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Abstract
A foundational result in origami mathematics is Kawasaki and Justin’s simple, efficient characterization
of flat foldability for unassigned single-vertex crease patterns (where each crease can fold mountain
or valley) on flat material. This result was later generalized to cones of material, where the angles
glued at the single vertex may not sum to 360◦. Here we generalize these results to when the material
forms a complex (instead of a manifold), and thus the angles are glued at the single vertex in the
structure of an arbitrary planar graph (instead of a cycle). Like the earlier characterizations, we
require all creases to fold mountain or valley, not remain unfolded flat; otherwise, the problem is
known to be NP-complete (weakly for flat material and strongly for complexes). Equivalently, we
efficiently characterize which combinatorially embedded planar graphs with prescribed edge lengths
can fold flat, when all angles must be mountain or valley (not unfolded flat). Our algorithm runs in
O(n log3 n) time, improving on the previous best algorithm of O(n2 log n).
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1 Introduction

The graph flat folding problem asks whether a given combinatorially embedded planar graph
with prescribed edge lengths can be “folded flat” onto a line. More precisely, a flat folding
is an assignment of x coordinates to vertices that respects the edge lengths, together with a
partial order on the edges (which defines the stacking order among edges with overlapping
x extents) that respects the combinatorial planar embedding and avoids crossings (edges
penetrating connections between higher and lower edge endpoints, and improperly nested
edge endpoint connections) [2, 9, 11].1 Equivalently, a flat folding is a sequence or continuum
of planar embeddings that respect the combinatorial planar embedding, avoid crossings, and

1 In [2], flat foldings are called “linear folded states”. Here we use “flat foldings” so that they match up
with the corresponding notions in computational origami.
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29:2 Flat Folding an Unassigned Single-Vertex Complex without Flat Angles

converge to the correct edge lengths and to lying on a line [1, 3]. Figure 1 shows an example
of a flat folding, as well as some non-examples.
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Figure 1 Four attempts to fold a graph with assigned edge lengths. Top left: A valid folding
of the graph. Top right: Invalid because the lengths of edges ad and cd do not correspond to the
original edge lengths. Bottom left: Invalid for two reasons: the cyclic ordering of edges at vertex a is
not respected, and the folding exhibits incorrect layering at vertices d and e. Bottom right: Invalid
since edges cross over each other.

It is known that the graph flat folding problem is strongly NP-complete in general, and
solvable in linear time if all edge lengths are equal [2]. But there are two natural variations
on the problem, posed in the same paper [2]. In any flat folding, we can identify the angles
between consecutive edges around a vertex (as determined by the combinatorial planar
embedding) as either valley (0◦), mountain (360◦), or unfolded/flat (180◦). (At each
vertex, these angles must sum to 360◦, so there is either one mountain or two flats, and the
rest are valleys.) Now we can vary two aspects of the problem:
1. What if we are also given the angle (valley/mountain/flat) between every consecutive

pair of edges around each vertex?
2. What if we forbid flat angles, and instead require just valleys and mountains?

These parameters define four versions of the problem, as summarized in Table 1. The
original paper [2] proved NP-completeness of the version with no angles given and allowing
flat angles. Recent work shows that, if the angles are given, the problem becomes solvable
in linear time (independent of whether flat angles are allowed) [3]. The remaining problem,
studied here, is the version where the angles are not given, but flat angles are forbidden.

Connection to weak embeddings of graphs. Although not stated explicitly, this no-flat-
angles graph flat folding problem can be solved in polynomial time by a reduction to
“weak embeddings of graphs”. A key feature of this version of graph folding (in particular
distinguishing it from the NP-complete version with unknown angles that can be flat) is
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Flat angles forbidden Flat angles allowed
Angles given Linear time [3]

Angles unspecified O(n2 logn) [4]→ O(n log3 n) [new] NP-complete [2]
Table 1 Complexity of different models of graph flat folding (based on [3, Table 1], which in turn

is based on open problems from [2]). Our new result is in the bottom-left.

that the relative coordinates of the vertices are determined by the input: fixing one edge to
go right from the origin, any path in the graph alternates between going right and left by
the specified edge lengths, so a depth-first search fixes the vertex coordinates (and checks
geometric closure constraints on cycles in the graph). The graph flat folding problem is then
equivalent to asking whether this mapping from vertices to coordinates is a weak embedding
of the graph, meaning that the vertices can be perturbed in the plane within ε-radius disks
(for any ε > 0), and the edges can be similarly perturbed to Jordan curves within distance ε
of the corresponding line segments, so that we obtain a strict embedding (no intersections
except as intended at shared vertices). Recognizing weak embeddings was recently solved in
O(n2 logn) time [4],2 so the same result applies to no-flat-angles graph flat folding.

