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Abstract

We explore three important avenues of research in algorithmic graph-minor theory, which
all stem from a key min-max relation between the treewidth of a graph and its largest grid
minor. This min-max relation is a keystone of the Graph Minor Theory of Robertson and
Seymour, which ultimately proves Wagner’s Conjecture about the structure of minor-closed
graph properties.

First, we obtain the only known polynomial min-max relation for graphs that do not
exclude any fixed minor, namely, map graphs and power graphs. Second, we obtain explicit (and
improved) bounds on the min-max relation for an important class of graphs excluding a minor,
namely, K3,k-minor-free graphs, using new techniques that do not rely on Graph Minor Theory.
These two avenues lead to faster fixed-parameter algorithms for two families of graph problems,
called minor-bidimensional and contraction-bidimensional parameters, which include feedback
vertex set, vertex cover, minimum maximal matching, face cover, a series of vertex-removal
parameters, dominating set, edge dominating set, R-dominating set, connected dominating set,
connected edge dominating set, connected R-dominating set, and unweighted TSP tour. Third,
we disprove a variation of Wagner’s Conjecture for the case of graph contractions in general
graphs, and in a sense characterize which graphs satisfy the variation. This result demonstrates
the limitations of a general theory of algorithms for the family of contraction-closed problems
(which includes, for example, the celebrated dominating-set problem). If this conjecture had
been true, we would have had an extremely powerful tool for proving the existence of efficient
algorithms for any contraction-closed problem, like we do for minor-closed problems via Graph
Minor Theory.

1 Introduction

Graph Minor Theory is a seminal body of work in graph theory, developed by Robertson and
Seymour in a series of over 20 papers spanning the last 20 years. The original goal of this work,
now achieved, was to prove Wagner’s Conjecture [50], which can be stated as follows: every minor-
closed graph property (preserved under taking of minors) is characterized by a finite set of forbidden
minors. This theorem has a powerful algorithmic consequence: every minor-closed graph property
can be decided by a polynomial-time algorithm. A keystone in the proof of these theorems, and
many other theorems, is a grid-minor theorem [46]: any graph of treewidth at least some f(r) is
guaranteed to have the r × r grid graph as a minor. Such grid-minor theorems have also played a
key role for many algorithmic applications, in particular via the bidimensionality theory (e.g., [21,
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14, 15, 12, 18, 17, 20]), including many approximation algorithms, PTASs, and fixed-parameter
algorithms.

The grid-minor theorem of [46] has been extended, improved, and re-proved by Robertson,
Seymour, and Thomas [55], Reed [43], and Diestel, Jensen, Gorbunov, and Thomassen [27]. The
best bound known for general graphs is superexponential: every graph of treewidth more than 202r5

has an r×r grid minor [55]. This bound is usually not strong enough to derive efficient algorithms.
Robertson et al. [55] conjecture that the bound on f(r) can be improved to a polynomial rΘ(1);
the best known lower bound is Ω(r2 lg r). A tight linear upper bound was recently established for
graphs excluding any fixed minor H: every H-minor-free graph of treewidth at least cH r has an
r× r grid minor, for some constant cH [18]. This bound leads to many powerful algorithmic results
on H-minor-free graphs [18, 17, 20].

Three major problems remain in the literature with respect to these grid-minor theorems in
particular, and algorithmic graph-minor theory in general. We address all three of these problems
in this paper.

First, to what extent can we generalize algorithmic graph-minor results to graphs that do not
exclude a fixed minor H? In particular, for what classes of graphs can the grid-minor theorem be
improved from the general superexponential bound to a bound that would be useful for algorithms?
To this end, we present polynomial grid-minor theorems for two classes of graphs that can have
arbitrarily large cliques (and therefore exclude no fixed minors). One class, map graphs, is an
important generalization of planar graphs introduced by Chen, Grigni, and Papadimitriou [11],
characterized via a polynomial recognition algorithm by Thorup [59], and studied extensively in
particular in the context of subexponential fixed-parameter algorithms and PTASs for specific
domination problems [13, 10]. The other class, power graphs, e.g., fixed powers of H-minor-free
graphs (or even map graphs), have been well-studied since the time of the Floyd-Warshall algorithm;
see, e.g., [35, 40, 41, 44].

Second, even for H-minor-free graphs, how large is the constant cH in the grid-minor theorem?
In particular, how does it depend on H? This constant is particularly important because it is
in the exponent of the running times of many algorithms. The current results (e.g., [18]) heavily
depend on Graph Minor Theory, most of which lacks explicit bounds and is believed to have very
large bounds.1 For this reason, improving the constants, even for special classes of graphs, and
presumably using different approaches from Graph Minors, is an important theoretical and practical
challenge. To this end, we give explicit bounds for the case of K3,k-minor-free graphs, an important
class of apex-minor-free graphs (see, e.g., [5, 8, 29, 30]). Our bounds are not too small but are a vast
improvement over previous bounds (in particular, much smaller than 2 ↑ |V (H)|). In addition, the
proof techniques are interesting in their own right, for example, the path-intertwining technique
used in many contexts (see, e.g., [4, 3, 25, 42]). To the best of our knowledge, this is the only
grid-minor theorem with an explicit bound other than for planar graphs [55] and bounded-genus
graphs [14]. Our theorem also leads to several algorithms with explicit and improved bounds on
their running time.

Third, to what extent can we generalize algorithmic graph-minor results to graph contractions?
Many graph optimization problems are closed (only decrease) under edge contractions, but not
under edge deletions (i.e., minors). Examples include dominating set, traveling salesman, or even

1To quote David Johnson [36], “for any instance G = (V, E) that one could fit into the known universe, one would
easily prefer |V |70 to even constant time, if that constant had to be one of Robertson and Seymour’s.” He estimates

one constant in an algorithm for testing for a fixed minor H to be roughly 2 ↑ 2222↑(2↑Θ(|V (H)|))
, where 2 ↑ n denotes

a tower 222 ..
.

involving n 2’s.
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diameter. Bidimensionality theory has been extended to such contraction-closed problems for the
case of apex-minor-free graphs; see, e.g., [12, 14, 18, 17, 24]. The basis for this work is a modified
grid-minor theorem which states that any apex-minor-free graph of treewidth at least f(r) can be
contracted into an “augmented” r × r grid (e.g., allowing partial triangulation of the faces). The
ultimate goal of this line of research, mentioned explicitly in [16, 24], is to use this grid-contraction
analog of the grid-minor theorem to develop a Graph Contraction Theory paralleling as much as
possible of Graph Minor Theory. In particular, the most natural question is whether Wagner’s
Conjecture generalizes to contractions: is every contraction-closed graph property characterized by
a finite set of excluded contractions? If this were true, it would generalize our algorithmic knowledge
of minor-closed graph problems in a natural way to the vast array of contraction-closed graph
problems. To this end, we unfortunately disprove this contraction version of Wagner’s Conjecture,
even for planar bounded-treewidth graphs. On the other hand, we prove that the conjecture
holds for outerplanar graphs and triangulated planar graphs, which in some sense provides a tight
characterization of graphs for which the conjecture holds.

Below we detail our results and techniques for each of these three problems.

1.1 Our Results and Techniques

Generalized grid-minor bounds. We establish polynomial relations between treewidth and
grid minors for map graphs and for powers of graphs. We prove in Section 3 that any map graph
of treewidth at least r3 has an Ω(r)× Ω(r) grid minor. We prove in Section 4 that, for any graph
class with a polynomial relation between treewidth and grid minors (such as H-minor-free graphs
and map graphs), the family of kth powers of these graphs also has such a polynomial relation,
where the polynomial degree is larger by just a constant, interestingly independent of k.

These results extend bidimensionality to map graphs and power graphs, improving the running
times of a broad class of fixed-parameter algorithms for these graphs. See Section 5 for details
on these algorithmic implications. Our results also build support for Robertson, Seymour, and
Thomas’s conjecture that all graphs have a polynomial relation between treewidth and grid mi-
nors [55]. Indeed, from our work, we refine the conjecture to state that all graphs of treewidth Ω(r3)
have an Ω(r) × Ω(r) grid minor, and that this bound is tight. The previous best treewidth-grid
relations for map graphs and power graphs were given by the superexponential bound from [55].

The main technique behind these results is to use efficient min-max relations between treewidth
and the size of a grid minor. In contrast, most previous work uses the seminal efficient min-max
relation between treewidth and tangles or between branchwidth and tangles, proved by Robertson
and Seymour [54], or the inefficient min-max relations between treewidth and grid minors. We
show that grids are powerful structures that are easy to work with. By bootstrapping, we use grids
and their connections to treewidth even to prove relations between grids and treewidth.

Another example of the power of this technique is a result we obtain in Section 6 as a byproduct
of our study of map graphs: every bounded-genus graph has treewidth within a constant factor of
the treewidth of its dual. This is the first relation of this type for bounded-genus graphs. The result
generalizes a conjecture of Seymour and Thomas [56] that, for planar graphs, the treewidth is within
an additive 1 of the treewidth of the dual, which has been proved in [39, 6] using a complicated
approach. Such a primal-dual treewidth relation is useful, e.g., for bounding the change in treewidth
when performing operations in the dual. Our proof crucially uses the connections between treewidth
and grid minors, and this approach leads to a relatively clean argument. The tools we use come
from bidimensionality theory and graph contractions, even though the result is not explicitly about
either.
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Explicit (improved) grid-minor bounds. We prove in Section 7 that the constant cH in the
linear grid-minor bound for H-minor-free graphs can be bounded by an explicit function of |V (H)|
when H = K3,k for any k: for an explicit constant c, every K3,k-minor-free graph of treewidth at
least ckr has an r×r grid minor. This bound makes explicit and substantially improves the constants
in the exponents of the running time of many fixed-parameter algorithms from bidimensionality
theory [14, 12, 18] for such graphs. K3,k-minor-free graphs play an important role as part of the
family of apex-minor-free graphs that is disjoint from the family of single-crossing-minor-free graphs
(for which there exist a powerful decomposition in terms of planar graphs and bounded-treewidth
graphs [52, 21]). Here the family of X -minor-free graphs denotes the set of X-minor-free graphs
for any fixed graph X in the class X . K3,k is an apex graph in the sense that it has a vertex whose
removal leaves a planar graph. For k ≥ 7, K3,k is not a single-crossing graph in the sense of being a
minor of a graph that can be drawn in the plane with at most one crossing: K3,k has genus at least
(k − 2)/4, but a single-crossing graph has genus at most 1 (because genus is closed under minors).

There are several structural theorems concerning K3,k-minor-free graphs. According to Robert-
son and Seymour (personal communication—see [8]), K3,k-minor-free graphs were the first step to-
ward their core result of decomposing graphs excluding a fixed minor into graphs almost-embeddable
into bounded-genus surfaces, because K3,k-minor-free graphs can have arbitrarily large genus.
Oporowski, Oxley, and Thomas [42] proved that any large 3-connected K3,k-minor-free graph has
a large wheel as a minor. Böhme, Kawarabayashi, Maharry, and Mohar [3] proved that any large
7-connected graph has a K3,k minor, and that the connectivity 7 is best possible. Eppstein [29, 30]
proved that a subgraph P has a linear bound on the number of times it can occur in K3,k-minor-free
graphs if and only if P is 3-connected.

Our explicit linear grid-minor bound is based on an approach of Diestel et al. [27] combined
with arguments in [5, 3] to find a K3,k minor. Using similar techniques we also give explicit bounds
on treewidth for a theorem decomposing a single-crossing-minor-free graph into planar graphs and
bounded-treewidth graphs [52, 21], when the single-crossing graph is K3,4 or K−

6 (K6 minus one
edge). Both proofs must avoid Graph Minor Theory to obtain the first explicit bounds of their
kind.

Contraction version of Wagner’s Conjecture. Wagner’s Conjecture, proved in [50], is a
powerful and very general tool for establishing the existence of polynomial-time algorithms; see,
e.g., [31]. Combining this theorem with the O(n3)-time algorithm for testing whether a graph has a
fixed minor H [49], every minor-closed property has an O(n3)-time decision algorithm which tests
for the finite set of excluded minors. Although these results are existential, because the finite set of
excluded minors is not known for many minor-closed properties, polynomial-time algorithms can
often be constructed [19].

A natural goal is to try to generalize these results even further, to handle all contraction-closed
properties, which include the decision versions of many important graph optimization problems such
as dominating set and traveling salesman, as well as combinatorial properties such as diameter.
Unfortunately, we show in Section 8 that the contraction version of Wagner’s Conjecture is not
true: there is a contraction-closed property that has no complete finite set of excluded contractions.
Our counterexample has an infinite set of excluded contractions all of which are planar bounded-
treewidth graphs. On the other hand, we show that the contraction version of Wagner’s Conjecture
holds for trees, triangulated planar graphs, and 2-connected outerplanar graphs: any contraction-
closed property characterized by an infinite set of such graphs as contractions can be characterized
by a finite set of such graphs as contractions. Thus we nearly characterize the set of graphs for
which the contraction version of Wagner Conjecture’s is true. The proof for outerplanar graphs is
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the most complicated, and uses Higman’s theorem on well-quasi-ordering [34].
The reader is referred to the full version of this paper (available from the first author’s website)

for the proofs. See also [16] for relevant definitions.

2 Definitions and Preliminaries

Treewidth. The notion of treewidth was introduced by Robertson and Seymour [53]. To define
this notion, first we consider a representation of a graph as a tree, called a tree decomposition. A
tree decomposition of a graph G is a pair (T, Y ), where T is a tree and Y is a family {Yt | t ∈ V (T )}
of vertex sets Yt ⊆ V (G) such that the following two properties hold:

(W1)
⋃

t∈V (T ) Yt = V (G), and every edge of G has both endpoints in some Yt.

(W2) If t, t′, t′′ ∈ V (T ) and t′ lies on the path in T between t and t′′, then Yt ∩ Yt′′ ⊆ Yt′ .

The width of a tree decomposition (T, Y ) is maxt∈V (T ) |Yt|−1. The treewidth of a graph G, denoted
tw(G), is the minimum width over all possible tree decompositions of G.

