be separated even if
farther evidence suggests otherwise [12]. In addition, hi-
erarchical clustering does not specify the clusters, making
it hard to distinguish between internal nodes that are roots
of a cluster and nodes which only hold subsets of a cluster.
Finally, the ordering of the leaves, which plays an impor-
tant role in analyzing and visualizing hierarchical cluster-
ing results, is not defined by the algorithm. Thus, for a
binary tree, any one of the 27! orderings is a possible
outcome.

In this paper we propose a new hierarchical clustering
algorithm which reduces susceptibility to noise, permits
up to & siblings to be directly related, and provides a sin-
gle optimal order for the resulting tree, without sacrificing
the tree structure, or the pairwise relationships between
neighboring genes and clusters in the result. Our solution
replaces the binary tree of the hierarchical clustering al-
gorithm with a k-ary tree. A k-ary tree is a tree in which

each internal node has at most £ children. When grouping
k clusters (or genes) together, we require that all the clus-
ters that are grouped together will be similar to one an-
other. It has been shown (e.g. in CLICK [12]) that relying
on similarities among large groups of genes helps reduce
the noise effects that are inherent in expression data. Our
algorithm utilizes this idea for the hierarchical case. In our
case, we are interested in groups of genes that are similar,
where the notion of similarity depends on the scale we are
looking at.

The number of children of each internal node is not
fixed to k. Rather, k is an upper bound on this number,
and if the data suggests otherwise this number can be re-
duced. An advantage of such a method is that it allows us
to highlight some of the actual clusters since nodes with
less than & children represent a set of genes that are sim-
ilar, yet significantly different from the rest of the genes.
Such a distinction is not available when using a binary
tree.

Finally, our algorithm re-orders the resulting tree so
that an optimally ordered tree is presented. This ordering
maximizes the sum of the similarity of adjacent leaves in
the tree, allowing us to obtain the best pairwise relation-
ships between genes and clusters, even when k& > 2.

The running time of our algorithm (for small values of
k) is O(n?), which is similar to the running time of cur-
rently used hierarchical clustering algorithms. Our order-
ing algorithm runs in O(n®) for binary trees, while for
k > 2 our algorithm runs in O(4¥n?) time and O(kn?)
space which is feasible even for a large n (when % is
small).

The rest of the paper is organized as follows. In Sec-
tion 2 we present an algorithm for constructing k-ary trees
from gene expression data. In Section 3 we present the
new O(n®) optimal leaf ordering algorithm for binary
trees, and its extension to ordering k-ary trees. In Sec-
tion 4 we present our experimental results, and Section 5
summarizes the paper and suggests directions for future
work.

1.1 Reated work

The application of hierarchical clustering to gene expres-
sion data was first discussed by Eisen [7]. Hierarchical
clustering has become the tool of choice for many biol-
ogists, and it has been used to both analyze and present
gene expression data [7, 14, 10]. A number of different
clustering algorithms, which are more global in nature,
where suggested and applied to gene expression data. Ex-
amples of such algorithms are K-means, Self organizing
maps [15] and the graph based algorithms Click [13] and
CAST [3]. These algorithms generate clusters which are
all assumed to be on the same level, thus they lack the abil-
ity to represent the relationships between genes and sub

clusters on different scales as hierarchical clustering does.
In addition, they are usually less suitable for large scale
visualization tasks, since they do not generate a global or-
dering of the input data. In this work we try to combine
the robustness of these clustering algorithms with the pre-
sentation and flexible groupings capabilities of hierarchi-
cal clustering.

Recently, Segal and Koller [11] suggested a proba-
bilistic hierarchical clustering algorithm, to address the
robustness problem. Their algorithm assumes a specific
model for gene expression data. In contrast, our algorithm
does not assume any model for its input data, and works
with any similarity/distance measure. In addition, in
this paper we present a method that allows not only to
generate the clusters but also to view the relationships
between different clusters, by optimally ordering the
resulting tree.

The problem of ordering the leaves of a binary hi-
erarchical clustering tree dates back to 1972 [9]. Due
to the large number of applications that construct trees
for analyzing datasets, over the years, many different
heuristics have been suggested for solving this problem
(cf. [9, 5, 8, 7]). These heuristics either use a ’local’
method, where decisions are made based on local obser-
vations, or a "global’ method, where an external criteria is
used to order the leaves. For the local methods, decisions
made in an early stage of the ordering are irreversible, and
thus can lead to less than optimal order in the following
steps. For the global methods, fitting an external criterion
that was generated in a different way is infeasible in most
cases, since there are n! possible global orderings, while
only 2"—1 of them are consistent with the tree.

In order to overcome these drawbacks, Bar-Joseph et
al [2] presented an O(n*) algorithm that maximizes the
sum of the similarities of adjacent elements in the order-
ings for binary trees. This algorithm maximizes a global
function with respect to the tree ordering, thus achieving
both good local ordering and global ordering. In this pa-
per we present an improved algorithm for this task, that
has a running time of O(n?). Such an improvement re-
duces the running time from hours to just a few minutes
on large datasets, making the algorithm much more at-
tractive since most software packages (including Cluster)
perform hierarchical clusteringin O(n?). A second exten-
sion is performed in order to use the algorithm for k-ary
trees instead of binary trees.