Our results. In this paper, we give a faster algorithm for the no-flat-angles graph flat folding
problem. Specifically, we show how to determine whether a graph can be folded flat without
flat angles in O(n log3 n) time, which is tight up to logarithmic factors.

We extend this result to the case where some angles are specified as flat, and the problem
asks to determine mountain or valley for each of the remaining angles. (The same extension
also follows from the reduction to weak embedding.) Thus what makes graph flat folding
hard is not the existence of flat angles, but deciding which angles are flat.

Application to single-vertex origami. The version of the graph flat folding problem we
study is particularly natural when viewed from the lens of computational origami.

v

v

Figure 2 Unfolded and folded states of the single-vertex complex corresponding to the planar
graph in Figure 1.

2 The same paper [4] develops an O(n log n) algorithm for weak embedding of graphs, but only when the
given map is “simplicial”, meaning that edges do not pass through other vertices. This property does
not hold in general in the graph flat folding problem.
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29:4 Flat Folding an Unassigned Single-Vertex Complex without Flat Angles

Define a single-vertex complex to consist of m polygons in 3D where the polygons
all share a common vertex v, and all the shared edges between these polygons are incident
to v, as in Figure 2 (left). If we intersect such a single-vertex complex with a small sphere
centered at v, we obtain a planar graph embedded on the sphere, whose m edge lengths
are proportional to the m polygon angles at v. In the example of Figure 2 (left), we obtain
the planar graph in Figure 1 (top). A flat folding of the single-vertex complex into the
plane (according to standard origami definitions [11]) corresponds to a flat folding of the
combinatorially embedded planar graph with prescribed edge lengths [2, 3]. Figure 2 (right)
shows such a flat folding, corresponding to the graph flat folding in Figure 1 (top left). We
can similarly consider the case of a single-vertex abstract complex — that is, an abstract
metric space (not embedded in 3D) formed by gluing planar polygons along edges, which
all share a common vertex — together with the cyclic ordering of polygons around each
shared edge. Intersecting a single-vertex abstract complex with a small intrinsic sphere
centered at the shared vertex produces a graph flat folding problem, and we can construct an
arbitrary combinatorially embedded planar graph with prescribed edge lengths by a suitable
single-vertex abstract complex. Indeed, we can construct a multigraph in this way, so we
generally allow graphs with multiple edges between the same two vertices. Therefore graph
flat folding is equivalent to origami flat foldability of single-vertex (abstract) complexes.

When the planar graph is a cycle corresponding to 360◦ of total angle of polygons
glued at a single vertex, we obtain what is known as a single-vertex crease pattern [11,
Section 12.2]: creases emanating from a single vertex on a piece of paper. At the first OSME
(Origami Science/Mathematics/Education) conference in 1989, Justin [16] and Kawasaki
[17] presented characterizations of which single-vertex crease patterns fold flat: exactly those
whose alternating sum of angles is zero. (A complete proof of this characterization was
not published until Hull’s 1994 paper [13]; see [15, Section 5.9].) Crucially, this linear-time
characterization assumes that all creases must be folded either mountain or valley (none can
be left unfolded flat at an angle of 180◦); otherwise, single-vertex flat foldability becomes
weakly NP-complete [10].

We see a similar behavior in Table 1 (bottom row), where allowing mountain, valley, and
flat angles makes the problem NP-complete (even strongly), while our result shows that
allowing just mountain or valley makes the problem solvable in near-linear time. Thus our
result can be seen as a generalization of the Justin–Kawasaki Theorem from flat paper to
complexes with similar running time. Previously, the theorem was generalized to cones of
paper, where the angles sum to a value other than 360◦ [11, Section 12.2.1], but ours is the
first generalization from manifolds to complexes with near-linear running time.