Oporowski et al. [42] show that, if a graph G has a tree decomposition of width at most w, then
G has a tree decomposition of width at most w that further satisfies the following properties:

(W3) For every two vertices t, t′ of T and every positive integer k, either there are k disjoint paths
in G between Yt and Yt′ , or there is a vertex t′′ of T on the path between t and t′ such that
|Yt′′ | < k.

(W4) If t, t′ are distinct vertices of T , then Yt 6= Yt′ .

(W5) If t0 ∈ V (T ) and B is a component of T − t0, then
⋃

t∈V (B) Yt \ Yt0 6= ∅.

Minors and contractions. Given an edge e = {v, w} in a graph G, the contraction of e in G
is the result of identifying vertices v and w in G and removing the self-loop and any duplicate
edges. A graph H obtained by a sequence of such edge contractions starting from G is said to be
a contraction of G. A graph H is a minor of G if H is a subgraph of some contraction of G. A
graph class C is minor-closed if any minor of any graph in C is also a member of C. A minor-closed
graph class C is H-minor-free if H /∈ C. More generally, we use the term “H-minor-free” to refer
to any minor-closed graph class that excludes some fixed graph H.

Grid minors. We use the following important connections between treewidth and the size of the
largest grid minor. The r×r grid is the planar graph with r2 vertices arranged on a square grid and
with edges connecting horizontally and vertically adjacent vertices. First we state the connection
for planar graphs:

Theorem 1 [55] Every planar graph of treewidth w has an Ω(w + 1) × Ω(w + 1) grid graph as a
minor.2

The more general connection for H-minor-free graphs has been obtained recently:

Theorem 2 [18] For any fixed graph H, every H-minor-free graph of treewidth w has an Ω(w +
1)× Ω(w + 1) grid graph as a minor.

2We require bounds involving asymptotic notation O, Ω, and Θ to hold for all values of the parameters, in
particular, w. Thus, Ω(w + 1) has a different meaning from Ω(w) when w = 0. In this theorem, when the treewidth
is 0, i.e., the graph has no edges, there is still a 1 × 1 grid.
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Walls. An r-wall is a graph isomorphic to a subdivision of the graph Wr with vertex set V (Wr) =
{(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ r} in which two vertices (i, j) and (i′, j′) are adjacent if and only if one
of the following possibilities holds:

(1) i′ = i and j′ ∈ {j − 1, j + 1}.

(2) j′ = j and i′ = i + (−1)i+j .

We can define an a× b wall in a similar way. It is easy to see that, if G has an a× b-wall, then it
has an a× b grid minor, and conversely, if G has an a× b grid minor, then it has an a/2× b wall.
Let us recall that the a× b grid is the Cartesian product of paths Pa×Pb. Figure 1 shows the 4× 5
grid and the 8× 5 wall.

Figure 1: The (4× 5)-grid and the (8× 5)-wall

Embeddings. A 2-cell embedding of a graph G in a surface Σ (two-dimensional manifold) is a
drawing of the vertices as points in Σ and the edges as curves in Σ such that no two points coincide,
two curves intersect only at shared endpoints, and every face (region) bounded by edges is an open
disk. We define the Euler genus or simply genus of a surface Σ to be the “nonorientable genus”
or “crosscap number” for nonorientable surfaces Σ, and twice the “orientable genus” or “handle
number” for orientable surfaces Σ. The (Euler) genus of a graph G is the minimum genus of a
surface in which G can be 2-cell embedded. A graph has bounded genus if its genus is O(1).

A planar embedding is a 2-cell embedding into the plane (topological sphere). An embedded
planar graph is a graph together with a planar embedding.

Planar up to 3-separations. Suppose G0 can be written as G1 ∪ G2 ∪ . . . ,, where G1 ∩ Gi =
{v1, . . . , vt} ⊂ V (G0) for i = 1, 2, . . ., 1 ≤ t ≤ 3. Furthermore V (Gi) \ V (G1) 6= ∅ if t ≤ 2 and
|V (Gi) \ V (G1)| ≥ 2 if t = 3 for i = 1, 2, . . .. Then we replace G0 by the graph G′ obtained from
G1 by adding all edges vivj (1 ≤ i < j ≤ t) that are not already in G1. If G′ is planar, then we say
that G0 is planar, up to 3-separations. Roughly, one can think that G1 is completely embedded
into the plane, while Gi is not, but is attached to a cuff of G1 with |G1 ∪Gi| ≤ 3 for i = 1, . . ..

Map graphs and power graphs. We consider two classes of graphs that can have arbitrarily
large cliques and therefore do not exclude any fixed minor. Given an embedded planar graph
and a partition of its faces into nations or lakes, the associated map graph has a vertex for each
nation and an edge between two vertices corresponding to nations (faces) that share a vertex. This
modified definition of the dual graph was introduced by Chen, Grigni, and Papadimitriou [11] as
a generalization of planar graphs that can have arbitrarily large cliques. Later Thorup [59] gave
a polynomial-time algorithm for recognizing map graphs and reconstructing the planar graph and
the partition.
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We can view the class of map graphs as a special case of taking powers of a family of graphs.
The kth power Gk of a graph G is the graph on the same vertex set V (G) with edges connecting
two vertices in Gk precisely if the distance between these vertices in G is at most k. For a bipartite
graph G with bipartition V (G) = U ∪W , the half-square G2[U ] is the graph on one side U of the
partition, with two vertices adjacent in G2[U ] precisely if the distance between these vertices in G
is 2. A graph is a map graph if and only if it is the half-square of some planar bipartite graph [11].
In fact, this translation between map graphs and half-squares is constructive and takes polynomial
time.

Duals and maps. More formally, we define a map graph and related notions in terms of an
embedded planar graph G and a partition of faces into a collection N(G) of nations and a collection
L(G) of lakes. Thus, N(G) ∪ L(G) is the set of faces of G.

We define the (modified) dual D = D(G) of G in terms of only the nations of G. The graph D
has a vertex for every nation of G, and two vertices are adjacent in D if the corresponding nations
of G share an edge.

The map graph M = M(G) of G has a vertex for every nation of G, and two vertices are
adjacent in M(G) if the corresponding nations of G share a vertex. The dual graph D(G) is a
subgraph of the map graph M(G).

Canonical map graphs. We canonicalize G in the following ways that preserve the map graph
M(G). First, we remove any vertex of G incident only to lakes, because it and its incident edges
do not contribute to the map graph M(G). Second, for any edge of G whose two incident faces are
both lakes (possibly the same lake), we delete the edge and merge the corresponding lakes, because
again this will not change the map graph M(G).

Third, we modify G to ensure that every vertex is incident to at most one lake, and incident
to such a lake at most once. Consider a vertex v that violates this property, and suppose there is
an incident lake between edges {v, wi} and {v, w′

i} for i = 1, 2, . . . , l. We split v into l + 1 vertices
v, v1, v2, . . . , vl, with vi placed near v in the wedge wi, v, w′

i}. We connect these l + 1 vertices in
a star, with an edge between v and vi for i = 1, 2, . . . , l. Edges {v, wi} and {v, w′

i} reroute to
be {vi, wi} and {vi, w

′
i}, and all other edges incident to v remain as they were. as in the second

canonicalization. This modification preserves the map graph M(G) and results in no lakes touching
at v.

Finally, we assume that the map graph M(G) is connected, because we can always consider
each connected component separately.

Radial graphs. The radial graph R = R(G) has a vertex for every vertex of G and for every
nation of G, and we label them the same: V (R) = V (G) ∪ N(G). R(G) is bipartite with this
bipartition. Two vertices v ∈ V (G) and f ∈ N(G) are adjacent in R(G) if their corresponding
vertex v and nation f are incident.

We also consider the union graph R∪D. R∪D has the same vertex set as the radial graph R,
which is a superset of the vertex set of the dual graph D. The edges in R ∪D consist of all edges
in R and all edges in D.

We also define the radial graph R = R(G) for a graph G 2-cell embedded in an arbitrary
surface Σ. In this case, we do not allow lakes, and consider every face to be a nation. Otherwise,
the definition is the same.
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3 Treewidth-Grid Relation for Map Graphs

In this section we prove a polynomial relation between the treewidth of a map graph and the size
of the largest grid minor. The main idea is to relate the treewidth of the map graph M(G), the
treewidth of the radial graph R(G), the treewidth of the dual graph D(G), and the treewidth of
the union graph R(G) ∪D(G).

Lemma 3 The treewidth of the union R ∪D of the radial graph R and the dual graph D, plus 1,
is within a constant factor of the treewidth of the dual graph D, plus 1.

Proof: First, tw(D) + 1 ≤ tw(R ∪D) + 1 because D is a subgraph of R ∪D.
The rest of the proof establishes that tw(D) + 1 = Ω(tw(R∪D) + 1). Because both graphs are

planar, we know by Theorem 1 that 1 plus the treewidth of either graph is within a constant factor
of the dimension of the largest grid minor. Thus it suffices to show that we can convert a given
k × k grid minor K of R ∪D into an Ω(k)× Ω(k) grid minor of D.

Consider the sequence of edge contractions and removals that bring R∪D to the grid K. Discard
all edge deletions from this sequence, but remove any loops and duplicate copies of edges that arise
from contractions. The resulting graph K ′ remains planar and has the same vertices as K, and
therefore K ′ is a partially triangulated k× k grid, in the sense that each face of the k× k grid can
have a noncrossing set of additional edges. (All bounded faces of the grid have 4 vertices and so at
most one additional edge.)

We label each vertex v in K ′ with the set of vertices from R ∪ D that contracted to form v.
We call v facial if at least one of these vertices is a vertex of the dual graph D. Otherwise, v
is nonfacial. No two nonfacial vertices can be adjacent in K ′, because no two vertices in G are
adjacent in R ∪D.

Assign coordinates (x, y), 0 ≤ x, y < k, to each vertex v in K ′. We assume without loss of
generality that k is divisible by 6 (decreasing k by at most 5 if necessary). For each i, j with
1 ≤ i, j ≤ k/6 − 1, either vertex (6i + 1, 6j + 1) or vertex (6i + 2, 6j + 1) is facial, because these
two vertices are adjacent in K ′. Let vi,j denote a facial vertex among this pair. Let v̂i,j denote a
vertex of the dual graph D in the label of vi,j (which exists by the definition of facial).

For any i, j with 1 ≤ i ≤ k/6 − 1 and 1 ≤ j ≤ k/6 − 2, we claim that there is a simple path
between v̂i,j and v̂i,j+1 in D using only vertices in D that appear in the labels of vertices in R′ with
coordinates in the rectangle (6i. . 6i+3, 6j. . 6(j+1)+3). We start with a shortest path PK′ between
vi,j and vi,j+1 in K ′, which is simple and remains in the subrectangle (6i + 1. . 6i + 2, 6j + 1. . 6(j +
1) + 2). We convert PK′ into a simple path PR∪D between v̂i,j and v̂i,j+1 in R ∪D using only the
vertices in R ∪ D that appear in the labels of the vertices in K ′ along PK′ . Here we use that the
subgraph of R∪D induced by the label set of a vertex in K ′ is connected, because that vertex in K ′

was formed by contracting edges in this subgraph. For each edge in the path PK′ , we pick an edge
in R ∪ D that forms it as a result of the contractions; then we connect together the endpoints of
these edges, and connect the first and last edges to v̂i,j and v̂i,j+1 respectively, by finding shortest
paths within the subgraphs of R∪D induced by label sets. Finally we convert this path PR∪D into a
simple path PD in D with the desired properties. The vertices along the path PR∪D divide into two
classes: those in D (corresponding to nations of G) and those in G (corresponding to vertices of G).
Among the subsequence of vertices along the path PR∪D, restricted to vertices in D, we claim that
every two consecutive vertices v, w can be connected using only vertices in D that appear in the
labels of vertices in the desired rectangle. If v and w are consecutive along the path PR∪D, then
they are adjacent in D and we are done. Otherwise, v and w are separated in the path PR∪D by one
vertex u of G (because no two vertices of G are adjacent in R∪D). In G, this situation corresponds
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to two nations v and w that share the vertex u. Because of our canonicalization, u is incident to at
most one lake, at most once, and therefore there is a sequence of nations v = f1, f2, . . . , fj = w in
clockwise or counterclockwise order around u. Thus in D we obtain a path v = f1, f2, . . . , fj = w.
Each fi is incident to u and therefore has distance 1 from u in R ∪ D. Because the contractions
that formed K ′ from R∪D only decrease distances, the vertices of K ′ with labels including fi and
u have distance at most 1 in K ′. Therefore each fi is in a label of a vertex within the thickened
rectangle (6i. . 6i + 3, 6j. . 6(j + 1) + 3). If the path is not simple, we can take the shortest path
between its endpoints in the subgraph induced by the vertices of the path, and obtain a simple
path.

Symmetrically, for any i, j with 1 ≤ i ≤ k/6 − 2 and 1 ≤ j ≤ k/6 − 1, we obtain that there
is a simple path between v̂i,j and v̂i+1,j in D using only vertices in D that appear in the labels of
vertices in R′ with coordinates in the rectangle (6i. . 6(i + 1) + 3, 6j. . 6j + 3).

We construct a grid minor K ′′ of D as follows. We start with the union, over all i, j, of the
simple path between v̂i,j and v̂i,j+1 in D and the simple path between v̂i,j and v̂i+1,j in D. (In other
words, we delete all vertices not belonging to one of these paths.) Then we contract every vertex
in this union that is not one of the v̂i,j ’s toward its “nearest” v̂i,j . More precisely, for each path
between v̂i,j and v̂i,j+1, we cut the path at the first edge that crosses from row 6i+4 to row 6i+5;
then we contract all vertices in the path before the cut into vertex v̂i,j , and we contract all vertices
in the path after the cut into vertex v̂i,j+1. Similarly we cut each path between v̂i,j and v̂i+1,j at
the first edge that crosses from column 6i + 4 to column 6i + 5, and contract accordingly. Because
of the rectangular bounds on each path, the rectangle (6i. . 6i+3, 6j +4. . 6j +5) is intersected by a
unique path, the one from v̂i,j to v̂i,j+1, and the rectangle (6i + 4. . 6i + 5, 6j. . 6j + 3) is intersected
by a unique path, the one from v̂i,j to v̂i+1,j . Hence our contraction process does not merge paths
that were not originally incident (at one of the v̂i,j ’s). Also, because each path is simple and strays
by distance at most 1 from the original shortest path in the grid K ′, the vertices before the cut are
disjoint from the vertices after the cut in the path. Therefore, each vertex on a path contracts to a
unique vertex v̂i,j , and each path contracts to a single edge between v̂i,j and either v̂i,j+1 or v̂i+1,j .
Thus we obtain a (k/6− 1)× (k/6− 1) grid minor K ′′ of D. 2

Lemma 4 The treewidth of the map graph M is at most the product of the maximum degree of a
vertex in G and tw(R) + 1, one more than the treewidth of the radial graph R.