The problem of ordering the leaves of a binary hi-
erarchical clustering tree dates back to 1972 [9]. Due
to the large number of applications that construct trees
for analyzing datasets, over the years, many different
heuristics have been suggested for solving this problem
(c.f.[9, 8, 7]). These heuristics either use a ’local” method,
where decisions are made based on local observations, or

a 'global” method, where an external criteria is used to or-
der the leaves. In [2] Bar-Joseph et al presented an O(n*)
algorithm that maximizes the sum of the similarities of
adjacent elements in the orderings for binary trees. This
algorithm maximizes a global function with respect to the
tree ordering, thus achieving both good local ordering and
global ordering. In this paper we extend and improve this
algorithm by constructing a time and space efficient algo-
rithm for ordering k-ary trees.

Recently it has come to our attention that the optimal
leaf ordering problem was also addressed by Burkard et
al [4]. In that paper the authors present an O(2*n?) time,
O(2*n?) space algorithm for optimal leaf ordering of PQ-
trees. For binary trees, their algorithm is essentially iden-
tical to the basic algorithm we present in section 3.2, ex-
cept that we propose a number of heuristic improvements.
Although these do not affect the asymptotic running time,
we experimentally observed that they reduce the running
time by 50-90%. For k-trees, the algorithms differ in their
search strategies over the children of a node. Burkard et
al. suggest a dynamic programming approach which is
more computationally efficient (O(2%n?) vs. O(4%n?)),
while we propose a divide and conquer approach which
is more space-efficient (O (kn?) vs. O(2¥n?)). The num-
ber of genes (n) in an expression data set is typically very
large, making the memory requirements very important.
In our experience, the lower space requirement, despite
the price in running time, enables using larger £s.

2 Constructing K-ary Trees

In this section we present an algorithm for constructing
k-ary trees. We first formalize the k-ary tree problem,
and show that finding an optimal solution is hard (under
standard complexity assumptions). We present a heuristic
algorithm for constructing k-ary trees for a fixed &, and
extend this algorithm to allow for nodes with at most &
children.

2.1 Problem statement

As is the case in hierarchical clustering, we assume that
we are given a gene similarity matrix S, which is initially
of dimensions n by n. Unlike binary tree clustering, we
are interested in joining together groups of size &, where
k > 2. In this paper we focus on the average linkage
method, for which the problem can be formalized as fol-
lows. Given n clusters denote by C' the set of all subsets
of n of size k. Our goal is to find a subset b € C s.t.
V(b) = maz{V ()|’ € C} where V is defined in the
following way:

V)= S3,4) (1)

i,j€b,i<j

That is, V' (b) is the sum of the pairwise similarities in
b. After finding b, we merge all the clusters in b to one
cluster. The revised similarity matrix is computed in the
following way. Denote by 7 a cluster which is not a part
of b, and let the cluster formed by the merging the clusters
of b be denoted by j. For a cluster m, let |m| denote the
number of genes in m, then:

>mes ImIS(m, i)
Zmeb |m|

which is similar to the way the similarity matrix is updated
in the binary case. This process is repeated (n—1)/(k—1)
times until we arrive at a single root cluster, and the tree
is obtained.

Finding & in each step is the most expensive part of the
above problem, as we show in the next lemma. In this
lemma we use the notion of W[1] hardness. Under rea-
sonable assumptions, a W[1] hard problem is assumed to
be fixed parameter intractable, i.e. the dependence on
k cannot be separated from the dependence on n (see [6]
for more details).

S(i,4) =

Lemma 2.1 Denote by M axSim(k) the problem of find-
ing the first b set for a given k. Then M ax.Sim is NP-hard
for arbitrary k£, and W[1] hard in terms of .

Proof outline: We reduce MAX-CLIQUE to
MazSim(k) by constructing a similarity matrix Sg
and setting S (7,j) = 1 iff there is an edge between
i and j in G. Since MAX-CLIQUE is NP and TW[1]
complete, MazSim(k) is NP and W[1] hard.

2.2 A heuristic algorithm for constructing
k-ary trees

As shown in the previous section, any optimal solution for
the k-ary tree construction problem might be prohibitive
even for small values of k, since n is very large. In this
section we present a heuristic algorithm, which has a run-
ning time of O(n?3) for any k, and reduces to the standard
average linkage clustering algorithm when & = 2. The
algorithm is presented in Figure 1 and works in the fol-
lowing way. Starting with a set of n clusters (initially
each gene is assigned to a different cluster), we gener-
ate L; which is a linked list of clusters for each cluster 3.
The clusters on L; are ordered by their similarity to 4 in
descending order. For each cluster + we compute V (b;)
where b; consists of 7 and the clusters that appear in the
first £k — 1 places on L;, and V' is the function described in
equation 1. Next, we find b = argmaz;{V (b;)}, the set
of clusters that have the highest similarity among all the b;
sets that are implied by the L; list. We merge all the clus-
ters in b to a single cluster denoted by p, and recompute
the similarity matrix S. After finding b and recomputing

S we go over the L; lists. For each such list L;, we delete
all the clusters that belong to b from L;, insert p and re-
compute b;. In addition, we generate a new list L,, for the
new cluster p, and compute b,,.