The top row of Table 1 corresponds to single-vertex mountain-valley patterns, where
each crease is marked as mountain or valley. (Some creases could be marked unfolded/flat,
but this is equivalent to removing the crease.) The previous work on given-angle complexes [3]
can similarly be seen as a generalization of the previously known linear-time characterization
of single-vertex mountain-valley patterns [5], [11, Section 12.2.2].

Organization. The rest of this paper is organized as follows. First we restate two needed
previous results in Section 2. We then give a high-level overview of our algorithm in Section 3,
and detail the various components of the algorithm in Sections 4, 5, 6, and 7.

2 Background

Our results rely on two previous results, which we restate here for completeness.
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First, based on results of Hull [14], Demaine and O’Rourke [11] characterized the flat-
foldable mountain/valley assignments of a cycle, which we will apply to each face in a
connected combinatorially embedded planar graph:

I Lemma 1 ([11, Corollary 12.2.12]). Let f be a simple cycle with edge lengths θ1, . . . , θn. If
the edge lengths are all equal, then a crease assignment on f is flat foldable in precisely the
following cases:

Case A: The cycle f is an interior face with equal-length edges, and there are exactly 2
more valley folds than mountain folds.
Case B: The cycle f is an exterior face with equal-length edges, and there are exactly 2
more mountain folds than valley folds.

Otherwise, take any maximal sequence em, . . . , em+k−1 of k contiguous equal-length edges
surrounded by strictly longer edges, so that3

θm−1 > θm = · · · = θm+k−1 < θm+k

Then a crease assignment is flat foldable in precisely the following cases:
Case C: k is odd, and there are an equal number of mountain and valley folds incident
to edges em, . . . , em+k−1. Additionally, replacing all of the edges em−1, . . . , em+k with a
single edge of length θm−1 − θm + θm+k yields a flat-foldable face with the same crease
assignment.
Case D: k is even, and the numbers of mountain and valley folds incident to edges
em, . . . , em+k−1 differ by ±1. Additionally, replacing all of the edges em, . . . , em+k−1
with a single new vertex yields a flat-foldable face, where the crease assignment is the
same except that it assigns the new vertex to be the same type as the majority of the
folds incident to em, . . . , em+k−1. (That is, the new vertex is a mountain fold in this
assignment if the number of mountain folds was 1 greater than the number of valley
folds.)

Second, Abel et al. [3] proved that a flat folding of a graph is equivalent to a compatible
folding of each face:4

I Theorem 2 ([3, Theorem 2]). Let G be a connected multigraph with an assignment of
measures to every angle in G. That is, for each angle a we are given its measure ma ∈
{0°, 180°, 360°}. Suppose that, for every face f , the restriction of this assignment to f yields
a flat-foldable mountain-valley assignment when f is treated as a simple cycle. Suppose also
that the assignment is compatible in that the sum of angles around each vertex is equal to
360°. Then there exists a flat folding of G whose angles have the assigned measures.

Figure 3 shows an example of combining compatible flat foldings of individual faces to
obtain a flat folding of the entire graph.

3 Algorithm Overview

In this section, we provide a high-level outline of our algorithm for determining whether a
connected combinatorially embedded planar (multi)graph with prescribed edge lengths can

3 The indices should be understood as being modulo n.
4 A similar style of result (“faces being valid implies global validity”) was obtained in the context of

upward drawings of graphs [6, Theorem 3]. It also does not allow flat angles. That result, however, does
not deal with prescribed edge lengths, which significantly complicates whether faces are flat foldable.

SoCG 2022



29:6 Flat Folding an Unassigned Single-Vertex Complex without Flat Angles

Figure 3 Left: A graph with three interior faces. Right: Given compatible flat foldings of all
four faces, a flat folding of the graph can be generated.

be folded flat. This algorithm takes as input a combinatorial embedding of the graph G

(which we allow to have multiple edges between the same two vertices) and an assignment
of lengths to the edges of G. We assume for now that the graph is connected and that we
are given a single face of G designated as the exterior ; in Section 7, we will remove both
constraints.