Proof: Suppose we have a tree decomposition (T, χ) of the radial graph R of width w. We modify
this tree decomposition into another tree decomposition (T, χ′) by replacing each occurrence of a
vertex v ∈ V (G) in a bag B of χ with all nations incident to v. Thus, bags in χ′ consist only of
nations.

We claim (T, χ′) is a tree decomposition of M . First, observe that every vertex of the map
graph M appears in some bag B of χ′, because nations are vertices in the radial graph as well, so
every nation appears in a bag of χ.

Second, we claim that every vertex of the map graph M appears in a connected subtree of bags
in (T, χ′). A nation f appears in a bag B′ of χ′ if either it appears in the corresponding bag B
of χ or one of its vertices appears in corresponding bag B of χ. The set of bags in χ containing
the nation f forms a connected subtree of T , and the set of bags in χ containing any vertex v of
f forms a connected subtree of T . These two subtrees, for any choice of v, overlap in at least one
node of T because v and f are adjacent in the radial graph R, and thus this edge (v, f) appeared
in some bag of χ. Therefore the union of the subtree of T induced by f and all vertices v of f is
connected. This union is precisely the set of nodes in T whose bags in χ′ contain f .
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Third, we claim that every edge of the map graph M appears in some bag of χ′. An edge arises
in M when two nations f1, f2 share a vertex v in G. This vertex v appears in some bag B of χ, and
in constructing χ′ we replaced v with nations f1, f2, and possibly other nations. Therefore f1 and
f2 appear in the corresponding bag B′ of χ′.

Finally we claim that the size of any bag B′ in χ′ is at most the maximum degree ∆ of a vertex in
G times the size of the corresponding bag B in χ. This claim follows from the construction because
each vertex is replaced by at most ∆ nations in the transformation from B to B′. The size of each
original bag B in χ is at most one more than the treewidth of R. Therefore the maximum bag size
in χ′ is at most ∆(tw(R) + 1), and the treewidth of M is at most one less than this maximum bag
size. 2

Theorem 5 If the treewidth of the map graph M is r3, then it has an Ω(r)×Ω(r) grid as a minor.

Proof: By Lemma 4, tw(M) = O(∆ · tw(R)). Because R is a subgraph of R ∪ D, tw(M) =
O(∆ · tw(R∪D)). By Lemma 3, tw(M) = O(∆ · (tw(D)+1)). Thus, if tw(M) = Ω(r3), then either
tw(D) = Ω(r) or ∆ = Ω(r2). In the former case, D is a planar subgraph of M and therefore D and
M have an Ω(r) × Ω(r) grid as a minor by Theorem 1. In the latter case, M has a K∆ = KΩ(r2)

clique as a subgraph, and therefore has an Ω(r)× Ω(r) grid as minor. 2

Next we show that this theorem cannot be improved from Ω(r3) to anything o(r2):

Proposition 6 There are map graphs whose treewidth is r2 − 1 and whose largest grid minor is
r × r.

Proof: Let G be an embedded wheel graph with r2 spokes. We set all r2 bounded faces to be
nations and the exterior face to be a lake. Then the dual graph D is a cycle, and the map graph
M is the clique Kr2 . Therefore M has treewidth r2 − 1, yet its largest grid minor is r × r. 2

Robertson, Seymour, and Thomas [55] prove a stronger lower bound of Θ(r2 lg r) but only for
the case of general graphs.

4 Treewidth-Grid Relation for Power Graphs

In this section we prove a polynomial relation between the treewidth of a power graph and the size of
the largest grid minor. The technique here is quite different, analyzing how a radius-r neighborhood
in the graph can be covered by radius-(r/2) neighborhoods—a kind of “sphere packing” argument.

Theorem 7 Suppose that, if graph G has treewidth at least crα for constants c, α > 0, then G has
an r × r grid minor. For any even (respectively, odd) integer k ≥ 1, if Gk has treewidth at least
crα+4 (respectively, crα+6), then it has an r × r grid minor.

Proof: Let ∆(Gk) denote the maximum degree of any vertex in Gk, that is, the maximum size
of the k-neighborhood of a vertex in G. First we claim that tw(Gk) ≤ ∆(Gk) tw(G). Consider a
tree decomposition (T, χ) of G. Replace each occurrence of vertex v in χx with the entire radius-k
neighborhood of v in G. Thus we expand the maximum bag size by a factor of at most ∆(Gk),
and the width of the resulting (T, χ′) is at most ∆(Gk)(tw(G) + 1). We claim that (T, χ′) is a tree
decomposition of Gk. First, if two vertices v and w are adjacent in Gk, i.e., within distance k in G,
then by construction they are in a common bag in (T, χ′), indeed any bag that originally contained
either v or w. Second, we claim that the set of bags containing a vertex v is a connected subtree
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of T . In other words, we claim that any two vertices u and w that are within distance k of v, which
give rise to occurrences of v in χ′, can be connected via a path in T along which the bags always
contain v. Concatenate the shortest path u = v0, v1, . . . , vj = v from u to v in G and the shortest
path v = vj , vj+1, . . . , vl = w from v to w in G, both of which use vertices vi always within distance
k of v. Now construct the desired path in T by visiting, for each i in turn, the subtree of bags in
χ containing occurrences of vi, whose corresponding bags in χ′ contain occurrences of v. Here we
use that the bags in χ containing occurrences of vi form a connected subtree of T , and that this
subtree for vi and this subtree for vi+1 share a node because vi is adjacent to vi+1.

If tw(Gk) ≥ crα+4, then either ∆(Gk) ≥ r4 or tw(G) ≥ crα. In the latter case, we obtain by
supposition that G has an r × r grid minor and thus so does the supergraph Gk. Therefore we
concentrate on the former case when ∆(Gk) ≥ r4. Let v be the vertex in G whose k-neighborhood
Nk has maximum size, ∆(Gk). There are two cases depending on whether k is even or odd.

The simpler case is when k is even. If the (k/2)-neighborhood Nk/2 of v in G has size at least r2,
then in Gk we obtain a clique Kr2 on those vertices, so we obtain an r × r grid minor. Otherwise,
label each vertex in the k-neighborhood Nk with the nearest vertex in the (k/2)-neighborhood Nk/2.
If any vertex in the (k/2)-neighborhood Nk/2 is assigned as the label to at least r2 vertices in Nk,
then again we obtain a Kr2 clique subgraph in Gk and thus an r × r grid minor. Otherwise, the
k-neighborhood Nk has size strictly less than r2 · r2 = r4, contradicting that |Nk| = ∆(Gk) ≥ r4.

The case when k is odd is similar. As before, if the bk/2c-neighborhood Nbk/2c of v in G has size
at least r2, then in Gk we obtain a clique Kr2 and thus an r× r grid minor. Otherwise, label each
vertex in the (k − 1)-neighborhood Nk−1 of v with the nearest vertex in the bk/2c-neighborhood
Nbk/2c. If any vertex in the bk/2c-neighborhood Nbk/2c is assigned as the label to at least r2 vertices
in Nk−1, then again we obtain a Kr2 clique and an r × r grid. Otherwise, |Nk−1| < r4. Finally
label each vertex in Nk with the nearest vertex in Nk−1. If any vertex in Nk−1 is assigned as the
label to at least r2 vertices in Nk, then again we obtain a Kr2 clique and an r× r grid. Otherwise,
|Nk| < r4 · r2 = r6, contradicting that |Nk| = ∆(Gk) ≥ r6. 2

We have the following immediate consequence of Theorems 2, 5, and 7:

Corollary 8 For any H-minor-free graph G, and for any even (respectively, odd) integer k ≥ 1,
if Gk has treewidth at least r5 (respectively, r7), then it has an Ω(r) × Ω(r) grid minor. For any
map graph G, and for any even (respectively, odd) integer k ≥ 1, if Gk has treewidth at least r7

(respectively, r9), then it has an Ω(r)× Ω(r) grid minor.

5 Treewidth-Grid Relations: Algorithmic and Combinatorial Ap-
plications

Our treewidth-grid relations have several useful consequences with respect to fixed-parameter al-
gorithms, minor-bidimensionality, and parameter-treewidth bounds.

A fixed-parameter algorithm is an algorithm for computing a parameter P (G) of a graph G
whose running time is h(P (G))nO(1) for some function h. A typical function h for many fixed-
parameter algorithms is h(k) = 2O(k). A celebrated example of a fixed-parameter-tractable problem
is vertex cover, asking whether an input graph has at most k vertices that are incident to all its
edges, which admits a solution as fast as O(kn+1.285k) [9]. For more results about fixed-parameter
tractability and intractability, see the book of Downey and Fellows [28].

A major recent approach for obtaining efficient fixed-parameter algorithms is through “parameter-
treewidth bounds”, a notion at the heart of bidimensionality. A parameter-treewidth bound is
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an upper bound f(k) on the treewidth of a graph with parameter value k. Typically, f(k) is
polynomial in k. Parameter-treewidth bounds have been established for many parameters; see,
e.g., [1, 37, 32, 2, 7, 38, 33, 13, 21, 22, 23, 12, 15, 14]. Essentially all of these bounds can be ob-
tained from the general theory of bidimensional parameters (see, e.g., [16]). Thus bidimensionality
is the most powerful method so far for establishing parameter-treewidth bounds, encompassing all
such previous results for H-minor-free graphs. However, all of these results are limited to graphs
that exclude a fixed minor.

A parameter is minor-bidimensional if it is at least g(r) in the r × r grid graph and if the
parameter does not increase when taking minors. Examples of minor-bidimensional parameters
include the number of vertices and the size of various structures, e.g., feedback vertex set, vertex
cover, minimum maximal matching, face cover, and a series of vertex-removal parameters. Tight
parameter-treewidth bounds have been established for all minor-bidimensional parameters in H-
minor-free graphs for any fixed graph H [18, 12, 14].

Our results provide polynomial parameter-treewidth bounds for all minor-bidimensional param-
eters in map graphs and power graphs:

Theorem 9 For any minor-bidimensional parameter P which is at least g(r) in the r × r grid,
every map graph G has treewidth tw(G) = O([g−1(P (G))]3). More generally suppose that, if graph
G has treewidth at least crα for constants c, α > 0, then G has an r × r grid minor. Then,
for any even (respectively, odd) integer k ≥ 1, Gk has treewidth tw(G) = O([g−1(P (G))]α+4)
(respectively, tw(G) = O([g−1(P (G))]α+6)). In particular, for H-minor-free graphs G, and for any
even (respectively, odd) integer k ≥ 1, Gk has treewidth tw(G) = O([g−1(P (G))]5) (respectively,
tw(G) = O([g−1(P (G))]7)).

This result naturally leads to a collection of fixed-parameter algorithms, using commonly avail-
able algorithms for graphs of bounded treewidth:

Corollary 10 Consider a parameter P that can be computed on a graph G in h(w) nO(1) time
given a tree decomposition of G of width at most w. If P is minor-bidimensional and at least g(r)
in the r × r grid, then there is an algorithm computing P on any map graph or power graph G
with running time [h(O(g−1(k))β) + 2O([g−1(k)]β)]nO(1), where β is the degree of O(g−1(P (G)) in
the polynomial treewidth bound from Theorem 9. In particular, if h(w) = 2O(w) and g(k) = Ω(k2),
then the running time is 2O(kβ/2)nO(1).

The proofs of these consequences follow directly from combining [12] with Theorems 5 and 7
below.

In contrast, the best previous results for this general family of problems in these graph families
have running times [h(2O([g−1(k)]5)) + 22O([g−1(k)]5)

]nO(1) [12, 19].

6 Primal-Dual Treewidth Relation for Bounded-Genus Graphs

Robertson and Seymour [48, 56] proved that the branchwidth of a planar graph is equal to the
branchwidth of its dual, and conjectured that the treewidth of a planar graph is within an additive
1 of the treewidth of its dual. The latter conjecture was apparently proved in [39, 6], though the
proof is complicated. Here we prove that the treewidth (and hence the branchwidth) of any graph
2-cell embedded in a bounded-genus surface is within a constant factor of the treewidth of its dual.
Thus the result applies more generally, though the connection is slightly weaker (constant factor
instead of additive constant).
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We crucially use the connection between treewidth and grids to obtain a relatively simple proof
of this result. Our proof uses Section 3, generalized to the bounded-genus case, and forbidding
lakes.

We need the following theorem from the contraction-bidimensionality theory, and a simple
corollary.

Theorem 11 [24] There is a sequence of contractions that brings any graph G of genus g to a
partially triangulated Ω(tw(G)/(g+1))×Ω(tw(G)/(g+1)) grid augmented with at most g additional
edges.

Corollary 12 There is a sequence of contractions that brings any graph G of genus g to a partially
triangulated Ω(tw(G)/(g+1)2)×Ω(tw(G)/(g+1)2) grid, augmented with at most g additional edges
incident only to boundary vertices of the grid.

Proof: We take the augmented Ω(tw(G)/(g + 1)) × Ω(tw(G)/(g + 1)) grid guaranteed by The-
orem 11, and find the largest square subgrid that does not contain in its interior any endpoints
of the at most g additional edges. This subgrid has size Ω(tw(G)/(g + 1)2) × Ω(tw(G)/(g + 1)2)
because there are 2g vertices to avoid. Then we contract all vertices outside this subgrid into the
boundary vertices of this subgrid. 2

The main idea for proving a relation between the treewidth of a graph and the treewidth of its
dual is to relate both to the treewidth of the radial graph, and use that the radial graph of the
primal is equal to the radial graph of the dual.