Note that using this algorithm, it could be that even
though 5 and 7 are the most similar clusters, j and i will
not end up in the same & group. If there is a cluster ¢ s.t. b,
includes 4 but does not include j, and if V' (b;) > V' (b;),
it could be that j and 4 will not be in the same k cluster.
This allows us to use this algorithm to overcome noise
and missing values since, even when using this heuristic
we still need a strong evidence from other clusters in order
to combine two clusters together.

The running time of this algorithm is O(n?). Generat-

ing the L;s lists can be done in O(n?logn), and finding
b; for all genes j can be done in kn time. Thus the pre-
processing step takes O(n? logn).
For each iteration of the main loop, it takes O(n) to find
b, and O(nk) to recompute S. It takes O(kn? +n? + kn)
to delete all the members of b from all the L;s, insert
p into all the L;s and recompute b;. We need another
O(nlog n+k) time to generate L, and compute b,,. Thus,
the total running time of each iteration is O(kn?). Since
the main loop is iterated (n — 1)/(k — 1) time, the total
running time of the main loop is O(k(n—1)n?/(k—1)) =
O(n?) which is also the running time of the algorithm.

The running time of the above algorithm can be im-
proved to O(n? logn) by using a more sophisticated data
structure instead of the linked list. For example, using
Heaps, the preprocessing step has the same complexity as
we currently have, and it can be shown that the (amor-
tized) cost of every step in the main loop iteration be-
comes O(n log n). However, since our ordering algorithm
operates in O(n?), this will not reduce the asymptotic run-
ning time of our algorithm, and since the analysis is some-
what more complicated in the Heap case we left the details
out.

2.3 Reducing the number of children

Using a fixed & can lead to clusters which do not have a
single node associated with them. Consider for example
a dataset in which we are left with four internal nodes af-
ter some main loop iterations. Assume k£ = 4 and that
the input data is composed of two real clusters, A and B
such that three of the subtrees belong to cluster A, while
the fourth subtree belongs to cluster B (see Figure 2). If
k was fixed, we would have grouped all the subtrees to-
gether, which results in a cluster (A) that is not associated
with any internal node. However, if we allow a smaller
number of children than & we could have first grouped the
three subtrees of A and later combine them with B at the
root. This can also highlight the fact that A and B are two
different clusters, since nodes with less than & children

Figure 2: Fixed vs. non fixed k. In the left hand tree % is
fixed at 4. This results in a cluster (A) which does not have
any internal node associated with it. On the right hand side & is
at most 4. Thus, the three subtrees that form cluster A can be

grouped together and then combined with cluster B at the root.
This results in an internal node that is associated with A.

represent a set of genes that are similar, yet significantly
different than the rest of the genes.

We now present a permutation based test for deciding
how many clusters to combine in each iteration of the
main loop. There are two possible approaches one can
take in order to perform this task. The first is to join as
many clusters as possible (up to &) unless the data clearly
suggests otherwise. The second is the opposite, i.e. to
combine as few clusters as possible unless the data clearly
suggests otherwise. Since we believe that in most cases
more than 2 genes are co-expressed, in this paper we use
the first approach, and combine all & clusters unless the
data clearly suggests otherwise.

Let ¥ = 3 and assume b = b, ie. b, =
argmaz;{V (b;)} where i goes over all the clusters we
have in this step. Let d be the first cluster on L. and let
e be the second cluster. Since d is the first on L., it is
the most similar to ¢. We now wish to decide whether
to combine the first two clusters (¢ and d) or combine all
three clusters. Let maz, = maxz{S(c,e), S(d,e)}, that
is S, is the maximal similarity between e and one of the
two clusters we will combine in any case. In order to test
the relationship between maz. and S(c,d), we perform
the following test. In our case, each cluster ¢ is associ-
ated with a profile (the average expression values of the
genes in ¢). Assume our dataset contains m experiments,
and let p., pg and p. be the three clusters profiles. Let
p be the 3 by m matrix, where every row of p is a pro-
file of one of the clusters. We permute each column of p
uniformly and independently at random, and for the per-
muted p we compute the best (s1) and second best (s»)
similarities among its rows. We repeat this procedure r
times, and in each case test if s is bigger than max. or
smaller. If s; > maz,. at least ar times (where « is a
user defined value between 0 and 1) we combine ¢ and d
without e, otherwise we combine all three clusters. Note
that if ¢ and d are significantly different from e then it is
unlikely that any permutation will yield an s, that is lower
than maz., and thus the above test will cause us to sep-

KTree(n,S) {
C={1...n}
forall j € C // preprocessing step

b; = jJ firstk — 1 genes of L;
fori=1:(n—1)/(k—1) {// main loop
b= argmaz;ec{V(b;)}
C=C\b
Letp = min{m € b}
for all clusters j € C
N D ey ImIS(m)
S ==
(P,) S~
remove all clusters in b from L;
insert p into L;
b; = j first k — 1 cluster of L;
Cc=CUp
generate L, from all the clusters in C' and find b,

L; = ordered linked list of genes based on similarity to j

return C' // C'is a singleton which is the root of the tree

Figure 1: Constructing k-trees from expression data

arate ¢ and d from e. If ¢ and d are identical to e, then
all permutations will yield an s» that is equal to maz.,
causing us to merge all three clusters. As for the values
of a, if we set « to be close to 1 then unless e is very
different from ¢ and d we will combine all three clusters.
Thus, the closer « is to 1, the more likely our algorithm is
to combine all three clusters.

