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2 · E. D. DEMAINE ET AL.

Abstract. We introduce a new framework for designing fixed-parameter algorithms with subex-

ponential running time—2O(
√

k)nO(1). Our results apply to a broad family of graph problems,

called bidimensional problems, which includes many domination and covering problems such as

vertex cover, feedback vertex set, minimum maximal matching, dominating set, edge dominating
set, disk dimension, and many others restricted to bounded-genus graphs. Furthermore, it is fairly

straightforward to prove that a problem is bidimensional. In particular, our framework includes,

as special cases, all previously known problems to have such subexponential algorithms. Previ-
ously, these algorithms applied to planar graphs, single-crossing-minor-free graphs, and/or map

graphs; we extend these results to apply to bounded-genus graphs as well. In a parallel develop-

ment of combinatorial results, we establish an upper bound on the treewidth (or branchwidth)
of a bounded-genus graph that excludes some planar graph H as a minor. This bound depends

linearly on the size |V (H)| of the excluded graph H and the genus g(G) of the graph G, and

applies and extends the graph-minors work of Robertson and Seymour.
Building on these results, we develop subexponential fixed-parameter algorithms for dominating

set, vertex cover, and set cover in any class of graphs excluding a fixed graph H as a minor. In

particular, this general category of graphs includes planar graphs, bounded-genus graphs, single-
crossing-minor-free graphs, and any class of graphs that is closed under taking minors. Specifically,

the running time is 2O(
√

k)nh, where h is a constant depending only on H, which is polynomial
for k = O(log2 n). We introduce a general approach for developing algorithms on H-minor-free

graphs, based on structural results about H-minor-free graphs at the heart of Robertson and
Seymour’s graph-minors work. We believe this approach opens the way to further development

on problems in H-minor-free graphs.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Com-

plexity]: Nonnumerical Algorithms and Problems—computations on discrete structures; G.2.2
[Mathematics of Computing]: Discrete Mathematics—graph algorithms, network problems

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: (k, r)-center, fixed-parameter algorithms, domination, planar
graph, map graph

1. INTRODUCTION

Dominating set is a classic NP-complete graph optimization problem which fits into
the broader class of domination and covering problems on which hundreds of papers
have been written; see, for example, the survey [37]. A sample application is the
problem of locating sites for emergency service facilities such as fire stations. Here
we suppose that we can afford to build k fire stations to cover a city, and we require
that every building is covered by at least one fire station. The problem is to find a
dominating set of size k in the graph where edges represent suitable pairings of fire
stations with buildings. In this application, we can afford high running time (e.g.,
several weeks of real time) if the resulting solution builds fewer fire stations (which
are extremely expensive). Thus, we prefer exact fixed-parameter algorithms (which
run fast provided the parameter k is small) over approximation algorithms, even if
the approximation were within an additive constant. The theory of fixed-parameter
algorithms and parameterized complexity has been thoroughly developed over the
past few years; see, for example, [15; 27; 29; 30; 34; 4; 3].

In the last two years, several researchers have obtained exponential speedups in
fixed-parameter algorithms for various problems on several classes of graphs. While
most previous fixed-parameter algorithms have a running time of 2O(k)nO(1) or
worse, the exponential speedups result in subexponential algorithms with running
times of 2O(

√
k)nO(1). For example, the first fixed-parameter algorithm for domi-
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nating set in planar graphs [2] has running time O(8kn); subsequently, a sequence
of subexponential algorithms and improvements have been obtained, starting with
running time O(46

√
34kn) [1], then O(227

√
kn) [38], and finally O(215.13

√
kk+n3+k4)

[30]. Other subexponential algorithms for other domination and covering problems
on planar graphs have also been obtained [1; 4; 11; 40; 36].

However, all of these algorithms apply only to planar graphs. In another sequence
of papers, these results have been generalized to wider classes of graphs: map
graphs [15], which include planar graphs; K3,3-minor-free graphs and K5-minor-free
graphs [24], which include planar graphs; and single-crossing-minor-free graphs [23;
24], which include K3,3- and K5-minor-free graphs. These algorithms [15; 23; 24]
apply to dominating set and several other problems related to domination, covering,
and logic.