Theorem 13 For a 2-connected graph G 2-cell embedded in a surface of genus g, its treewidth is
within an O((g + 1)2) factor of the treewidth of its radial graph R(G).

Proof: We follow the part of the proof of Lemma 4 establishing that tw(G)+1 = Ω(tw(R∪G)+1),
in order to prove that tw(G)+1 = Ω(tw(R)+1). The differences are as follows. Every occurrence of
R∪G is replaced by R. Instead of applying Theorem 1 to obtain a grid minor K and then discarding
the edge deletions from the sequence to obtain a partially triangulated grid contraction K ′, we use
Corollary 12 to obtain a partially triangulated Ω(tw(R)/(g+1))×Ω(tw(R)/(g+1)) grid contraction
K ′ of R augmented with at most g additional edges incident only to boundary vertices of the grid.
Otherwise, the proof is identical, and we obtain an Ω(tw(R)/(g + 1)2) × Ω(tw(R)/(g + 1)2) grid
contraction K ′′ of G. Therefore, tw(G) + 1 = Ω(tw(R)/(g + 1)2). Because G is 2-connected,
tw(G) > 0, so tw(G) = Ω(tw(R)/(g + 1)2).

Now we apply what we just proved—tw(G) = Ω(tw(R(G))/(g +1)2)—substituting R(G) for G.
(The theorem applies: R(G) is 2-cell embeddable in the same surface as G, and R(G) is 2-connected
because G (and thus G∗) is 2-connected.) Thus tw(R(G)) = Ω(tw(R(R(G)))/(g + 1)2). We
claim that G is a minor of R(R(G)), which implies that tw(G) ≤ tw(R(R(G))) and therefore
tw(R(G)) = Ω(tw(G)/(g + 1)2) as desired.

Now we prove the claim. Because G is 2-connected, each face of the radial graph R(G) is a
diamond (4-cycle) v1, f1, v2, f2 alternating between vertices (v1 and v2) and faces (f1 and f2) of G.
Also, v1 6= v2 and f1 6= f2. If we take the radial graph of the radial graph, R(R(G)), we obtain
a new vertex w for each such diamond, connected via edges to v1, f1, v2, and f2. For each such
vertex w, we delete the edges {w, f1} and {w, f2}, and we contract the edge {w, v2}. The local
result is just the edge {v1, v2}. Overall, we obtain G as a minor of R(R(G)). 2

With this connection to the radial graph in hand, we can prove the main theorem of this section:
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Theorem 14 The treewidth of a graph G 2-cell embedded in a surface of genus g is at most O(g4)
times the treewidth of the dual G∗.

Proof: If G is 2-connected, then by Theorem 13, tw(G) is within an O(g2) factor of tw(R(G)).
Because R(G∗) = R(G), we also have that tw(G∗) is within an O(g2) factor of tw(R(G)). Therefore,
tw(G) is within an O(g4) factor of tw(G∗).

Now suppose G has a vertex 1-cut {v}. Then G has two strictly smaller induced subgraphs
G1 and G2 that overlap only at vertex v and whose union G1 ∪ G2 is G. The treewidth of G
is the maximum of the treewidth of G1 and the treewidth of G2. (Given tree decompositions of
G1 and G2, pick a node in each tree whose bag contains v, and connect these nodes together
via an edge.) Furthermore, the dual graph G∗ has a cut vertex f corresponding to v, and G∗

similarly decomposes into induced subgraphs G∗
1 and G∗

2 such that G∗
1 ∪ G∗

2 = G∗ and G∗
1 and

G∗
2 overlap only at f . By induction, tw(Gi) is within a cg4 factor of tw(G∗

i ), for i ∈ {1, 2}
and for a fixed constant c. Therefore, tw(G) = max{tw(G1), tw(G2)} is within a cg4 factor of
max{tw(G∗

1), tw(G∗
2)}) = Θ(tw(G∗)). 2

The bound in Theorem 14 is not necessarily the best possible. In particular, we can improve
the bound from O(g4) to O(g2). Instead of using Corollary 12, we can apply Theorem 11 directly
and instead modify the grid argument of Lemma 4 to avoid the endpoints of the g additional edges.
Specifically, we stretch the “waffle” of horizontal and vertical strips in the grid connecting the vi,j ’s,
so that all grid points we use for paths avoid all rows and columns containing the endpoints of the
g additional edges. Then we can use the same argument, deleting the vertices and edges not on
the paths, and in particular deleting the g additional edges, to form the desired grid minor.

7 Improved Grid Minor Bounds for K3,k

Recall that every graph excluding a fixed minor H having treewidth at least cHr has the r× r grid
as a minor [18]. The main result of this section is an explicit bound on cH when H = K3,k for
any k (proved in Section 7.1):

Theorem 15 Suppose G is a graph with no K3,k-minor. If the treewidth is at least 204kr, then G
has an r × r grid minor.

In [55], it was shown that, if the treewidth is at least f(r) ≥ 202r
, then G has an r × r grid

as a minor. Our second theorems use this result to show the following. A separation of G is an
ordered pair (A,B) of subgraphs of G such that A∪B = G and there are no edges between A−B
and B − A. Its order is |A ∩ B|. Suppose G has a separation (A,B) of order k. Let A+ be the
graph obtained from A by adding edges joining every pair of vertices in V (A) ∩ V (B). Let B+

be obtained from B similarly. We say that G is a k-sum of A+ and B+. If both A+ and B+ are
minors of G other than G itself, we say that G is a proper k-sum of A+ and B+.

Using similar techniques as the theorem above, we prove the following two structural results
decomposing K3,4-minor-free and K−

6 -minor-free graphs into proper k-sums (proved in Section 7.2):

Theorem 16 Every K3,4-minor-free graph can be obtained via proper 0-, 1-, 2-, and 3-sums start-
ing from planar graphs and graphs of treewidth at most 20215

.

Theorem 17 Every K−
6 -minor-free graph can be obtained via proper 0-, 1-, 2-, and 3-sums starting

from planar graphs and graphs of treewidth at most 20215
.
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These theorems are explicit versions of the following decomposition result for general single-
crossing-minor-free graphs (including K3,4-minor-free and K−

6 -minor-free graphs):

Theorem 18 [52] For any fixed single-crossing graph H, there is a constant wH such that every
H-minor-free graph can be obtained via proper 0-, 1-, 2-, and 3-sums starting from planar graphs
and graphs of treewidth at most wH .

This result heavily depends on Graph Minor Theory, so the treewidth bound wH is huge—in
fact, no explicit bound is known. Theorems 16 and 17 give reasonable bounds for the two instances
of H we consider. We prove Theorems 16 and 17 simultaneously, because the proofs are almost the
same. Our proof of Theorems 16 and 17 uses a 15× 15 grid minor together with the result in [51].
The latter result says roughly that, if there is a planar subgraph H in a nonplanar graph G, then
H has either a nonplanar “jump” or “cross” in G such that the resulting graph is a minor of G.
Our approach is to find a K3,4-minor and a K−

6 -minor in a 15× 15 grid minor plus some nonplanar
jump or cross.

7.1 Proof of Improved Grid Minor Bounds for K3,k

In this section, we prove Theorem 15. First we need some definitions and basic lemmas.
We call a set X ⊆ V (G) k-connected in G if |X| ≥ k and, for all subset Y, Z ⊆ X with

|Y | = |Z| ≤ k, there are |Y | disjoint paths in G from Y to Z. Note that the sets Y and Z are
not required to be disjoint. If X = G, then we say G is k-connected. The set X is externally k-
connected if, in addition, the required paths do not contain any vertex in X except their endpoints.
For example, the vertex set of any k-connected subgraph of G is k-connected in G (though not
necessarily externally), and any horizontal path of the k × k grid is k-connected in the grid, even
externally.

Following [27], call a separation (A,B) a premesh if all the edges of A ∩ B lie in A, and A
contains a tree T with the following properties:

1. T has maximum degree at most 3;

2. every vertex of A ∩B lies in T and has degree at most 2 in T ; and

3. T has a leaf in A ∩B.

A premesh (A,B) is a k-mesh if V (A∩B) is externally k-connected in B, and the graph G = A∪B
is said to have this premesh or k-mesh.

Among useful lemmas on the k-mesh, Diestel et al. [27] proved the following lemma.

Lemma 19 [27, Lemma 4] Let G be a graph and let h ≥ k ≥ 1 be integers. If G has no k-mesh of
order h, then G has treewidth less than h + k − 1.

Therefore, if the treewidth of G is at least h + k, then G has a k-mesh of order h.

Lemma 20 (see [26, 27]) Let k ≥ 2 be an integer, let T be a tree of maximum degree at most 3,
and let X ⊆ V (T ) with |X| ≥ k. Then T has an edge set E ⊆ E(G) such that every component
of T −E has at least k vertices and at most 2k − 2 vertices in X, except that one such component
may have fewer vertices in X.
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Lemma 21 [26] Let G be a bipartite graph with bipartition (A,B) with |A| = a and |B| = b. Let
c ≤ a and d ≤ b be positive integers. Assume that G has at most (a− c)(b− d)/d edges. Then there
exist C ⊆ A and D ⊆ B such that |C| = c, |D| = d, and C ∪D is independent in G.

A linkage L is a set of disjoint paths in a graph. L is an A–B linkage if each member is a path
from A to B. Let |L| denote the number of paths.

The following is our key lemma. We follow some parts of the proof by Diestel et al. [26]. The
proof of (2) below was simplified by R. Thomas (personal communication, 2005).

Lemma 22 Suppose P and Q are an A–B linkage and a C–D linkage, respectively, where A, B,
C, and D are pairwise disjoint, and |P| = 20r, |Q| ≥ 24320kr. Assume further that all the paths
in Q meet all but at most r paths in P. Let G be the graph consisting of the linkages P and Q.
Suppose that, for any e ∈

⋃
P∈P E(P )−

⋃
Q∈Q E(Q), the graph G−e does not have an A–B linkage

of size 20r. We call this property “minimality”. Then either

1. G has a K3,k-minor, or

2. G has an r × r grid minor.

Proof: Let us first introduce notation for analyzing sets of paths in a graph. Let P1, . . . , Pq be
vertex disjoint paths, and let Z = P1∪ . . .∪Pq be a linkage. Recall that a Z-bridge in G is either an
edge e ∈ E(G)\E(Z) whose endpoints are both in Z, or a subgraph of G consisting of a connected
component C of G − Z together with all edges joining C and Z. The vertices of a Z-bridge B in
Z ∩ B are called attachements of B, and we say that B is attached to Z at these vertices. Given
any two subpaths P and Q contained in the linkage Z, we say that they are adjacent if there exists
a Z-bridge whose attachments are in both P and Q.

Our first goal is to prove the following:

(1) There exist X ⊆ P and Y ⊆ Q such that |X| = 4 and |Y | ≥ 3|Q|/4, and each path in Y
intersects all the paths in X.

Let W be the bipartite graph with bipartition (P,Q) in which P ∈ P is adjacent to Q ∈ Q
whenever P ∩ Q = ∅. We claim that, in W , there exist X ⊆ P and Y ⊆ Q such that |X| = 4,
|Y | ≥ 3|Q|/4, and X ∪ Y are independent in W . The bipartite graph W has at most |Q|r edges.
By Lemma 21 with a = |Q|, c = 3|Q|/4, b = 20r, and d = 4, we have the desired X and Y . This
implies that each path in Y intersects all the paths in X. This proves (1).

Hereafter, we assume X = {P1, P2, P3, P4}, and other paths of P are P5, . . . , P20r.
Our next goal is to prove the following.

(2) Each path Pj ∈ P has vertices pj,i for i = 1, . . . , 228k (not necessarily disjoint), which
appear in this order, such that the following holds. Define the ith segment of Pj to be the subpath
of Pj between pj,i and pj,i+1. Then there is a subset Q′ ⊂ Y with |Q′| ≥ 40r × 228k such that
each path in Q′ meets all but at most r paths of P only in their ith segments, for some i with
1 ≤ i ≤ 228k. Moreover, there are at least 40r paths in Q′ that stay strictly inside the union of ith
segments of P.

Walk along P1 from A until having encountered 80r paths in Y , then pick up e1 ∈ E(P1) −⋃
Q∈Q E(Q). Then walk along P1 until having encountered another 80r paths in Y , then pick up

e2 ∈ E(P1) −
⋃

Q∈Q E(Q), and so on. Hence we pick up such edges at least 228k times because
|Y | ≥ 3|Q|/4 ≥ 18240kr.
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By the assumption of “minimality” and Menger’s theorem, there exists a cutset of size at most
20r − 1 separating A and B in G− ei for each i. Clearly each path Pj contains exactly one vertex
in this cutset for 2 ≤ j ≤ 20r. Let {p2,i, . . . , p20r,i} be the set of vertices consisting of the cutset in
G− ei such that Pj contains pj,i for 2 ≤ j ≤ 20r. We may define p1,i as one of vertices of ei. Let us
define the segment Pj [i, i + 1] to be the subpath of Pj between pi and pi+1, for i = 1, . . . , 228k− 1.
Note that some Pj [i, i+1]’s could be a single vertex. The vertex set {p1,i, . . . , p20r,i} divides P into
two parts PRi and PLi such that PRi consists of the linkages from A to {p1,i, . . . , p20r,i}, and PLi

consists of the linkages from B to {p1,i, . . . , p20r,i}, respectively. Let us remind that at least 80r
paths in Y hit P1[i, i + 1].

Define the ith interval to be
⋃20r

j=1 Pj [i, i + 1]. We claim that at least 80r− 40r of the 80r paths
in Y encountered on P1[i, i + 1] do not leave the ith interval. Hence at least 40r paths in Y stay
strictly inside the ith interval. We first look at the 80r paths in Y encountered on P1[i, i + 1].
Because there is no path from A to B in G− {pi,1, . . . , pi,20r}, at most 20r paths of the 80r paths
in Y leave for PRi − {p1,i, . . . , p20r,i} through {p1,i, . . . , p20r,i}. Similarly, at most 20r paths of the
80r paths in Y leave for PLi+1 − {p1,i+1, . . . , p20r,i+1} through {p1,i+1, . . . , p20r,i+1}. Therefore, at
least 80r− 40r of the 80r paths in Y encountered on P1[i, i + 1] do not leave the ith interval. This
proves (2).