For k > 3 we repeat the above test for each k' =
3...k. Thatis, we first test if we should separate the first
two clusters from the third cluster, as described above. If
the answer is yes, we combine the first two clusters and
move to the next iteration. If the answer is no we apply
the same procedure, to test weather we should separate the
first three clusters from the fourth and so on. The com-
plexity of these steps is k2 for each &’ (since we need to
compute the pairwise similarities in each permutations),
and at most rk® for the entire iteration. For a fixed r,
and k << n this permutation test does not increase the
asymptotic complexity of our algorithm. Note that if we
combine m < k clusters, the number of main loop itera-
tion increases. However, since in this case each the itera-
tion takes O(n?m) the total running time remains O(n?).

3 Optimal leaf ordering

In this section we discuss how we preserve the pairwise
similarity property of the binary tree clustering in our k-
ary tree algorithm. This is done by performing optimal
leaf ordering on the resulting tree. After formally defin-
ing the optimal leaf ordering problem, we present an al-
gorithm that optimally orders the leaves of a binary tree in

O(n?). We discuss a few improvements to this algorithm
which further reduces its running time. Next, we extend
this algorithm and show how it can be applied to order
k-ary trees.

3.1 Problem statement

First, we formalize the optimal leaf ordering problem, us-
ing the following notations. For a tree T with n leaves,
denote by zy,---, 2z, the leaves of T and by v - - - v, 1
the n — 1 internal nodes of 7. A linear ordering con-
sistent with 7' is defined to be an ordering of the leaves
of T' generated by flipping internal nodes in 7' (that is,
changing the order between the two subtrees rooted at v;,
for any v; € T). See Figure 3 for an example of node

flipping.

piismanl

1

Figure 3: When flipping the two subtrees rooted at the red cir-
cled node we obtain different orderings while maintaining the
same tree structure. Since there are n — 1 internal nodes there
are 2"~ ! possible orderings of the tree leaves.

Since there are n — 1 internal nodes, there are 27! pos-
sible linear orderings of the leaves of a binary tree. Our
goal is to find an ordering of the tree leaves that maxi-
mizes the sum of the similarities of adjacent leaves in the

ordering. This could be stated mathematically in the fol-
lowing way. Denote by ® the space of the 27! possible
orderings of the tree leaves. For ¢ € ® we define D?(T)
to be:

n—1
Dd)(T) = Z S(Zdh' s Z¢i+1)
=1

where S(u, w) is the similarity between two leaves of the
tree. Thus, our goal is to find an ordering ¢ that maximize
D?(T). For such an ordering ¢, we say that D(T) =
D?(T).

3.2 An O(n?) algorithm for binary trees

Assume that a hierarchical clustering in form of a tree T
has been fixed. The basic idea is to create a table M with
the following meaning. For any node v of 7', and any two
genes ¢ and j that are at leaves in the subtree defined by v
(denoted T'(v)), define M (v, 1, j) to be the cost of the best
linear order of the leaves in T'(v) that begins with 7 and
endswith j. M (v, 1, j) is defined only if node v is the least
common ancestor of leaves i and j; otherwise no such
ordering is possible. If v is a leaf, then M (v,v,v) = 0.
Otherwise, M (v, 1, j) can be computed as follows, where
w is the left child and z is the right child of v (see Figure

4 (a)):
M(v,i,j) = max M(w,i,h) + S(h,1) + M(z,1, j)

heT(w),
€T ()
)
Let F'(n) be the time needed to compute all defined en-
tries in table (M (v,1,7)) for a tree with n leaves. We
analyze the time to compute Equation 2 as follows: As-
sume that there are r leaves in T'(w) and p leaves in T'(z),
r + p = n. We must first compute recursively all values
in the table for 7'(w) and T'(z); this takes F(r) + F(p)
time.
To compute the maximum, we compute a temporary
table Temp(i,1) forall i € T(w) and ! € T'(z) with the
formula

Temp(i,l) = hrenjg();) M(w,i,h) + S(h,l);

3)

this takes O(r?p) time since there are rp entries, and we
need O(r) time to compute the maximum. Then we can
compute M (v, i, j) as

M(v,i,j) = . Temp(i,1) + M(z,1,).

(4)

This takes O(rp?) time, since there are rp entries, and we
need O(p) time to compute the maximum.