By Theorem 2, determining whether such a graph has a flat folding is equivalent to
determining whether there are compatible flat-foldable crease assignments for each face. To
accomplish this, we reduce the graph flat folding problem to a boolean constraint satisfaction
problem, with constraints deriving both from the requirement that each face needs to be flat
foldable and from the compatibility requirement between faces. The variables will correspond
to angles in each face of the graph (including some angles only present in virtual intermediate
states), and indicate whether that angle is a valley fold or a mountain fold. The resulting
constraint satisfaction problem has the following structure:

Each clause specifies an exact number of true variables in some set.
Each variable appears in exactly two clauses.
The graph whose vertices are clauses and whose edges are variables, connecting the two
clauses in which each variable appears, is bipartite. In particular, each vertex appears in
exactly one clause on each side of the bipartition.
The same graph is planar.

We call such a problem planar bipartite positive ∗-in-∗SAT-E2 . This terminology
generalizes the standard notion of “positive i-in-kSAT” [12, 18] where every clause requires
satisfying exactly i out of (up to) k variables, which are never negated (hence “positive”), to
the situation where number of variables and required true variables may vary from clause to
clause. The standard suffix “-E2” represents the requirement that every variable appears in
exactly two clauses [12, 8]. The “planar” prefix is also standard [12, 18], while the “bipartite”
prefix is new (and makes sense only with the “-E2” requirement).

In Section 4, we describe the constraints which express that each face must be folded flat.
In Section 5, we describe the constraints capturing compatibility between faces, and prove
that the resulting constraint problem is equivalent to flat folding the graph. In Section 6,
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we show that planar bipartite positive ∗-in-∗SAT-E2 can be solved in O(n log3 n) time
through a reduction to a flow problem. In Section 7, we put the pieces together to obtain
our main result, and describe three extensions: to graphs with some prescribed flat angles,
to disconnected graphs, and to graphs with unknown exterior face.

4 Single Face Constraints

In this section, we describe the constraints obtained from the requirement that each face of
the graph is folded flat. Although faces of the graph may not be bound by simple cycles (in
the case of cut vertices), there exists a simple cycle corresponding to each face. This cycle can
be constructed by enumerating the face’s incident edges and angles in order, duplicating any
repeated vertices or edges. Although there may exist flat foldings of this simple cycle which
do not correspond to flat foldings of the original face, Theorem 2 tells us that compatible
flat foldings of the corresponding simple cycles are sufficient for flat foldability of the full
graph. From here on, when we discuss flat foldability of an individual face, we will actually
be referring to flat foldability of the corresponding simple cycle.

Now consider flat folding a single face f . We check (and henceforth assume) that the
edge lengths satisfy the basic closure property (mentioned in Section 1) that the number
of edges is even and the alternating sum of edge lengths is zero; otherwise, flat folding is
impossible. It remains to determine flat-foldable mountain/valley assignments.

We introduce a boolean variable xa for each angle a in f . These variables represent
an assignment of creases: xa = 0 if a is a valley fold (0°) and xa = 1 if a is a mountain
fold (360°). We present an algorithm which, given the edge lengths and interior/exterior
assignment of f and a variable xa assigned to each angle a in f , generates a set of constraints
Cf on the variables xa, possibly introducing additional variables, such that solutions to this
constraint problem correspond to flat-foldable crease assignments of f . The constraints are
of the form “exactly c variables from a set S are true,” which we write∑

x∈S

x = c.

Additionally, each constraint generated will be colored either red or blue; this coloring will
be used later to show that the constraint satisfaction problem is bipartite. The algorithm
essentially follows Lemma 1:

If all edges of f have equal length, then let V be the set of all angles in f , and let b be
−1 if f is an interior face, or +1 if f is an exterior face. Generate just the red constraint∑

a∈V

xa = |V |2 + b. (1)

Otherwise, not all of the edges of f have equal length. Find a sequence em, . . . , em+k−1
of k consecutive equal-length edges, such that θm−1 > θm = · · · = θm+k−1 < θm+k;
this is guaranteed to exist by considering a maximal sequence of consecutive edges with
minimum length. Let S be the set of angles in f incident to em, . . . , em+k−1.
If k is odd (i.e., |S| is even), generate the red constraint∑

a∈S

xa = |S|2 . (2)

Having done so, replace all the edges em−1, . . . , em+k with a single edge of length θm−1−
θm + θm+k to construct a smaller face f ′, and recursively output the constraints in Cf ′ .