Algorithms for H-minor-free graphs for a fixed graph H have been studied exten-
sively; see, for example, [12; 35; 13; 39; 42]. In particular, it is generally believed
that several algorithms for planar graphs can be generalized to H-minor-free graphs
for any fixed H [35; 39; 42]. H-minor-free graphs are very general. The deep Graph-
Minor Theorem of Robertson and Seymour shows that any graph class that is closed
under minors is characterized by excluding a finite set of minors. In particular, any
graph class that is closed under minors (other than the class of all graphs) excludes
at least one minor H.

Our Results.. We introduce a framework for extending algorithms for planar
graphs to apply to H-minor-free graphs for any fixed H. In particular, we design
subexponential fixed-parameter algorithms for dominating set, vertex cover, and
set cover (viewed as one-sided domination in a bipartite graph) for H-minor-free
graphs. Our framework consists of three components, as described below. We
believe that many of these components can be applied to other problems and con-
jectures as well.

First, we extend the algorithm for planar graphs to bounded-genus graphs. Roughly
speaking, we study the structure of the solution to the problem in k × k grids,
which form a representative substructure in both planar graphs and bounded-genus
graphs, and capture the main difficulty of the problem for these graphs. Then us-
ing Robertson and Seymour’s graph-minor theory, we repeatedly remove handles
to reduce the bounded-genus graph down to a planar graph, which is essentially a
grid.

Second, we extend the algorithm to almost-embeddable graphs that can be drawn
in a bounded-genus surface except for a bounded number of “local areas of non-
planarity”, called vortices, and for a bounded number of “apex” vertices, which
can have any number of incident edges that are not properly embedded. Because
each vortex has bounded pathwidth, the number of vortices is bounded, and the
number of apices is bounded, we are able to extend our approach to solve almost-
embeddable graphs using our solution to bounded-genus graphs.

Third, we apply a deep theorem of Robertson and Seymour, which characterizes
H-minor-free graphs as a tree structure of pieces, where each piece is an almost-
embeddable graph. Using dynamic programming on such tree structures, analogous
to algorithms for graphs of bounded treewidth, we are able to combine the pieces
and solve the problem for H-minor-free graphs. Note that the standard bounded-
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4 · E. D. DEMAINE ET AL.

treewidth methods do not suffice for general H-minor-free graphs, unlike, for ex-
ample, e.g. bounded-genus graphs, because their treewidth can be arbitrarily large
with respect to the parameter [14]. Our contribution is to overcome this barrier
algorithmically using a two-level dynamic program in a more general tree structure
called a “clique-sum decomposition”.

The first step of this procedure, for bounded-genus graphs, applies to a broad
class of problems called “bidimensional problems”. Roughly speaking, a parame-
terized graph problem is bidimensional if the parameter is large enough (linear) in
a grid and closed under contractions. Examples of bidimensional problems include
vertex cover, feedback vertex set, minimum maximal matching, dominating set,
edge dominating set, set cover, disk dimension, and TSP tour (in the shortest-path
metric of the graph). We obtain subexponential fixed-parameter algorithms for all
of these problems in bounded-genus graphs. As a special case, this generalization
settles an open problem about dominating set posed by Ellis, Fan, and Fellows [28].
Along the way, we establish an upper bound on the treewidth (or branchwidth) of
a bounded-genus graph that excludes some planar graph H as a minor. This bound
depends linearly on the size |V (H)| of the excluded graph H and the genus g(G)
of the graph G, and applies and extends the graph-minors work of Robertson and
Seymour.

This article forms the basis of several more recent papers, for example, [17; 14;
31; 22; 16; 19; 18]. In particular, the theory of bidimensionality introduced in this
article has flourished into a comprehensive body of algorithmic and combinato-
rial results. The consequences of this theory include tight parameter-treewidth
bounds, direct seperator theorems, linearity of local treewidth, subexponential
fixed-parameter algorithms, and polynomial-time approximation schemes for a broad
class of problems on graphs that exclude a fixed minor. In Section 6 we describe
some of these results in comparison to this article.