Thus the total running time obeys the recursion F'(n) =
F(r) + F(p) + O(r*p) + O(rp?) which can be shown
easily (by induction) to be O(n?), since r* + p® + r2p +
rp? < (r+p)? =nd.

The required memory is O(n?), since we only need to
store M (v, i, j) once per pair of leaves 7 and j.

For a balanced binary tree with n leaves we need Q(n?)
time to compute Equation 2; hence the algorithm has run-
ning time ©(n?).

We can further improve the running time of the algo-
rithm in practice by using the following techniques:

Early termination of the search. We can improve the
computation time for Equation 3 (and similarly Equa-
tion 4) by pruning the search for maximum whenever
no further improvement is possible. To this end, set
Smax(l) = maxper(w) S(h,1). Sort the leaves of T'(w)
by decreasing value of M (w, 7, h), and compute the max-
imum for Equation 3 processing leaves in this order. Note
that if we find a leaf h for which M (w, i, h) + smax(l) is
bigger than the maximum that we have found so far, then
we can terminate the computation of the maximum, since
all other leaves cannot increase it.

Top-level improvement. The second improvement
concerns the computation of Equations 3 and 4 when v
is the root of the tree. Let w and z be the left and right
children of . Unlike in the other cases, we do not need to
compute M (v, 4, j) for all combinations of i € T'(w) and
j € T(x). Rather, we just need to find the maximum of
all these values Mmax = max; ; M(v,1, 7).

Define Max(v,i) = maxper(y) M(v,i,h).
Equation 2 we have

From

Mmax

max max
€T (w),je€T(x) heT(w),leT(x)

S(h,l) + M(z,1,j)
Max(w, h) + S(h,l) + Max(x,)

M(w,i,h) +

= max
heT(w),leT(x)
Therefore we can first precompute values Max(w, h) for
all h € T(w) and Max(z,1) forall I € T(z) in O(n?)
time, and then find M,,.x in O(n?) time. This is in con-
trast to the O(n?) time needed for this computation nor-
mally.

While the above two improvements do not improve
the theoretical running time (and in fact, the first one in-
creases it because of the sorting step), we found in experi-
ments that on real-life data this variant of the algorithm is
on average 50-90% faster.

3.3 Ordering k-ary trees

For a k-ary tree, denote by vy ...v; the k subtrees of
v. Assume i € vy and j € vy, then any ordering of
Vg . .. Up—o IS a possibility we should examine. For a spec-
ified ordering of the subtrees of v, M (v, 1, j) can be com-
puted in the same way we computed M for binary trees

i h | i

() Computing M (v, 1, j) for a binary tree

\{2 \{23

AL

(b) K-ary tree

Figure 4: (a) A binary tree rooted at V. (b) Computing M (v, 1, j) for the subtrees order 1... k. For each possible ordering of
1... k we can compute this quantity by adding internal nodes and using the binary tree algorithm.

by inserting k& — 2 internal nodes that agree with this order
(see figure 4 (b)).

Thus, we first compute M (vy 2, h,1) for all h and [
leaves of v and v,. Next we compute M (vq 2 3, *, %) and
so on until we compute M (v,i,j) for this order. This
results in the optimal ordering of the leaves when the sub-
trees order is vy ... vg. Since there are k! possible order-
ing of the subtrees, going over all £! orderings of the sub-
trees in the manner described above gives rise to a simple
algorithm for finding the optimal leaf ordering of a k-ary
tree. Denote by p; . . . p; the number of leaves in vy ... vy
respectfully. Denote by © the set of k! possible orderings
of 1...%. The running time of this algorithm is O(k!n?)
as can be seen using induction from the following recur-
sion:

Fln) =3 F(pi) +

k—1 1 1
Y2 Qo poi) Pacin + (O poi)Picisa
0co i=1 \ j=1 =
<EDY i+ Y (O p)* =D)
i [2SIC) i i

=kl p1+p2+...p)° = kn®

Where the inequality uses the induction hypothesis. As
for space complexity, for two leaves, i € vy and j € vy
we need to store M (v,4,7). In addition, it might be that
for two other leaves m € vy and ! € vy, _1 i and j are two
boundary leaves in the internal ordering of the subtrees
of v, and thus we need to store the distance between them
for this case as well. The total number of subdistances we
need to store for each pair is at most k£ — 2, since there
are only k — 2 subtrees between the two leftmost and
rightmost nodes, and thus by deleting all subpaths which
we do not use we only need O(kn?) memory for this
algorithm.

Though O(k!n?) is a feasible running time for small
ks, we can improve upon this algorithm using the follow-
ing observation. If we partition the subtrees of v into two
groups, v’ and ", then we can compute M (v) for this
partition (i.e. when the subtrees of v’ are on the right side
and the subtrees of v" on the left) by first computing the
optimal ordering on v’ and v separately, and then com-
bining the result in the same way discussed in Section 3.2.
This gives rise to the following divide and conquer algo-
rithm. Assume k& = 2™, recursively compute the optimal
ordering for all the (k’jz) possible partitions of the sub-
trees of v to two groups of equal size, and merge them
to find the optimal ordering of ». In the Appendix, we
formally prove that the running time of this algorithm is
O(4kn3). Thus, we can optimally order the leaves of a
k-ary tree in O(4*n?) time and O(kn?) space, which are
both feasible for small ks.