Figure 2: Paths in the proof of Lemma 22.

Thus these cutsets {p1,i, . . . , p20r,i} for 1 ≤ i ≤
228k will break the elements of P into intervals; see
Figure 2. Moreover, each interval contains at least
40r paths in Y that stay strictly inside the interval.
Note that some paths of P in the ith interval might
be a singleton, but there are at most r such vertices.

Let us introduce some further definitions. For
each ith interval, define Hi to be the auxiliary graph
with vertex set X = P1, P2, P3, P4 such that Pj and
Pj′ are adjacent in Hi if there is a bridge with at-
tachments both in Pj and Pj′ with j 6= j′ in the ith
interval. Define H ′

i to be the graph in the ith interval. Here by “bridges” we refer to the bridges
for the linkage P1, P2, P3, P4 consisting of only the paths in P − X and the paths in Y each of
which stays strictly inside H ′

i. We also assume that H ′
i consists of the paths in P and the paths

in Y each of which stays strictly inside the ith interval. Note that |H ′
i ∩ H ′

i+1| = 20r for each i,
and because at least 40r of the 80r paths in Y stay strictly inside the ith interval and they hit all
of P1, P2, P3, P4, so all of the Hi’s are connected (and have four vertices) and none of the Pj ’s are
trivial paths in H ′

i for j = 1, 2, 3, 4.
Our idea for using these auxiliary graphs is the following.

(3) If there are 4k Hi’s, each of which has a vertex of degree 3 in Hi, then we can find a
K3,k-minor.

This is because at least k H ′
i’s have bridges with attachments both in Pj and Pj′ for some j

and for any j′ 6= j. Therefore, contracting each Pj′ with j′ 6= j into a single vertex together with
Pj would give rise to a K3,k-minor. This argument is due to [5, 3]. (Actually, the rest of the proof
is inspired by the argument in [5, 3].)

Hence by (3), at least 224k Hi’s are either a 4-vertex path or a 4-vertex cycle. (One would
normally write these graph types as P4 and C4, but this notation would conflict with the existing
notion of P4.) We now look at every seven consecutive H ′

i’s, e.g.,
⋃i+6

j=i H ′
j for i = 1, 8, . . . , 224k−6,

and its auxiliary graph H ′′
i . There are at least 32k H ′′

i ’s. (We shall define H ′′
i later, but one can
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imagine that it is the auxiliary graph of
⋃i+6

j=i H ′
j , which is similar to the definition of the auxiliary

graph Hi for H ′
i. So H ′′

i consists of the four vertices.)
In the rest of the proof, we shall prove that either one of the 224k H ′

i is planar or we can make
the auxiliary graph H ′′

i of
⋃i+6

j=i H ′
j (for i = 1, 8, . . . , 224k − 6) to have a vertex of degree 3. If the

first happens, then we will find an r × r-grid minor. If the second happens, then we can find a
K3,k-minor by (3) and because there are at least 32k H ′′

i ’s.
Our next goal is to prove that, if the first happens, then there is an r × r-grid minor.

(4) For each i, H ′
i does not result in a planar graph, up to 3-separations.

We shall prove that, otherwise, it would contain an r × r grid minor, a contradiction.
Suppose Hi is planar, up to 3-separations, and we can label P = P1, . . . , P20r in such a way

that P1, . . . , P20r appear in the clockwise order in Hi.
Suppose (A1, B1), (A2, B2), . . . , (Al, Bl) are 3-separations. So |Bi −Ai|, |Ai −Bi| ≥ 2. Let R be

at least 40r paths of Y that stay strictly inside H ′
i. Because each path of R hits all of P1, P2, P3, P4,

we can assume that Bi always contains P1, P2, P3, P4, and hence it hits a large part of each path
in R. We claim that, after putting the clique in Ai ∩Bi for i = 1, . . . , l, removing all the graphs in
Ai − Bi and furthermore, letting F be the resulting planar graph, there are at least 19r paths of
P in F and all paths of R are in F . Otherwise, because each Bi contains a large part of each path
in R, some of the paths in R cannot hit 19r paths of P. Note that some of the paths in R may go
through the edges of the clique in Ai ∩Bi for i = 1, . . . , l.

We now put the clique in Ai ∩ Bi for i = 1, . . . , l, and remove all the graphs in Ai − Bi. Then
the resulting graph F is planar.

We may assume that F contains P1, . . . , P19r of P. By possibly relabeling P, we may assume
that P1, . . . , P19r of P appear in this order in F . Moreover, we add edges pj,ipj,i+1 and pj,i+1pj+1,i+1

for j = 1, . . . , 19r − 1. We first consider the case that there is no bridge whose attachments are
in both P1 and P19r. Therefore, now F has an outer cycle C that consists of P1, P19r, and edges
pj,ipj,i+1 and pj,i+1pj+1,i+1 for j = 1, . . . , 19r − 1.

For each path P in R, we only consider a subpath P ′ of P that starts at a vertex in Pi and
ends at a vertex in either in Pi+18r or Pi−18r. Because each path in R hits all but at most r paths
of P1, . . . , P19r in P and F is planar, we can take such a subpath of each path in R. Let R′ be the
set of the subpath for each path in R.

We now claim that there are at least 40r paths in R′ such that each of them appears in the order
Pj , Pj+1, . . . , Pj+18r−1 or in the order Pj , Pj−1, . . . , Pj−18r+1 (mod 19r) for some j with 1 ≤ j ≤ 19r
(by possibly rerouting some paths of R′ through the linkage P1, . . . , P19r of P) and does not cross
over other paths in F . Because at least 40r paths of R′ stay strictly inside F , and F is now planar,
they occur in such a way that each path P in R′ sees any other path in R′ in either the left side of P
or the right side of P . Although some of the paths in R′ may hit some paths of P more than twice,
it is possible that, by possibly rerouting some of the paths in R′ through the linkage P1, . . . , P19r

of P, each of at least 40r paths in R′ appears in the order Pj , Pj+1, . . . , Pj+18r−1 or in the order
Pj , Pj−1, . . . , Pj−18r+1 (modulo 19r) for some j with 1 ≤ j ≤ 20r. In fact, we can reroute the paths
so that the intersection of Pi and each path in R′ is a path. We refer the reader to the proof of this
claim in [55, 45, 47] (the argument showing that any planar graph G with treewidth at least 6r has
an r × r grid minor; also, (10.1) in [47]). But let us sketch the argument. We take R′ and P such
that |E(R′) − E(P)| is as small as possible. Because there is no subpath P of a path in R′ such
that P starts at a vertex u in Pj and ends at some other vertex v in Pj with P ∩

⋃19r
x=1 Px = {u, v}

by the minimality, if we take a lowest peak in R′, then we can always reroute a path through the
linkage of P1, . . . , P19r of P. This would contradict the minimality of |E(R′)− E(P)|.
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We claim that these 40r paths in R′ together with P1, . . . , P19r of P would give rise to an r× r
grid minor. Note that each path in R′ intersects all but at most r paths in P. Let xj be the number
of paths in R′ each of which hits Pj first. So these xj paths intersect P1, . . . , P19r of P in the order
Pj , Pj+1, . . . , Pj+18r−1 or in the order Pj , Pj−1, . . . , Pj−18r+1 (modulo 19r). Then for some j with
1 ≤ j ≤ 19r, if

∑j+17r
y=j xy ≥ 2r, then clearly there is an r × r grid minor. Hence this does not

happen. So
∑20r

j=1

∑j+17r
y=j xy < 40r2. On the other hand, the above inequality counts each path of

R′ exactly 17r times. Therefore, 17r · 40r < 40r2, a contradiction. Hence, for each i, H ′
i is not

planar. Actually, the argument still works if at least 2r paths of Q hit all but at most r of the cr
paths of P, for c ≥ 3. We shall use this fact later.

Finally suppose that there is a bridge whose attachements are in P1 and P19r. In this case,
edges pj,ipj,i+1 for j = 1, . . . , 19r consists of the outer face boundary of F , and edges pj,i+1pj+1,i+1

for j = 1, . . . , 19r consists of a face in F . Note that we also add the edges p19r,ip1,i, p19r,i+1p1,i+1.
Again we consider the set R′ that consists of a subpath of each path in R, as described above.
So each path in R intersects P1, . . . , P19r of P in the order Pj , Pj+1, . . . , Pj+18r−1 or in the order
Pj , Pj−1, . . . , Pj−18r+1 (modulo 19r). Let x′j be the number of paths in R′ each of which does not
hit Pj . We now delete the path Py such that x′y is maximum. We claim x′y ≥ 2r. Suppose not.
Then

∑19r
j=1 x′j ≤ 2r ·19r. On the other hand, this inequality counts each path in R′ exactly r times.

So, 2r · 19r ≥ 40r · r, a contradiction. Hence x′y ≥ 2r. After deleting the path Py, we can relabel
the 19r− 1 paths of P in F so that they appear in the order P1, . . . , P19r−1. Also there are at least
2r paths in R′ each of which hits all but at most r paths in P1, . . . , P19r−1. Therefore, by the above
remark, we can find an r × r grid minor. This proves (4).

Our next goal is to analyze the bridge structure in
⋃i+6

j=i H ′
j (for i = 1, 8, . . . , 224k− 6). By (4),

we may assume that each H ′
i is not planar, up to 3-separations.

Because there are at least 224k Hi’s that are either 4-vertex paths or 4-vertex cycles, by the
Pigeonhole Principle, at least 56k of these 224k Hi’s have the same 4-vertex path with vertex set
{P1, P2, P3, P4}. More precisely, we may assume that at least 56k Hi’s have the 4-vertex path
consisting of the edges P1P2, P2P3, P3P4. Hereafter, we shall consider only these 56k Hi’s each
of which has the same 4-vertex path. For convenience of notation, we assume that each Hi with
i = 1, . . . , 56k is either a 4-vertex path or a 4-vertex cycle, containing the edges between P1 and
P2, P2 and P3, and P3 and P4.

We now define H ′′
i as the auxiliary graph in H ′

7i−6∪H ′
7i−5∪H ′

7i−4∪H ′
7i−3∪H ′

7i−2∪H ′
7i−1∪H ′

7i.
So the vertex set of H ′′

i is {P1, P2, P3, P4}. We know that, for each i, H ′′
i is either a 4-vertex path

or a 4-vertex cycle, and there are 8k H ′′
i ’s.

As pointed out before (4), our goal in the rest of the proof is to show that we can make the
graph H ′′

i such that H ′′
i has a vertex of degree 3. Because we have 8k H ′′

i ’s, by (3), we would get
a K3,k-minor, a contradiction. To prove that, we consider the following two cases.

Case 1. There are at least 4k H ′′
i ’s each of which is a 4-vertex path.

Case 2. There are at most 4k H ′′
i ’s each of which is a 4-vertex cycle.

Actually, Case 2 is much easier and simpler to deal with, and the proof just follows Case 1. So
we just focus on Case 1, and leave the proof of Case 2 to the reader.

Let us look at one H ′′
i that is a 4-vertex path. So H7i−6, H7i−5, H7i−4, H7i−3, H7i−2, H7i−1, and

H7i are all 4-vertex paths. We may assume that the edges P1P2, P2P3, P3P4 are in all of E(H7i−6),
E(H7i−5), E(H7i−4), E(H7i−3), E(H7i−2), E(H7i−1), and E(H7i).

We now look at H ′
7i−3. Let Zj,7i−3 be the graph consisting of all the bridges attached to both

Pj and Pj+1 in H ′
7i−3 for j = 1, 2, 3. Because H7i−3 is a 4-vertex path, the bridges in Zj,7i−3 have

19



attachments only in Pj and Pj+1 for j = 1, 2, 3. Let Z ′
j,7i−3 be the union of bridges that attach

only to Pj in H ′
7i−3 for j = 1, 2, 3, 4. Let Z ′

7i−3 =
⋃3

j=2 Z ′
j,7i−3.

The reason why we focus on H ′
7i−3 is that we can easily “extend” H ′

7i−3 by involving H ′
7i−2,H

′
7i−4,

or even H ′
7i−1,H

′
7i−5, to find bridges that attach to some two of P1, P2, P3, P4.

Informally, the rest of argument in our proof proceeds as follows. If we can make a cross in
Z2,7i−3∪P2∪P3, that is, if there are two disjoint paths P ′

2 and P ′
3 such that P ′

2 starts at p2,7i−3 and
ends at p3,7i−2, and P ′

3 starts at p3,7i−3 and ends at p2,7i−2, then we are happy. This is because we
can make the graph H ′′

i so that some vertex has degree 3. To see this, suppose we can make a cross
in Z2,7i−3∪P2∪P3. Then P3 has a bridge attached to both P3 and P1 in H ′

7i−2 and P3 has a bridge
attached to both P3 and Pj for j = 2, 4 in H ′

7i−4. Hence P3 has degree 3 in H ′′
i . But if we cannot

make a cross in Z2,7i−3 ∪ P1 ∪ P2, then Z2,7i−3 ∪ P2 ∪ P3 is planar (with the outer face boundary
containing P2, P3), up to 3-separations, by Seymour’s theorem or [47] (or see [5] for details.).

Similarly, we can make a cross in Z ′
1,7i−3 ∪ Z1,7i−3 ∪ P1 ∪ P2 unless Z ′

1,7i−3 ∪ Z1,7i−3 ∪ P1 ∪ P2

is planar (with the outer face boundary containing P2), up to 3-separations. Moreover, we can
make a cross in Z ′

4,7i−3 ∪ Z3,7i−3 ∪ P3 ∪ P4 unless Z ′
4,7i−3 ∪ Z3,7i−3 ∪ P3 ∪ P4 is planar (with the

outer face boundary containing P3), up to 3-separations. Hence, if Z ′
7i−3 were empty, it would be

a contradiction by (4) because H ′
7i−3 would be planar, up to 3-separations. On the other hand, we

could not prove that Z ′
7i−3 is empty. Instead, we shall prove that the number of paths in P that

hit Z ′
7i−3 is at most r. Finally, after deleting the graph Z ′

7i−3, the resulting graph F is planar, up
to 3-separations. Because F contains at least 19r paths of P, and there are at least 40r paths that
hit all but at most r paths of these 19r paths, by a similar argument to the proof of (4), we can
find an r × r grid minor, a contradiction.