SoCG 2022



29:8 Flat Folding an Unassigned Single-Vertex Complex without Flat Angles

If instead k is even (i.e., |S| is odd), introduce two fresh boolean variables y and z, and
generate the following red and blue (respectively) constraints:

y +
∑
a∈S

xa = |S|+ 1
2 ; (3)

y + z = 1. (4)

Then replace all the edges em, . . . , em+k−1 with a single new angle whose associated
variable is z to construct a smaller face f ′, and recursively output the constraints in Cf ′ .

2

2

0 1 0 1

2

0 0 1 1

Figure 4 The case where k is odd. In this diagram, circular vertices represent constraints and
edges represent boolean variables. Top: The red constraint expresses that exactly half of the creases
must be mountain folds and the others must be valley folds. Bottom: Two possible satisfying variable
assignments and the associated local foldings.

We now show that solutions to the constraints generated by this algorithm correspond to
flat-foldable crease assignments of f .

I Theorem 3. A mountain/valley assignment for f is flat foldable if and only if it can be
extended to a satisfying assignment of Cf .

We may need to extend the assignment to account for variables introduced in the case
where k is even. The values for these variables are forced by the constraints added when the
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3

1

0 1 0 1

3

1

0 0 1 1 0

3

1

1

0

1 0

1

Figure 5 The case where k is even. The pair of constraints expresses that the number of mountain
folds and valley folds must differ by 1, and the majority value is equal to the newly generated
variable.

variables are introduced, and can be determined by considering variables in the order they
were added.

Proof. The proof is by induction on the size of f . If all the edges of f have equal length,
then it is immediate by cases A and B of Lemma 1 that an assignment is flat foldable if and
only if equation (1) holds.

When the edges are not all equal in length, the algorithm finds some maximal sequence
em, . . . , em+k−1 of k equal-length edges surrounded by strictly longer edges, whose incident
angles we call S.

If k is odd, then by case C of Lemma 1, the assignment is flat foldable for f if and only
if it both assigns an equal number of mountain and valley folds to the angles in S, and is
also a flat-foldable crease assignment for f ′, where f ′ is the face resulting from replacing the
edges em−1, . . . , em+k with a single edge of length θm−1 − θm + θm+k. The first condition

SoCG 2022



29:10 Flat Folding an Unassigned Single-Vertex Complex without Flat Angles

is just equation (2), and the second is equivalent by the inductive hypothesis to the set of
constraints Cf ′ obtained by recursion on f ′. An example of this case is shown in Figure 4.

If k is even, then by case D of Lemma 1, the assignment is flat foldable if and only if the
mountain and valley folds assigned to the angles in S differ by 1, and it is also a flat-foldable
crease assignment for f ′ when suitably extended. Here f ′ is the face resulting from replacing
the edges em, . . . , em+k−1 with a single angle, and the assignment is extended to assign the
new angle to be the same type as the majority of the folds it assigned to the angles in S.
Equation (3) constrains the number of folds to differ by 1, where y is the minority fold type,
and equation (4) constrains z to be the opposite of y, so z is the majority fold type. By the
inductive hypothesis, the constraints Cf ′ obtained by recursion on f ′ are equivalent to the
statement that f ′ is flat foldable under the assignment extended to assign z to the new angle.
An example of this case is shown in Figure 5.

In all cases, we find that the assignment is flat foldable if and only if it satisfies the
constraints. J

We also show that these constraints can be computed efficiently and satisfy certain
properties which will be useful for solving them.

I Theorem 4. The algorithm for computing Cf takes time linear in the number of angles
in f . The variables and clauses of Cf form a graph in which graph vertices correspond to
clauses and graph edges correspond to variables, when an additional blue graph vertex is
added for each angle of f . Then this graph is a bipartite (i.e. 2-colored) forest with linearly
many vertices, and there is a planar embedding of this graph within f such that each vertex
corresponding to an angle of f is located at the vertex of f incident to that angle.

Proof. Let n be the number of angles in f . We prove by induction that Cf forms a graph as
described with at most 2n vertices.

In the case where the edges all have equal length, Cf is a star graph whose central vertex
is a red clause and whose outer vertices are the blue angles of f , so it is a bipartite forest
with n + 1 ≤ 2n vertices. The planar embedding can be achieved by placing the central
vertex within f and drawing edges to all the vertices of f .

When the edges of f are not all equal in length, the algorithm finds some sequence of k
edges whose k + 1 incident angles we call S. Let T be the star graph whose central vertex is
the red clause added in this step and whose outer vertices are the blue angles of S; this is a
bipartite forest with k + 2 vertices.