4 Experimental results

First, we looked at how our heuristic k-ary clustering
algorithm (described in Section 2.2) compares with the
naive k-ary clustering which finds and merges the & most
similar clusters in each iteration. As discussed in Sec-
tion 2.1, the naive algorithm works in time O(n**1), and
thus even for k& = 3 it is more time consuming than our
heuristic approach. We have compared both algorithms
on a 1.4 GHz Pentium machine using an input dataset of
1000 genes and setting £ = 3. While the our k-ary clus-
tering algorithm generated the 3-ary tree in in 35 seconds,
the naive algorithm required almost an hour (57 minutes)
for this task. Since a dataset with 1000 genes is relatively
small, it is clear that the naive algorithm does not scale
well, and cannot be of practical use, especially for val-
ues of & that are greater than 3. In addition, the results
of the naive algorithm where not significantly better when
compared with the results generated by our heuristic algo-

rithm. The average node similarity in the naive algorithm
tree was only 0.8% higher than the average similarity in
the tree generated by our algorithm (0.6371 vs. 0.6366).

Next we compared the binary and k-ary clustering us-
ing synthetic and real datasets, and show that in all cases
we looked at we only gain from using the k-ary clustering
algorithm.

Choosing the right value for & is a non trivial task. The
major purpose of the k-ary algorithm is to reduce the in-
fluence of noise and missing values by relying on more
than that most similar cluster. Thus, the value of k de-
pends on the amount of noise and missing values in the
input dataset. For the datasets we have experienced with,
we have found that the results do not change much when
using values of & that are higher than 4 (tough there is a
difference between 2 and 4 as we discuss below). Due to
the fact that the running time increases as a function of £,
we concentrate on k = 4.

For computing the hierarchical clustering results we
used the correlation coefficients as the similarity matrix
(S). The clustering was performed using the average
linkage method [7].

Generated data: To test the effect of k-ary clustering and
ordering on the presentation of the data, we generated a
structured input data set. This set represents 30 tempo-
rally related genes, each one with 30 time points. In order
to reduce the effect of pairwise relationships, we chose 6
of these genes, and manually removed for each of them
6 time points, making these time points missing values.
Next we permuted the genes, and clustered the resulting
dataset with the three methods discussed above. The re-
sults are presented in Figure 5. As can be seen, using op-
timal leaf ordering (0.1.0.) with binary hierarchical clus-
tering improved the presentation of the dataset, however
o.l.o. was unable to overcome missing values, and com-
bined pairs of genes which were similar due to the miss-
ing values, but were not otherwise similar to a larger set
of genes. Using the more robust k-ary tree algorithm, we
where able to overcome the missing values problem. This
resulted in the correct structure as can be seen in Figure 5.
Visualizing Biological datasets: For the biological re-
sults we used two datasets. The first was a dataset
from [10] which looked at the chicken immune system
during normal embryonic B-cell development and in re-
sponse to the overexpression of the myc gene. This
dataset consists of 13 samples of transformed bursal fol-
licle (TF) and metastatic tumors (MT). These samples
where organized in decreasing order based on the myc
overexpression in each of them. In that paper the au-
thors focused on approximately 800 genes showing 3 fold
change in 6 of 13 samples. These genes where clustered
using Eisen’s Cluster [7], and based on manual inspec-
tion, 5 different clusters where identified. In Figure 6 we

present the results of the three clustering algorithms on
this dataset. The left hand figure is taken from [10], and
contains the labels for the 5 clusters identified. In [10]
the authors discuss the five different classes, and separate
them into two groups. The first is the group of genes in
clusters A,B,E and D which (in this order) contain genes
that are decreasingly sensitive to myc overexpression.
The second is the cluster C which contains genes that are
not correlated with myc overexpression. As can be seen,
when using the &-ary clustering algorithm (right hand side
of Figure 6) these clusters are displayed in their correct or-
der. Furthermore, each cluster is organized (from bottom
to top) based on the required level of myc overexpres-
sion. This allows for an easier inspection and analysis of
the data. As can be seen, using binary tree clustering with
o0.l.o. does not yield the same result since the A and E
clusters are broken into two parts.

The resulting 4-ary tree for the myc dataset is pre-
sented in the left hand side of Figure 6. Each node is
represented by a vertical line. We highlighted (in red)
some of the nodes that contain less than 4 children. Note
that some of these nodes correspond to clusters that
where identified in the original paper (for example, the
top red node corresponds to cluster C). Had we used a
fixed & = 4, these clusters might not have had a single
node associated with them.