Therefore, our next goal is to prove the property of Z ′
7i−3. Let us remind the reader that, in

the rest of the argument, we are trying to make the graph H ′′
i so that it has a vertex of degree 3.

We claim the following:

(5) Z ′
7i−3 intersects at most r paths in P.

Let P ′′ be the set of paths in P each of which intersects Z ′
7i−3. Actually, each path of P ′′ in

H ′
7i−3 is strictly contained in Z ′

7i−3. Suppose for contradiction that |P ′′| ≥ r + 1. Because all the
paths in Y hit all but at most r paths in P, we may assume that there is a path P ′ ∈ P ′′ that
intersects Z ′

2,7i−3 in such a way that, in H7i−5, there is a path W1 from P ′ to P1∪P2∪P3∪P4, and
in addition, in H7i−1, there is a path W2 from P ′ to P1 ∪ P2 ∪ P3 ∪ P4. If either W1 or W2 arrives
on P4, then clearly P2 has degree 3 in H ′′

i .
Next, we consider the cases that both W1 and W2 arrive on either P2 or P1. If W1 arrives

on P1 and W2 arrives on P2, then we can cross P1 and P2 because there is a path between P1

and P2 in Z1,7i−3. Similarly, we can cross P1 and P2 when W1 arrives on P2 and W2 arrives on
P1. In both cases, it is easy to see that P3 becomes degree 3 in H ′′

i (together with bridges in
H ′

7i and in H ′
7i−6). Suppose both W1 and W2 arrive on P2. Then we can replace the path P2 in

H ′
7i−1 ∪H ′

7i−2 ∪H ′
7i−3 ∪H ′

7i−4 ∪H ′
7i−5 by W1,W2 and the part of P ′. Then clearly P3 has degree 3

in H ′′
i because P2 in H ′

7i−3 now becomes a bridge with attachments to P1 and the new P2 and P3.
Suppose that both W1 and W2 arrive on P1. Replace the path P1 in H ′

7i−1 ∪ H ′
7i−2 ∪ H ′

7i−3 ∪
H ′

7i−4 ∪H ′
7i−5 by W1,W2 and the part of P ′. We take a path W3 in Z1,7i−2 that joins P1 and P2.

If W3 intersects P ′, then we can reduce to the case that W1 arrives on P1 and W2 arrives on P2 in
the previous paragraph because it does not require that W1 be in H ′

7i−5 nor that W2 be in H ′
7i−1.

Also, we take a path W4 in Z1,7i−4 that joins P1 and P2. By the above observation, we may assume
that W4 does not intersect P ′. Replace P2 in H ′

7i−4 ∪H ′
7i−3 ∪H ′

7i−2 by W3,W4 and the part of P1

in H ′
7i−4 ∪H ′

7i−3 ∪H ′
7i−2. Then clearly P3 has degree 3 in H ′′

i because P2 in H ′
7i−3 now becomes a
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bridge with attachments to the new P1 and the new P2 and P3.
Finally suppose that either W1 or W2 arrives on P3, say, W1 arrives on P3. We take a path

W ′ in Z2,7i−4 joining P2 and P3. If W ′ does not hit P ′, then we can reroute P2 by following the
original P2 from p2,7i−6, then following W ′ in H7i−4, and finally following P3 to p2,7i. We can also
reroute P3 by following the original P3 from p3,7i−6, then following W1 and P ′, and then following
a path between P ′ and P2 in Z ′

2,7i−3, and finally following P2 to p2,7i. Because there is a bridge
attached to both P3 and P4 in H ′

7i−6, there is a bridge attached to both P3 and P2 in H ′
7i−6, and

furthermore, there is a bridge attached to both P1 and P3 in H ′
7i−2, these reroutes of P2, P3 result

in making the graph H ′′
i so that P3 has degree 3 in H ′′

i . Suppose W ′ hit W1. We now consider W2.
If W2 arrives on either P1 or P2, then we can reduce to the case that W1 arrives on P2 and W2

arrives on P2 or W1 arrives on P2 and W2 arrives on P1 in the previous paragraph. So, finally
suppose W2 arrives on P3. As we did for W ′, we take a path W ′′ in Z2,7i−2 joining P2 and P3. If
W ′′ does not hit P ′, then we can reduce to the case that we considered for W1. If it hits, we can
reduce to the case that W1 arrives on P2 and W2 arrives on P2 in the previous paragraph.

This proves (5).

We now prove that each Zj,7i−3 ∪ Pj ∪ Pj+1 in H ′
7i−3 is planar, up to 3-separations.

(6) For j = 1, 2, 3, Zj,7i−3∪Pj∪Pj+1 in H ′
7i−3 is planar, up to 3-separations. Moreover, Pj , Pj+1

in H ′
7i−3 are in the outer face boundary of this planar embedding.

For our convenience, we add edges pj,7i−3pj+1,7i−3 and pj,7i−2pj+1,7i−2 for j = 1, 2, 3. Suppose
Z1,7i−3 ∪ P1 ∪ P2 in H ′

7i−3 is not planar, up to 3-separations. Note that P1 ∪ P2 together with the
edges p1,7i−3p2,7i−3 and p1,7i−2p2,7i−2 gives rise to a cycle C such that the graph Z1,7i−3 is dividing,
i.e., there is no path joining Z1,7i−3 and a vertex outside C. Then by Seymour’s theorem or [47]
(or see [5] for more details), we can cross two paths P1, P2 in H ′

7i−3. More precisely, there are two
disjoint paths P ′

1, P
′
2 in H ′

7i−3 such that P ′
1 joins p1,7i−3 and p2,7i−2, and P ′

2 joins p2,7i−3 and p1,7i−2

in such a way that both P ′
1 and P ′

2 do not intersect any paths in P3, P4. We shall call these two
paths a “cross”.

Then P3 has degree 3 in H ′′
i (together with bridges in H ′

7i−2 and in H ′
7i−4). If we cannot make a

cross, then, because all the bridges in Z1,7i−3 are only attached to both P1 and P2 and the cycle C is
dividing, by Seymour’s theorem or [47] (or see [5] for more details), all the graphs in Z2,7i−3∪P1∪P2

can be embedded into the plane, up to 3-separations, such that C is the outer face boundary, and
hence both P1 and P2 are on the outer face boundary.

Similarly, we can prove the cases for j = 2, 3. This proves (6).

We now prove one more property for Z ′
7i−3.

(7) Z ′
1,7i−3 ∪ Z ′

2,7i−3 ∪ Z1,7i−3 ∪ P1 ∪ P2 and Z ′
3,7i−3 ∪ Z ′

4,7i−3 ∪ Z3,7i−3 ∪ P3 ∪ P4 in H ′
7i−3 are

planar, up to 3-separations.

For our convenience, we add edges pj,7i−3pj+1,7i−3 and pj,7i−2pj+1,7i−2 for j = 1, 2, 3. Note that
P1 ∪ P2 together with the edges p1,7i−3p2,7i−3 and p1,7i−2p2,7i−2 gives rise to a cycle C such that
the graph Z1,7i−3 is dividing.

Suppose Z ′
1,7i−3 ∪Z ′

2,7i−3 ∪Z1,7i−3 ∪P1 ∪P2 in H ′
7i−3 is not planar, up to 3-separations. By (6),

Z1,7i−3 ∪ P1 ∪ P2 is now planar, up to 3-separations, such that C is the outer face bounary.
Again, by Seymour’s theorem or [47] (or see [5] for more details), we can cross two paths P1, P2

in H ′
7i−3. More precisely, there are two disjoint paths P ′

1, P
′
2 in H ′

7i−3 such that P ′
1 joins p1,7i−3

and p2,7i−2, and P ′
2 joins p2,7i−3 and p1,7i−2 in such a way that both P ′

1 and P ′
2 do not intersect any

paths in P3, P4.
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Then P3 has degree 3 in H ′′
i (together with bridges in H ′

7i−2 and in H ′
7i−4). If we cannot make

a cross, then, because all the bridges in Z ′
1,7i−3 are only attached to P1, all the bridges in Z ′

2,7i−3

are only attached to P2 and the graph Z1,7i−3 ∪ P1 ∪ P2 is planar, up to 3-separations, such that
C is the outer face boundary of this embedding, and hence it is dividing, by Seymour’s theorem
or [47] (or see [5] for more details), all the graphs in Z ′

1,7i−3 ∪ P1 can be embedded into the plane,
up to 3-separations, such that P1 is on the outer face boundary, and all the graphs in Z ′

2,7i−3 ∪ P2

can be embedded into the plane, up to 3-separations, such that P2 is on the outer face boundary.
Therefore, it is easy to see that Z ′

1,7i−3 ∪ Z ′
2,7i−3 ∪ Z1,7i−3 ∪ P1 ∪ P2 in H ′

7i−3 is planar, up to
3-separations.

Similarly, we can prove the case for Z ′
3,7i−3 ∪ Z ′

4,7i−3 ∪ Z3,7i−3 ∪ P3 ∪ P4. This proves (7).

Let us observe that the proof of (7) implies that the graph Z ′
1,7i−3∪P1 in H ′

7i−3 can be embedded
into the plane, up to 3-separations, such that P1 is in the outer face boundary. Similarly, the graph
Z ′

4,7i−3 ∪ P4 in H ′
7i−3 can be embedded into the plane, up to 3-separations, such that P4 is in the

outer face boundary. Therefore, by (6) and (7), we get the following:

(8) The graph
⋃3

j=1 Zj,7i−3 ∪ Z ′
1,7−3 ∪ Z ′

4,7i−3 ∪
⋃4

j=1 Pi is planar, up to 3-separations.

(8) does not imply that H ′
7i−3 is planar, up to 3-separations, because Z ′

2,7i−3 ∪Z ′
3,7i−3 may not

be empty. But they are both planar, up to 3-separations, by (7). In fact, the following claim shows
that they do not create a cross.

(9) The graph Z1,7i−3 ∪ Z2,7i−3 ∪ Z ′
2,7i−3 ∪ P1 ∪ P2 ∪ P3 in H ′

7i−3 does not create a cross. More
precisely, there are no two disjoint paths P ′, P ′′ such that P ′ joins p2,7i−3 and p2,7i−2 and P ′′ joins
P1 and P3. Moreover, P ′ does not hit any paths of P1, P3, P4 and P ′′ does not hit P4 either.

Similarly, the graph Z2,7i−3 ∪ Z3,7i−3 ∪ Z ′
3,7i−3 ∪ P2 ∪ P3 ∪ P4 in H ′

7i−3 does not create a cross.
More precisely, there are no two disjoint paths P ′, P ′′ such that P ′ joins p3,7i−3 and p3,7i−2 and P ′′

joins P2 and P4. Moreover, P ′ does not hit any paths of P1, P2, P4 and P ′′ does not hit P1 either.

Suppose that the first happens. Then P3 is now adjacent to P1. Together with a bridge attached
to both P2 and P3 in H ′

7i−2 and a bridge attached to both P3 and P4 in H ′
7i−4, P3 now becomes

degree 3 in H ′′
i . Similarly, we can prove the second case. This proves (9).

In the rest of the argument, we may not be able to make the graph H ′′
i so that it has a vertex

of degree 3. But, instead, we shall find an r × r grid minor in H ′
7i−3.

Let us look at the graph Z = Z1,7i−3 ∪ Z2,7i−3 ∪ Z3,7i−3 ∪ Z ′
1,7i−3 ∪ Z ′

4,7i−3 ∪ P1 ∪ P2 ∪ P3 ∪ P4.
By (8), it is planar, up to 3-separations. By (5), it contains at least 19r paths of P.

Suppose (A1, B1), (A2, B2), . . . , (Al, Bl) are 3-separations. So |Bi −Ai|, |Ai −Bi| ≥ 2. Let R be
at least 40r paths in Y that stay strictly in H ′

i. Because each of R hits all of P1, P2, P3, P4, we can
assume that Bi is always containing P1, P2, P3, P4, and hence it contains large part of each path
in R. As in the proof of (4), after putting the clique in Ai ∩ Bi for i = 1, . . . , l, removing all the
graphs in Ai −Bi and furthermore, letting F be the resulting planar graph, there are at least 18r
paths of P in F and all paths of R are in F . Note that some of the paths in R may go through the
edges of the clique in Ai ∩Bi for i = 1, . . . , l.

We now put the clique in Ai ∩ Bi for i = 1, . . . , l, and remove all the graphs in Ai − Bi. Then
the resulting graph F is planar.

We may assume that F contains P1, . . . , P18r of P. By possibly relabeling P, we may assume
that P1, . . . , P18r of P appear in this order in F . Moreover, we add edges pj,ipj,i+1 and pj,i+1pj+1,i+1

for j = 1, . . . , 18r − 1. We first consider the case that there is no bridge whose attachements are
in both P1 and P18r. Therefore, now F has an outer cycle C that consists of P1, P18r, and edges
pj,ipj,i+1 and pj,i+1pj+1,i+1 for j = 1, . . . , 18r − 1.
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For each path P in R, we only consider the subpath P ′ of each path in R such that P ′ starts
at a vertex in Pi and ends at a vertex in either in Pi+18r or Pi−18r. Because each path in R hits all
but at most r paths of P1, . . . , P18r in P and F is planar, we can take such a subpath of each path
in R. Let R′ be the set of such a subpath of each path in R.