When k is odd, the graph Cf is simply the disjoint union of Cf ′ and T , where f ′ is a
face with n− k− 1 angles. By the inductive hypothesis Cf ′ is a bipartite forest with at most
2(n−k−1) vertices, so Cf is a bipartite forest with at most k+2+2(n−k−1) = 2n−k ≤ 2n
vertices. The planar embedding of Cf is obtained from the planar embedding of Cf ′ by
simply placing T alongside it; none of the edges need to cross because the angles in S are
contiguous in f .

When k is even, the graph Cf is formed from the disjoint union of Cf ′ and T by
adding an edge from the red central vertex of T to the blue vertex corresponding to some
angle a′ of f ′, where f ′ is a face with n − k angles. By the inductive hypothesis Cf ′ is
a bipartite forest with at most 2(n − k) vertices, so Cf is a bipartite forest with at most
k + 2 + 2(n− k) = 2n− k + 2 ≤ 2n vertices. The planar embedding of Cf is obtained from
the planar embedding of Cf ′ by first placing T alongside it as before; again none of the edges
cross because S is contiguous in f . Then the edge from the central vertex of T to the vertex
corresponding to a′ can be added without crossing because a′ occurs in the same place in
f ′’s cyclic order of angles as S does in f .
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Thus Cf is a linear-sized bipartite forest with the desired planar embedding. We need
to show that it can be computed in linear time. It is straightforward to charge the work
performed by the algorithm at each step to the newly created vertices, except for finding
the sequence em, . . . , em+k−1 of equal-length edges surrounded by strictly longer edges. We
cannot accomplish this by simply scanning through the edges of the face at each iteration,
since this would take linear time and there might be linearly many iterations. We instead
solve this by maintaining a cyclic doubly-linked list C, each of whose entries corresponds
to a maximal contiguous sequence of equal-length edges. Additionally we keep a list M of
such entries of C which are surrounded by longer entries. These can be computed once at
the beginning of the algorithm in linear time, and then maintained at each iteration. At
each iteration a sequence em, . . . , em+k−1 is obtained by taking the first entry from M and
removing it from both M and C. When the new face f ′ is computed, we add any new edges
to C and check whether any of the newly adjacent pairs of entries have equal length; if so we
consolidate them into a single entry of C. We also check whether any of the newly adjacent
entries have become surrounded by strictly longer entries; if so we add them to M . These
checks take constant time in each iteration since at most two new pairs of adjacent entries
can be created. So computing Cf takes linear time overall. J

5 Compatibility Constraints

Next, we describe the constraints needed to ensure that the crease assignments are compatible
between faces. The angles around each vertex must sum to 360°; this means exactly one of
these angles is a mountain fold, as shown in Figure 6. So for each vertex v of the graph, we
generate a blue constraint Cv:∑

a∈Av

xa = 1, (5)

where Av is the set of angles incident to v.

I Theorem 5. A connected combinatorially embedded planar multigraph with prescribed edge
lengths has a flat folding with no flat angles if and only if the constraint satisfaction problem
consisting of

for each face f , the constraints Cf described in Section 4, and
for each vertex v, the constraint Cv described above

is satisfiable. Moreover, these constraints can be computed in time linear in the number of
angles in the graph.

Proof. Suppose the graph has such a flat folding, and assign variables representing angles in
the graph based on whether the corresponding angle is a mountain or a valley fold in the
flat-folded state; this is only a partial assignment since some variables do not correspond to
angles of the original graph. Each face (and thus its corresponding simple cycle) is folded
flat, and the variables which are not yet assigned are disjoint between faces, so by Theorem 3
we can extend the assignment to an assignment of all variables which satisfies Cf for every
face f . The assignment also satisfies Cv since exactly one angle incident to v has measure
360° in the folded state.

Conversely, suppose there is a satisfying assignment. Then assign each angle to be
mountain or valley based on the value of the corresponding variable. By Theorem 3, this
gives a flat-foldable crease assignment for each face. These crease assignments are compatible
because the variable assignments satisfy each Cv, so by Theorem 2 there is a flat folding
with these angle assignments.

SoCG 2022
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1

1

0

0

1 1

0

1

0

Figure 6 A vertex folds flat under a given crease assignment if and only if exactly one if the
incident angles is a mountain fold.