Clustering Biological datasets: The second biological
dataset we looked at is a collection of 79 expression exper-
iments that where performed under different conditions,
from [7]. In order to compare our k-ary clustering to
the binary clustering we used the MIPS complexes cat-
egories [1]. We focused on the 979 genes that appeared
in both the dataset and the MIPS database. In order to
compare the binary and 4-ary results, we have selected a
similarity threshold (0.3, though similar results were ob-
tained for other thresholds), and used this threshold to de-
termine the clusters indicated by each of the trees. Start-
ing at the root, we went down the tree and in each internal
node looked at the average similarity of the leaves (genes)
that belong to the subtree rooted at that node. If the aver-
age similarity was above the selected threshold the subtree
rooted at that node was determined to be a cluster. Oth-
erwise, we continued the same process using the sons of
this internal node.

This process resulted in 36 distinct clusters for the bi-
nary tree and 35 for the 4-ary tree. Next, we used the
MIPS complexes to compute a p-value (using the hyper
geometric test) for each of the clusters with each of the
different complexes, and to chose the complex for which
the cluster obtained the lowest p-value. Finally, we looked
at all the clusters (in both trees) that had both more than
5 genes from their selected complex and a p-value below
1073,

Hierarchical clustering

Binary clustering with o.1.0.

4-tree clustering with o.l.0.

Figure 5: Color comparison between the three different clustering methods on a manually generated dataset. Green corresponds
to decrease in value (-1) and red to increase (1). Gray represents missing values.

The results seem to support our assumption that the 4-
ary tree can generate more meaningful biological results.
The above process resulted in 10 significant clusters in the
binary tree, while the 4-ary tree contained 11 significant
clusters. Further, as shown in Table 4, the clusters gener-
ated by the 4-ary algorithm where, on average, more spe-
cific than the binary clusters. Out of the 7 complexes that
where represented in both trees, the 4-ary tree contained 4
clusters for which more than 50% of their genes belonged
to a certain complex, while the binary tree contained only
two such clusters. In particular, for the Proteasome com-
plex, the 4-ary tree contained a cluster in which almost
all of its genes (28 out of 29) belonged to this complex,
while for the corresponding cluster in the binary tree was
much less specific (28 out of 39 genes). These results in-
dicate that our k-ary clustering algorithm is helpful when
compared to the binary hierarchical clustering algorithm.
Note that many of the clusters in both the binary and 4-
ary algorithms do not overlap significantly with any of the
complexes. This is not surprising since we have only used
the top level categorization of MIPS, and thus some of the
complexes should not cluster together. However, those
that do cluster better when using the 4-ary algorithm.

5 Summary and futurework

We have presented an algorithm for generating k-ary clus-
ters, and ordering the leaves of these clusters so that the
pairwise relationships are preserved despite the increase
in the number of children. Our k-ary clustering algorithm
runs in O(n?). As for ordering, we presented an algo-
rithm which optimally orders the leaves of a binary tree in
O(n?) improving upon previous published algorithm for
this task. We extended this algorithm to order k-ary trees
in O(2%n3), which is on the order of O(n?) for a constant
k.

We presented several examples in which the results of
our algorithm are superior to the results obtained using bi-

nary tree clustering, both with and without ordering. For
synthetic data our algorithm was able to overcome miss-
ing values and correctly retrieve a generated structure. For
biological data our algorithm is better in both identifying
the different clusters and ordering the dataset.

There are several ways in which one can extend the re-
sults presented in this paper. One interesting open prob-
lem is if we can further improve the asymptotic running
time of the optimal leaf ordering algorithm. A trivial
lower bound for this problem is n? which leaves a gap of
order n between the lower bound and the algorithm pre-
sented in this paper. Note that hierarchical clustering can
be performed in O(n?), thus reducing the running time
of the o.l.0. solution would be useful in practice as well.
Another interesting (though more theoretical) problem is
the extension of the o.l.0. algorithm for a two dimensional
quadtree, where the goal is to order both the rows and the
columns of the resulting outcome simultaneously.

Acknowledgements

We thank Therese Biedl, Brona Brejova, and Tomas Vinaf
who made important contributions to Section 3.2. We
thank the anonymous referees for useful suggestions and
comments. Z.B.J was supported by the Program in Math-
ematics and Molecular Biology at the Florida State Uni-
versity with funding from the Burroughs Wellcome Fund.
A.M.H. was supported by the Leverhulme foundation, UK
and NSERC.

References

[1] Saccharomyces cerevisiae - Protein Com-
plexes. URL: http://www.mips.biochem.mpg.de/
proj/yeast/catalogues/complexes/.

Binary tree 4-tree clustering

Hierarchical
clustering clustering with o.l.o with o.l.o.

Figure 6: Color comparison of the three different clustering algorithms using the myc overexpression dataset. The
left hand side is the figure that appears in the original paper containing the five different clusters that where identified.
Note that by using the k-ary clustering algorithm we where able to both identify and order the clusters correctly (based
on the required myc gene expression). The tree in the figure is the 4-ary tree where some of the nodes that contain less
than 4 children are highlighted. See text for more details

10

Complex # genes binary tree d-ary tree

#c complex cluster p-value #ec complex cluster p-value

size size

Nucleosomal 8 8 48 2x10°7 |8 15 3%1071°
Respiration chain | 31 11 67 2%10°° 14 27 5%1071°
Proteasome 35 28 39 8x10°° | 28 29 0
Replication 48 27 88 5%10° ' | 30 106 3x10 %
Cytoskeleton 48 15 53 3%107° 9 28 2x107°
RNA processing 107 12 26 4%10°° 13 46 7107
Translation 208 152 231 0 144 195 0

Table 1: Comparison between the binary tree and 4-ary clustering algorithms for the complexes that where identified in both trees.
In most cases (5 out of 7) the 4-ary results where more significant than the binary results. See text for complete details and analysis.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Z. Bar-Joseph, D. Gifford, and T. Jaakkola. Fast
optimal leaf ordering for hierarchical clustering. In
ISMBO01, 2001.