We now claim that there are at least 40r paths in R′ such that, by possibly rerouting the paths
in R′ through the linkage P1, . . . , P18r of P, each of them appears in the order Pj , Pj+1, . . . , Pj+17r−1

or in the order Pj , Pj−1, . . . , Pj−17r+1 (mod 18r) for some i with 1 ≤ j ≤ 18r, and does not cross
over other paths in H ′

i. Note that some of the paths in R′ may get in Z ′
7i−3, but by (9), it is possible

to reroute these paths through the linkage P1, . . . , P18r of P. Because at least 40r paths in R′ stay
strictly inside F , and F is now planar and (9) implies that there is no “jump”, i.e, there is no cross
over in H ′

i, by the argument in the proof of (4), there are the desired 40r paths in R′. In fact, we
can reroute the paths so that the intersection of Pi and each path in R′ is a path. Then we claim
that these 40r paths in R′ together with P1, . . . , P18r of P would give rise to an r × r grid minor.
The proof of this claim follows from the proof of (4), so we omit it. But now we have an r× r grid
minor in F .

Similarly, we can prove the case that there is a bridge whose attachments are both in P1 and
P18r. The proof is identical to that of (4), so we leave it to the reader. This completes the proof of
Case 1.

Finally, suppose that there are more than 4k H ′′
i ’s each of which is a 4-vertex cycle. We can

apply the whole argument of the previous case to H ′′
i except that, if H7i−3 is a 4-vertex cycle, then⋃4

i=1 Z ′
i,j could only hit at most r paths of P. So this case is actually easier. Then it is possible to

prove that Zj,7i−3∪Pj ∪Pj+1 is planar, up to 3-separations, for j = 1, 2, 3, 4. So we omit the proof.
This completes the proof of Lemma 22. 2

Proof of Theorem 15: We shall follow Diestel et al.’s [27] approach. Actually, the proof here is
almost identical to that of Diestel et al.’s.

Set w = 203k · 145920k2r. Because 204kr ≥ 7kw ≥ (2 · 3k + 2)w, by Lemma 19, there is a
w-mesh of order at least (2 · 3k + 1)w. Let T ⊆ A be a tree associated with the premesh (A,B).
Hence X = (A ∩ B) ⊆ T . By Lemma 20, T has at least 3k disjoint subtrees each containing at
least w vertices of X. Let A1, . . . , A3k be the vertex sets of these subtrees. Then by the definition
of w-mesh, B contains a set Pij of w disjoint paths between Ai and Aj that have no inner vertices
in A.

Let us impose a linear ordering on the index pairs ij by fixing an arbitrary bijection f : {ij |
1 ≤ i ≤ 3, 1 ≤ j ≤ k} to {0, . . . , 3k − 1}.

Let l∗ be an integer such that, for all 0 ≤ l < l∗ and all i, j, there exist sets Pl
ij satisfying the

following conditions:

1. Pl
ij is a set of disjoint paths from Ai to Aj . Let H l

ij :=
⋃

Pl
ij , that is, the graph consists of

the union of the paths of Pl
ij .

2. If f(ij) < l, then Pl
ij has exactly one path Pij , and Pij does not meet any paths in Pl

st with
ij 6= st.

3. If f(ij) = l, then |Pl
ij | = w/202l.

4. If f(ij) > l, then |Pl
ij | = w/202l+1.

5. If l = f(pq) < f(ij), then for every edge e ∈ E(H l
ij)\E(H l

pq), there are no w/202l+1 disjoint
paths from Ai to Aj in the graph (H l

ij ∪H l
pq)− e.

23



We choose l∗ as large as possible. If l∗ = 3k−1, then we are done because there is a K3,k-minor.
Hence we may assume that l∗ < 3k − 1. We shall first prove that l∗ > 0. Let pq = f−(0) and put
P0

pq := Ppq. Let Hij :=
⋃

Pij and F ⊆ E(Hij)\E(H0
pq) be maximal such that there are still w/20

disjoint paths from Ai to Aj in (Hij ∪H0
pq)− F . Then, for any f(ij) > 0, let P0

ij be such a set of
paths. Then it is easy to see that P0

ij satisfies the above conditions. This proves that l∗ > 0.
Having shown that l∗ > 0, let us now consider l = l∗ − 1. Thus, Conditions 1–5 above are

satisfied for l but cannot be satisfied for l + 1. Let l = l∗ − 1. Let pq = f−(l). We claim that
there is no path P ∈ Pl

pq such that P avoids a set Lij of some |Pl
ij |/20 paths in Pl

ij for all ij with
f(ij) > l. Suppose such a path P exists. Let st := f−(l+1) and put Pl+1

st := Lst. For f(ij) > l+1,
let Hij :=

⋃
Lij , and F ⊆ E(Hij)\E(H l+1

st ) be maximal such that there are still |Pl
ij |/202 disjoint

paths from Ai to Aj in (Hij ∪ H l+1
st ) − F . Let Pl+1

ij be such a set of paths. If Pl+1
pq := {P} and

Pl+1
ij := Pl

ij for f(ij) < l, then these would give rise to a family of sets Pl+1
ij , a contradiction to

the maximality of l∗. Thus, for every path P ∈ Pl
pq, P must intersect all but at most |Pl

ij |/20
paths in Pl

ij for some ij > l. Because l∗ < 3k − 1, there are at least |Pl
pq|/3k paths (letting these

paths P ′′) each of which intersects all but |Pl
ij |/20 paths in Pl

ij for some ij. Clearly |Pl
ij | ≥ 20r

and |Pl
pq|/3k ≥ 48640kr. By Lemma 22 with P := Pl

ij and Q := P ′′, either there is a K3,k-minor
or there is an r × r grid minor. Note that Condition 5 gives rise to the minimality in Lemma 22.
This completes the proof. 2

7.2 Proofs of Decomposition Theorems for K3,4-minor-free and K−
6 -minor-free

Graphs

In this section we prove Theorems 16 and 17. Because the proofs of Theorems 16 and 17 are similar,
we will prove them simultaneously.

Proof of Theorems 16 and 17: Suppose G may be expressed as a proper k-sum of A+ and B+.
Clearly, if G does not contain a minor isomorphic to H, then neither A+ nor B+ contains a minor
isomorphic to H. So, by considering a minimal counterexample to Theorem 16, it suffices to prove
the following. Set w = 20215

.

Theorem 23 Every graph G with no minor isomorphic to K3,4 is either

1. a proper 0-, 1-, 2-, or 3-sum of two graphs, or

2. planar, or

3. has treewidth at most w.

Similarly, every graph G with no minor isomorphic to K−
6 is either

1. a proper 0-, 1-, 2-, or 3-sum of two graphs, or

2. planar, or

3. has treewidth at most w.

Suppose that Theorem 16 were not true, and let G be a minimal counterexample. To prove
Theorem 16, we need to examine the connectivity property.

Because G cannot be expressed as a proper 0-, 1-, 2-, or 3-sum of two graphs, we have
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(1) G has minimum degree at least 3, and no separation (A,B) of order at most 2.

Hence G is 3-connected.
A graph H is called quasi 4-connected if it is simple, 3-connected, has at least five vertices, and

for every separation (A,B) of G of order three, either |A| ≤ 4 or |B| ≤ 4.
The next goal is to prove the following:

(2) G is quasi 4-connected.

Because G cannot be expressed as the proper 3− sum of two graphs, this implies that G has no
separation of order 3 such that both A and B contain a cycle. Suppose there is a separation (A,B)
of order 3 and |A|, |B| ≥ 5. We may assume that one of A,B, say, A is a forest. Take a component
A′ in A− B. Because A′ is a tree, there are at least two vertices of degree exactly 1 in A′. These
two vertices have at least two neighbors in A ∩B by (1). But then it is easy to see that there is a
cycle in A′ ∪ (A ∩B). This proves (2).

Because G has treewidth at least w and is quasi 4-connected, it suffices to prove that every
quasi 4-connected graph with no minor isomorphic to K3,4 and treewidth at least w is planar, and
every quasi 4-connected graph with no minor isomorphic to K−

6 and treewidth at least w is planar.
A graph K is a subdivision of a graph G if K is obtained from G by replacing its edges by

internally disjoint paths with the same end vertices. Let H be a 3-connected planar graph. Then
H has a unique planar embedding. In particular, a cycle in H bounds a region in some planar
embedding of H if and only if it bounds a region in every planar embedding of H. Such cycles
are called peripheral . So these cycles may be viewed as “faces” of the embedding. Let u, v be two
vertices of H such that no peripheral cycle includes both of them, and let H1 be the graph obtained
from H by adding an edge uv. We say that H1 is a jump extension of H. Let C be a peripheral
cycle in H and let u, v, x, y be four distinct vertices of C occurring in this order on C. Let H2 be
the graph obtained from H by adding two edges {u, x}, {v, y}. We say that H2 is a cross extension
of H.

The following was shown in [51]. See also [58, Lemma 3.1].

Theorem 24 Let H ′ be a quasi 4-connected planar graph with no 3-cycles and let G be a quasi
4-connected nonplanar graph such that G has a subgraph isomorphic to a subdivision of H ′. Then
G has a subdivision isomorphic to either a jump extension of H ′ or a cross extension of H ′.

We are ready to finish our proof. If G is planar, then we are done. So we may assume that
G is nonplanar. By (2), G is quasi 4-connected. Because G has a 30 × 30 grid minor, G has a
29 × 29 grid plus two additional edges joining two corners (not crossing) as a minor. Then, it is
easy to see that G has a 15-wall with two additional edges joining two corners (not crossing) as
a subdivision. Let us call this graph H (not the subdivision). It is easy to see that H is quasi
4-connected because the minimum degree is at least 3 and there is no separation (A,B) of order at
most 3 with |A|, |B| ≥ 5. Also H contains no 3-cycles. Hence, by Theorem 24, G has a subdivision
isomorphic to a jump extension of H or a cross extension of H. Let us call this graph H ′ (not the
subdivision). Then clearly this graph, call it H ′′, has a 6×6 grid plus two additional crossing edges
joining two corners as a minor. Let u, v, x, y be the distinct four corner vertices of H ′′ occurring
in this order along the outer cycle of H ′′ (minus two crossing edges). Then both {u, x} and {v, y}
are edges. It remains to prove that this graph H ′′ has a minor isomorphic to K3,4 and a minor
isomorphic to K−

6 .
Let us first find a K3,4-minor in H ′′. We can specify each vertex of H ′′ as (i, j) with 1 ≤ i ≤ 6

and 1 ≤ j ≤ 6 without any confusion. So we may assume that u = (1, 1), v = (1, 6), x = (6, 6), and
y = (6, 1). Refer to Figure 3(left).
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Figure 3: Constructing a K3,4 minor (left) and a K−
6 minor (right) from a 6× 6 grid with opposite

diagonals connected. Paths are described in the body of the proof.

Let v1 = (2, 2), v2 = (3, 3), v3 = (4, 4), and v4 = (5, 5). Also let u1 = (5, 2), u2 = (2, 3), and
u3 = (3, 4). We will construct a K3,4-minor in such a way that vi corresponds to a vertex of degree
3 in K3,4 for 1 ≤ i ≤ 4 and uj corresponds to a vertex of degree 4 in K3,4 for 1 ≤ j ≤ 3. Because
H ′′ contains a 6× 6 grid as a minor and is 3-connected, we can choose the following 14 paths that
are pairwise disjoint except at or near common endpoints:

1. Pi connects u1 and vi for i = 1, 2, 3, 4.

2. P5 connects u2 and v1, P6 connects u2 and v2, and P7 connects u2 and u.

3. P8 connects u3 and v2, P9 connects u3 and v3, and P10 connects u3 and v.

4. P11 connects x and v3 and P12 connects x and v4.

5. P13 connects y and v1 and P14 connects y and v4.

By contracting paths P7 and P10, we get a minor isomorphic to K3,4 such that vi corresponds to
a vertex of degree 3 in K3,4 for 1 ≤ i ≤ 4 and uj corresponds to a vertex of degree 4 in K3,4 for
1 ≤ j ≤ 3.

Let us find a K−
6 -minor in H ′′; refer to Figure 3(right). Take the 4× 4 grid J in the middle of

H ′′, i.e., the distance between the outer face boundary of H ′′ (minus two crossing edges {ux}, {vy})
and J is exactly 1. By contracting some of the edges of J , we can get an 8-wheel W as a minor.
Let wi be the vertices of the wheel W that are on the outer face boundary of W , appearing in the
clockwise order for i = 1 . . . , 8, such that the following paths exist and are disjoint except at or
near common endpoints:

1. P1 connects w1 and u.

2. P2 connects w2 and v.
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3. P3 connects w3 and x.

4. P4 connects w6 and x.

5. P5 connects w6 and y.

6. P6 connects w8 and y.

7. Furthermore, all six paths P1, . . . , P6 are disjoint from the grid J (and hence the wheel W )
except at their endpoints.

It is easy to see that such a labeling of wi is possible. In fact, we can put w1 = (2, 3), w2 = (2, 4),
w3 = (3, 5), w4 = (4, 5), w5 = (5, 4), w6 = (5, 3), w7 = (4, 2) and w8 = (3, 2). Then it is easy to
see that the wheel W together with paths P1, P2, P3, P4, P5, P6 gives rise to a K−

6 -minor, by taking
w1, w2, w3, w6, w8 and the middle vertex of the wheel W as the vertices of K−

6 . Note that the edge
w3w8 is missing in the corresponding K−

6 .
Hence these two constructions imply that G is planar, and this completes the proof. 2

8 Contraction Version of Wagner’s Conjecture

Motivated in particular by Kuratowski’s Theorem characterizing planar graphs as graphs excluding
K3,3 and K5 as minors, Wagner conjectured and Robertson and Seymour proved the following three
results:

Theorem 25 (Wagner’s Conjecture) [50] For any infinite sequence G0, G1, G2, . . . of graphs,
there is a pair (i, j) such that i < j and Gi is a minor of Gj.

Corollary 26 [50] Any minor-closed graph property3 is characterized by a finite set of excluded
minors.

Corollary 27 [50, 49] Every minor-closed graph property can be decided in polynomial time.

The important question we consider is whether these theorems hold when the notion of “minor”
is replaced by “contraction”. The motivation for this variation is that many graph properties are
closed under contractions but not under minors (i.e., deletions). Examples include the decision
problems associated with dominating set, edge dominating set, connected dominating set, diameter,
etc.