Finally, we show that the set of constraints can be computed in linear time. By Theorem 4
each set of face constraints Cf can be computed in time linear in the number of angles
incident to f . Since the sets of angles incident to different faces are disjoint, it takes linear
time overall to compute the face constraints. Similarly, computing each vertex constraint
Cv takes time linear in the number of angles incident to v, and these are all disjoint from
each other as well. So the set of constraints can be computed in time linear in the number of
angles of the graph. J

6 Solving the Constraint Satisfaction Problem

What remains is solving the constraint satisfaction problem consisting of Cf and Cv for each
face and vertex of the graph. Inspecting the constraints reveals that they are an instance of
planar bipartite positive ∗-in-∗SAT-E2:

Each constraint has the form
∑

x∈S

x = c for some set S of variables and constant c; this is

a clause saying exactly c variables in S are true.
The red and blue clauses provide the bipartition. Each variable is in exactly one red
clause and exactly one blue clause. For each angle a incident to a face f and a vertex v,
the variable xa appears in one red clause belonging to Cf and one blue clause Cv. All
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other variables satisfy this condition because the subgraph corresponding to each Cf is
bipartite according to Theorem 4.
The graph corresponding to the constraint satisfaction problem is planar. We can place
each clause Cv at the corresponding vertex v. Then for each face f we can place the
graph corresponding to Cf inside f ; by Theorem 4 this can be done without violating
planarity. An example of the planar embedding constructed for the entire constraint
satisfaction problem is shown in Figure 7.

All that remains to be shown is that planar bipartite positive ∗-in-∗SAT-E2 can be
solved efficiently. We now describe a fairly standard reduction to a max-flow problem, which
can be solved in near-linear time.

I Theorem 6. Planar bipartite positive ∗-in-∗SAT-E2 can be solved in O(n log3 n) time,
where n is the number of clauses.

Proof. We use the graph with clauses as vertices and variables as edges, as described earlier
and shown in Figure 7. For each red clause r which expects `r true variables, we add a new
source vertex and an edge from the source vertex to r with capacity `r. Similarly, for every
blue clause b expecting `b true variables, we add a new sink vertex and an edge from b to the
sink vertex with capacity `b. Finally, we assign a capacity of 1 to each edge corresponding
to a variable, which goes from a red clause to a blue clause. This gives us an instance
of multi-source multi-sink planar max-flow, for which the maximum possible flow can be
determined in time O(k log3 k) [7] where k is the number of vertices in the flow graph. Since
the flow graph has exactly twice as many vertices as there were clauses, the maximum flow
can be determined in time O(n log3 n).

We will assume that

T :=
∑
red r

`r =
∑
blue b

`b,

since this is clearly required for the constraint problem to be satisfiable.
To solve the constraint satisfaction problem, we ask if the maximum flow has value T ;

this is clearly an upper bound an the maximum flow.
An integer flow uses some set of edges corresponding to variables, which specifies an

assignment. The flow constraint on the edges to the appropriate source or sink forces the
flow to use at most `c variables in clause c, and in order to reach the target flow T we must
use exactly this many variables in each clause. Thus the desired flow exists if and only if the
instance of planar bipartite positive ∗-in-∗SAT-E2 is solvable. J

7 Putting Things Together

Combining Theorem 5 and Theorem 6 immediately gives our main result:

I Corollary 7. We can determine whether a connected combinatorially embedded planar
multigraph with prescribed edge lengths and exterior face has a flat folding with no flat angles
in O(n log3 n) time, where n is the number of angles in the graph.

Proof. The constraint problem instance can be computed in linear time, and so it has linearly
many clauses, which can thus be solved in time O(n log3 n). J

This result can be extended in three ways, described next.

SoCG 2022
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Figure 7 Top: An example graph with assigned edge lengths. Unlabeled edges have length 1.
Bottom: The resulting instance of planar bipartite positive ∗-in-∗SAT-E2 (overlaid on the original
graph in gray). Since this instance is unsatisfiable, the original graph cannot be folded flat.

7.1 Extension to Specified Flat Angles

First, we can allow flat (180°) angles in the folded graph, provided the input specifies which
angles are flat, leaving the remaining angles free to be mountain or valley (but not flat).