A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering
gene expression patterns. Journal of Computational
Biology, 6:281-297, 1999.

R. E. Burkard, Deineko V. G., and G. J. Woeginger.
The travelling salesman and the pg-tree. Mathemat-
ics of Operations Research, 24:262-272, 1999.

R. Degerman. Ordered binary trees constructed
through an application of kendall’s tau. Psychomet-
rica, 47:523-527, 1982.

R. G. Downey and M. R. Fellows. Parameterized
Complexity. Springer, New-York, NY, 1999.

M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Bot-
stein. Cluster analysis and display of genome-wide
expression patterns. PNAS, 95:14863-14868, 1998.

N. Gale, W. C. Halperin, and C.M. Costanzo. Un-
classed matrix shading and optimal ordering in hier-
archical cluster analysis. Journal of Classification,
1:75-92,1984.

G. Gruvaeus and H. Wainer. Two additions to hierar-
chical cluster analysis. British Journal of Mathemat-
ical and Statistical Psychology, 25:200-206, 1972.

P.E. Neiman and et al. Analysis of gene expression
during myc oncogene-induced lymphomagenesis in
the bursa of fabricius. PNAS, 98:6378-6383, 2001.

E. Segal and D. Koller. Probabilistic hierarchical
clustering for biological data. In Recomb02, 2002.

R. Sharan, R. Elkon, and R. Shamir. Cluster analysis
and its applications to gene expression data. Ernst
Schering workshop on Bioinformatics and Genome
Analysis, 2001.

11

[13]

[14]

[15]

6

R. Sharan and R. Shamir. Click: A clustering al-
gorithm for gene expression analysis. In ISMBOO,
2000.

T. S. Spellman and et al. Comprehensive iden-
tification of cell cycle-regulated genes of the
yeast saccharomyces cerevisia by microarray hy-
bridization. Molecular Biology of the Cell, 9:3273—
3297, 1998.

P. Tamayo and et al. Interpreting patterns of gene
expression with self organizing maps: Methods and
applications to hematopoietic differentiation. PNAS,
96:2907-2912, 1999.

Appendix

In this appendix we prove that the running time of the
divide and conquer algorithm for ordering k-ary trees
(which is presented in Section 3.3) is O(4*n?). In order to
compute the running time of this algorithm we introduce
the following notations: We denote by I'(v) the set of all
the possible partitions of the subtrees of v to two subsets
of equal size. For v € T'(v) let v,(1) and v, (5) be the two
subsets and let p(;) and p., (2 be the number of leaves in
each of these subsets. The running time of this algorithm
can be computed by solving the following recursion:

k

F(n)=F(p1 +pa-..+pr) ZZF(M)‘FD(U)

i=1

Z p?v(l)pv@) +p,y(1)pi(2) +
v€T(v)

+D(vy(1)) + D(vy(2))

and D(i) = 0 if i is a singleton containing only one sub-
tree. The following lemma discusses the maximal running
time of the divide and conquer approach.

Lemma6.1 Assume k = 2™ then

D(v) < H _ZpJ g

Proof: By induction on m.
Form = 1 we have £ = 2 and we have already shown
in Section 3.2 how to construct an algorithm that achieves
this running time for binary trees. So D(v) = pips +
pips < 2(p1 +p2)® — pf — 3.

Assume correctness for m — 1. Let kK = 2™. Then for
every v € I'(v) we have

P21y P (2) + Dy)P2(2) + D(vy1) + D(vy(2) <

@
P2 (1yPy(2) + Dy()Poa) + W(> i)
=0 T jer(1)

2m1
_Zpa++ﬁ(z Zpa

J€v(1) ;]E’Y() JEv(2
2m 1
- Hm T2 (9i1) 211 Zp] Z J

Jj=1

The first inequality comes from the induction hypothe-

sis, and the second inequality arises from the fact that

~(1) does not intersect y(2) and v(1) J~(2) = {1...k}.
. k 2

since [T(v)] = (,,) = {m=ryrr=ryr, SUMMing up on

all v € T proves the lemma. [|

It is now easy to see (by using a simple induction proof,
as we did for the binary case) that the total running time
of this algorithm is: O(W n?) which is faster than

the direct extension discussed above. If 2™ < k < 2m+1
then the same algorithm can be used by dividing the sub-
trees of v to two groups of size 2 and k — 2™. A sim-
ilar analysis shows that in this case the running time is

O(W %), which (using the Sterling approxi-

mation) is O (45+°(F)p3),

12