One necessary difference is how we handle disconnected graphs. For example, the class of
all graphs having no edges is characterized by excluding K2 as a minor. But these graphs are
characterized by no finite set of excluded contractions: we must exclude the graph with n vertices
and exactly one edge for all n ≥ 2. Here n represents the number of connected components in the
graph. For this reason, we restrict our attention to characterizing graph properties on connected
graphs by a finite set of excluded contractions.

One positive result along these lines is about minor-closed properties:

Theorem 28 Any minor-closed property on connected graphs is characterized by a finite set of
excluded contractions.

3A property is simply a set of graphs, representing the graphs having the property.
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Proof: Let X be the finite set of excluded minors guaranteed by Corollary 26. Let X ′ be the set
of all induced supergraphs of graphs in X, i.e., supergraphs on the same set of vertices. (If desired,
we can also discard from X ′ any graph that can be contracted into another graph in X ′, to obtain
a minimal set X ′.) Any graph that has a graph in X ′ as a contraction also has a graph in X as a
minor, so it does not satisfy the property. Similarly, any graph that does not satisfy the property
has a graph in X as a minor. If we ignore the edge deletions involved in forming the minor X, and
convert any vertex deletion into an incident edge contraction (which exists because the graph stays
connected), then we obtain a graph in X ′ as a contraction. Therefore the finite set X ′ of excluded
contractions characterizes the property. 2

For example, we obtain the following contraction version of Kuratowski’s Theorem, using the
construction of the previous theorem and observing that all other induced supergraphs of K3,3 have
K5 as a contraction.

Corollary 29 Connected planar graphs are characterized by a finite set of excluded contractions,
shown in Figure 4.

Figure 4: Forbidden contractions for planar graphs.

Another positive result is that Wagner’s Conjecture extends to contractions in the special case
of trees. This result follows from the normal Wagner’s Conjecture because a tree T1 is a minor of
another tree T2 if and only if T1 is a contraction of T2:

Proposition 30 For any infinite sequence G0, G1, G2, . . . of trees, there is a pair (i, j) such that
i < j and Gi is a contraction of Gj.

Unfortunately, the contraction version of Wagner’s Conjecture does not hold for general graphs:

Theorem 31 There is an infinite sequence G0, G1, G2, . . . of connected graphs such that, for every
pair (i, j), i 6= j, Gi is not a contraction of Gj.

Proof: Let Gi = K2,i+2 for i = 0, 1, 2, . . .. Suppose for contraction that Gi is a contraction of Gj

with i 6= j. Thus i < j. Let v and w denote the two vertices in Gj connected to all other vertices
in Gj . The effect of the first contraction in Gj is to remove one vertex, and change one path of
length 2 between v and w into a path of length 1 (an edge) between v and w. Thus, after this
contraction, v and w form a triangle with every other vertex; thus there are i+1 triangles. In order
to form Gi, which has no triangles, every triangle must be contracted away. There are two ways to
contract away a triangle u, v, w: contract the edge {v, w}, or contract u into either v or w. If we
ever contract the edge {v, w}, we will be left with a star, which can be contracted only into stars,
and never into Gi which has a cycle. Contracting u into either v or w contracts away the triangle
u, v, w but no other triangles, and removes one vertex. Thus contracting away all i + 1 triangles in
this way must remove all vertices except v and w, leaving the single edge {v, w}, which cannot be
contracted into Gi which has at least 4 vertices. 2
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Corollary 32 There is a contraction-closed property on connected graphs that cannot be charac-
terized by a finite set of excluded contractions.

Proof: Let G0, G1, G2, . . . be any infinite sequence of graphs with the property in Theorem 31,
such as Gi = K2,i+2. Let G be the set of graphs that cannot be contracted to any Gi. This set is
closed under contractions, by definition. We claim that G cannot be characterized by a finite set
of excluded contractions.

Suppose for contraction that there is a finite set X of graphs such that G is precisely the set
of graphs that cannot be contracted to any graph in X . Because X is finite, there must be some
Gi /∈ X . But Gi /∈ G, so there must be some X ∈ X that is a contraction of Gi. Also, X 6= Gi.
By the property in Theorem 31, no Gj is a contraction of Gi (for i 6= j), so no Gj is a contraction
of X. By definition of G, X ∈ G. But this contradicts that no graph in X is a contraction of a
graph in G. 2

The graphs Gi = K2,i+2 that form the counterexample of Theorem 31 and Corollary 32 are in
some sense tight. Each Gi is a planar graph with faces of degree 4. If all faces are smaller, the
contraction version of Wagner’s Conjecture holds. A planar graph is triangulated if some planar
embedding (or equivalently, every planar embedding) is triangulated, i.e., all faces have degree 3.
Recall that the triangulated planar graphs are the maximal planar graphs, i.e., planar graphs in
which no edges can be added while preserving planarity.

Theorem 33 For any infinite sequence G0, G1, G2, . . . of triangulated planar graphs, there is a pair
(i, j) such that i < j and Gi is a contraction of Gj.

Proof: By Theorem 25, there is a pair (i, j) such that i < j and Gi is a minor of Gj . Consider the
sequence of edge contractions, edge deletions, and vertex deletions that form Gi from Gj . Because
Gj is connected, we can rewrite a vertex deletion as deleting all incident edges except one and
then contracting the last edge. Now consider ignoring all edge deletion options from the sequence.
The resulting contraction G′

i of Gj must have the same vertex set as Gi, it must include all edges
from Gi, and it must be planar. Furthermore, because Gi is maximally planar, G′

i cannot have any
additional edges beyond those in Gi. Therefore Gi = G′

i, so Gi is in fact a contraction of Gj . 2

Another sense in which the counterexample graphs Gi = K2,i+2 are tight is that they are 2-
connected and are 2-outerplanar, i.e., removing the (four) vertices on the outside face leaves an
outerplanar graph (with all vertices on the new outside face). However, the contraction version of
Wagner’s Conjecture holds for 2-connected (1-)outerplanar graphs:

Theorem 34 For any infinite sequence G0, G1, G2, . . . of 2-connected embedded outerplanar graphs,
there is a pair (i, j) such that i < j and Gi is a contraction of Gj.

Proof: We prove a stronger form of the theorem in which every graph has exactly one marked edge
that is on the boundary face. This marked edge is preserved under contractions in the natural way:
after contracting an edge incident to an endpoint v of the marked edge {v, w}, the new marked
edge is the edge between the merged vertex v and the vertex w. The only constraint is that the
marked edge itself cannot be contracted.

The marking induces a partial labeling on the graph which constrains what it means for a
graph Gi to be a contraction of a graph Gj . The graph resulting from contraction of Gj must be
isomorphic to the target graph Gi via an isomorphism that maps the marked edge of Gj to the
marked edge of Gi.
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Our stronger theorem can be rephrased using the following terminology. A well-quasi-ordering
(X,≤) is a set X and a reflexive transitive relation≤ such that, for any infinite sequence X0, X1, X2, . . .
over X, there is a pair (i, j) such that i < j and Xi ≤ Xj . We say that X is well-quasi-ordered
over ≤. Thus our goal is to prove that the set of 2-connected marked embedded outerplanar graphs
is well-quasi-ordered under contraction. Our proof will also consider well-quasi-ordering of other
sets under other operations. In particular, we use the following two well-known facts:

Proposition 35 (e.g., [57]) If (X,≤X) and (Y,≤Y ) are well-quasi-orderings, then (X × Y,≤) is a
well-quasi-ordering where (x, y) ≤ (x′, y′) if x ≤X x′ and y ≤2 y′.

Proposition 36 [34] If (X,≤X) is a well-quasi-ordering, then (X∗,≤X∗) is a well-quasi-ordering
where X∗ is the set of finite sequences over X, and where (x1, x2, . . . , x`) ≤ (x′1, x

′
2, . . . , x

′
k) if there

is a strictly increasing function f : {1, 2, . . . , `} → {1, 2, . . . , k} such that xi ≤ x′f(i) for all i.

Now suppose to the contrary that the theorem is false. Consider a counterexample G0, G1, G2, . . .
such that 〈|V (G0)|, |V (G1)|, |V (G2)|, . . .〉 is lexically minimum. That is, choose G0 with the mini-
mum number of vertices such that there is a counterexample with prefix G0; then choose G1 with
the minimum number of vertices such that there is a counterexample with prefix G0, G1; etc.

For each marked graph Gi, we define a vector Ai = 〈Ai,1, Ai,2, . . . , Ai,di
〉 as follows. First observe

that no Gi can consist of just a single (marked) edge, even though this graph is 2-connected, because
this graph is a contraction of all 2-connected marked outerplanar graphs, in particular Gi+1. Thus,
because Gi is 2-connected, the marked edge is incident to exactly one finite face Fi. Let di be the
degree of that face, i.e., the number of edges bounding Fi. The components Ai,1, Ai,2, . . . , Ai,di

represent the edges of face Fi in clockwise order starting at the marked edge of Gi. It remains to
define how each Ai,k “represents” an edge of Fi. An edge e of Fi decomposes the graph into two
pieces that overlap at precisely the edge e; Ai,j is defined to be the piece to the left of e (oriented
clockwise around Fi), i.e., the piece that does not contain Fi. The copy of edge e in Ai,j is marked.
Note that Ai,j may consist only of the edge e (a special 2-connected graph).

For each i and j, we call Ai,j a child of Gi. The child Ai,j has strictly fewer vertices than
the parent Gi. Every child Ai,j is a contraction of the parent Gi: contract every edge in Ai,1

except its special edge, contract no edges in Ai,j , and contract every edge in every other child Ai,j′ .
Collectively, A = {Ai,j | i, j} is the set of all children.

We claim that A is well-quasi-ordered under contraction. Let B0, B1, B2, . . . be any sequence
over A. For every nonnegative integer i, choose p(i) such that Bi is a child of Gp(i). Let ` be the non-
negative integer minimizing p(`). Because G0, G1, G2, . . . is a lexically minimum counterexample to
the theorem, and because |V (B`)| < |V (Gp(`))|, the theorem holds for G0, G1, . . . , G`−1, B`, B`+1, B`+2, . . ..
Thus we obtain a pair (i, j) where i < j and the graph at index i is a contraction of the graph at
index j. Because G0, G1, G2, . . . has no such pair, j ≥ `. Furthermore, i ≥ ` because otherwise Gi

would be a contraction of Bj which is a child of, and therefore a contraction of, Gj , a contradiction.
Thus Bi is a contraction of Bj , so B0, B1, B2, . . . is well-quasi-ordered under contraction.

Define a subvector of a vector Q = 〈K1,K2, . . . ,Kq〉 of marked graphs to be any vector of the
form 〈K1,Ki2 ,Ki3 , . . . ,Ki`〉, where 1 < i2 < i3 < · · · < i` ≤ q (and thus ` ≤ q). Thus a subvector
is like a subsequence, except that the first element must remain intact. We say that a vector P =
〈J1, J2, . . . , Jp〉 is a vector-contraction of a vector Q if there is an subvector Q′ = 〈K1,K2, . . . ,Kp〉
of Q such that Ji is a contraction of Ki for all i = 1, 2, . . . , p (where contraction of marked graphs
is defined as above).

Lemma 37 If a set A of graphs is well-quasi-ordered under contraction, then the set of vectors
over A is well-quasi-ordered under vector-contraction.
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Proof: We can represent a vector 〈K0,K1, . . . ,Kq〉 as an ordered pair of a graph and a vector, sep-
arating off the first graph: (K0, 〈K1,K2, . . . ,Kq〉). The well-quasi-ordering of such pairs, involving
a graph from A and a sequence of graphs from A, follows from Propositions 35 and 36. 2

Applying Lemma 37 to the sequence A0, A1, A2, . . ., we obtain a pair (i, j) such that i < j and
Ai is a vector-contraction of Aj . Thus there is a sequence of contractions within the elements of Aj

and removal of elements of Aj that result in Ai. We can simulate these contractions and removals
to show that Gi is a contraction of Gj . The marking of edge of attachment between each child
Aj,` and the face Fj ensures that any contraction within Aj,` can be mimicked in Gj . For ` > 1,
the removal of a child Aj,` can be simulated in Gj by contracting all edges of Aj,`, resulting in a
single vertex. The definition of subvector prevents the first child Aj,1 from being removed, and
thus Aj,1, which contains the marked edge of Gj , contracts to Ai,1, which contains the marked edge
of Gi. Thus the marked edge of Gj maps to the marked edge of Gi, as required. Therefore, Gi is a
contraction of Gj , contradicting that there was a counterexample to the theorem. 2

Corollary 38 Every contraction-closed graph property of trees, triangulated planar graphs, and/or
2-connected outerplanar graphs is characterized by a finite set of excluded contractions.

Proof: Follows from Theorems 30, 33, and 34. 2

We can use this result to prove the existence of a polynomial-time algorithm to decide any
fixed contraction-closed property for trees and 2-connected outerplanar graphs, using a dynamic
program that tests for a fixed graph contraction in a bounded-treewidth graph.

9 Open Problems and Conjectures

One of the main open problems is to close the gap between the best current upper and lower bounds
relating treewidth and grid minors. For map graphs, it would be interesting to determine whether
our analysis is tight, in particular, whether we can construct an example for which the O(r3) bound
is tight. Such a construction would be very interesting because it would improve the best previous
lower bound of Ω(r2 lg r) for general graphs [55]. We make the following stronger claim about
general graphs:

Conjecture 39 For some constant c > 0, every graph with treewidth at least cr3 has an r× r grid
minor. Furthermore, this bound is tight: some graphs have treewidth Ω(r3) and no r×r grid minor.

This conjecture is consistent with the belief of Robertson, Seymour, and Thomas [55] that the
treewidth of general graphs is polynomial in the size of the largest grid minor.

We also conjecture that the contraction version of Wagner’s Conjecture holds for k-outerplanar
graphs for any fixed k. If this is true, it is particularly interesting that the property holds for
k-outerplanar graphs, which have bounded treewidth, but does not work in general for bounded-
treewidth graphs (as we have shown in Theorem 31).
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