To accomplish this, first observe that for there to be a flat folding, each vertex must have
exactly zero or two flat angles. We do not create variables for flat angles, since their angle is
already known. Within a face that contains a flat angle, we treat the two edges around the
flat angle as a single longer edge. At a vertex v which has two flat angles, we need all other
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angles to be valley, so the constraint Cv is now∑
a∈Av

xa = 0, (6)

where Av includes only non-flat angles at v. The rest of the algorithm is as before.

7.2 Extension to Disconnected Graphs
Second, we can account for the case where the graph is disconnected. Here we assume that
the connected components are arranged in a rooted forest (i.e., a collection of rooted trees),
where each non-root component specifies which interior face of its parent it is to reside in.
This condition can arise from folding an arbitrary single-vertex complex, where some faces
share the central vertex but no edges; then the structure of the complex requires a certain
arrangement of components within faces. We first check that each connected component is
foldable. If this is the case, then the only obstacle to foldability is being able to fit the folded
state of each child graph Gi inside the designated face pi of its parent.

We define the folded diameter of a graph or face to be the maximum distance between
any pair of vertices in its folded state. Since the locations of all flat angles are specified, the
relative vertex coordinates are determined and can be computed in linear time (as described
in Section 1), so this value can be computed easily without knowledge of the folding. It turns
out that we can fit Gi inside pi in a folding if and only if the folded diameter of Gi is at most
the folded diameter of pi. To show this, we can imagine applying cases C and D of Lemma 1
to pi repeatedly until all the edge lengths are equal. Because the face transformations in
those cases preserve folded diameter, it follows that the remaining edges all have length equal
to the folded diameter of pi. Thus, if the folded diameter of Gi is less than or equal to the
length of one of these edges, we can place a folding of Gi along it in the folded state. On the
other hand, if the folded diameter of Gi is greater than the folded diameter of pi, then we
can clearly never fit a folding of Gi inside a folding of pi.

7.3 Finding an Exterior Face
Third, instead of assuming that the exterior face is given, we can determine in linear time a
face that is a suitable exterior face if any face is. Observe that the exterior face must be
full-diameter in the sense that its folded diameter (defined in Section 7.2 above) equals the
folded diameter of the entire graph, because some vertex of the minimum (and maximum)
coordinate must be on the exterior face in any flat folding. We claim that every full-diameter
face is an equally suitable exterior face: if there is a flat folding with any one full-diameter face
as exterior face, then there is a flat folding with any desired full-diameter face as exterior face.
Thus, to determine whether the graph is flat foldable, we can simply find any full-diameter
face and specify it as the exterior face.

To prove the claim, consider a flat folding of the graph, say with exterior face e. Take
any non-exterior full-diameter face f , with diameter realized by vertices v and w. Face f
consists of two folded paths connecting v and w. By the argument in Section 7.2 above, in
any folding of f resulting from Lemma 1, we can select v and w such that the two folded
paths are separable: we can draw a straight line segment s from v to w that is layered in
between the two folded paths. Because s is full diameter, it partitions the edges of the graph
into two halves H1 and H2, where H1 is entirely before H2 in the layer order. Some vertices
(including v and w) have some incident edges in H1 and other incident edges in H2. We can
imagine splitting each such vertex x into two vertices x1 and x2, where xi is incident to the
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Figure 8 Cutting a flat folding apart and reassembling it with a different exterior face.

edges that lie within Hi, so that H1 and H2 become disconnected from each other. We then
swap the layer order of the two halves, placing H2 before H1, and for each split vertex x,
reconnect the two halves x2 and x1, which corresponds to a cyclic shift of the edges incident
to x. This process is illustrated in Figure 8. Intuitively, we can view the folding as lying
on an American football (prolate spheroid), where the two poles represent the minimum
and maximum vertex coordinates; then this transformation corresponds to spinning the line
along which we cut this football open to define the extremes in the other dimension (layer
order). Thus we still obtain a flat folding of the graph, but now f is the exterior face.

7.4 Finale
Putting these extensions together, we have the following more general result:

I Corollary 8. Given a combinatorially embedded planar multigraph with prescribed edge
lengths and some angles specified as flat, we can determine in O(n log3 n) time whether there
is a flat folding that has precisely the specified angles flat.

On the other hand, if the set of flat angles is not specified, it is NP-complete to determine
whether there is a flat folding [2], so this implies that the hard part is deciding which angles
should be flat.
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