This article is organized as follows. First, we introduce the terminology used
throughout the article, and formally define tree decompositions, treewidth, and
fixed-parameter tractability in Section 2. Section 3 is devoted to graphs on sur-
faces. We construct a general framework for obtaining subexponential parameter-
ized algorithms on graphs of bounded genus. First we introduce the concept of
bidimensional problem, and then prove that every bidimensional problem has a
subexponential parameterized algorithm on graphs of bounded genus. The proof
techniques used in this section are very indirect and are based on deep theorems
from Robertson and Seymour’s Graph Minors XI [46] and XII [47]. As a byprod-
uct of our results we obtain a generalization of Quickly Excluding a Planar Graph
Theorem [50] for graphs of bounded genus. In Section 5 we make a further step by
developing subexponential algorithms for graphs containing no fixed graph H as a
minor. The proof of this result is based on combinatorial bounds from the previous
section, a deep structural theorem from Graph Minors XVI [49], and complicated
dynamic programming. Finally, in Section 6, we present several extensions of our
results and some open problems.
Journal of the ACM, Vol. 52, No. 6, November 202005.
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2. BACKGROUND

2.1 Preliminaries

All the graphs in this article are undirected without loops. The reader is referred to
standard references for appropriate background [7]. In addition, for exact definitions
of various NP-hard graph-theoretic problems in this article, the reader is referred
to Garey and Johnson [32].

Our graph terminology is as follows. A graph G is represented by G = (V,E),
where V (or V (G)) is the set of vertices and E (or E(G)) is the set of edges. We
denote an edge e between u and v by {u, v}. We define n to be the number of
vertices of a graph when this is clear from context. For every subset W ⊆ V (G)
of vertices, the subgraph of G induced by W is denoted by G[W ]. We define the
q-neighborhood of a vertex v ∈ V (G), denoted by Nq

G[v], to be the set of vertices of
G at distance at most q from v. Notice that v ∈ Nq

G[v]. We define NG[v] = N1
G[v]

and NG(v) = NG[v]− {v}.
The (disjoint) union of two disjoint graphs G1 and G2, G1 ∪G2, is the graph G

with merged vertex and edge sets: V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪
E(G2).

One way of describing classes of graphs is by using minors. Given an edge
e = {u, v} of a graph G, the graph G/e is obtained from G by contracting the
edge e; that is, to get G/e we identify the vertices u and v and remove all loops and
duplicate edges. A graph H obtained by a sequence of edge contractions is said
to be a contraction of G. A graph H is a minor of G if H is a subgraph of some
contraction of G. A graph class C is minor-closed if any minor of any graph in C is
also a member of C. A minor-closed graph class C is H-minor-free if H 6∈ C.

For example, a planar graph is a graph excluding both K3,3 and K5 as minors
(Kuratowski’s Theorem).

2.2 Fixed-Parameter Algorithms

Developing fast algorithms for NP-hard problems is an important issue. Downey
and Fellows [27] formalized a new approach to cope with NP-hardness, called fixed-
parameter tractability. For many NP-complete problems, the inherent combinatorial
explosion can be attributed to a certain aspect of the problem, a parameter. The
parameter is often an integer that is small in practice. The running times of simple
algorithms may be exponential in the parameter but polynomial in the rest of the
problem size. A problem is fixed-parameter tractable if it has an algorithm whose
running time is f(k)nO(1) where n is the problem size, k is the parameter value,
and f is any function (typically, 2Θ(k)). For example, it has been shown that a
vertex cover of size k can be found in O(1.2745kk4 + kn) time [10], and hence this
problem is fixed-parameter tractable.

Alber et al. [1] demonstrated a solution to finding a dominating set of size k

in a planar graph in O(46
√

34kn) time. This result was the first nontrivial result
for the parameterized version of an NP-hard problem where the exponent of the
exponential term grows sublinearly in the parameter (see also [38] and [30] for fur-
ther improvements of the time bound of [1]) and it initiated the extensive study
of subexponential algorithms for various parameterized problems on planar graphs.
Using this result, others could obtain exponential speedup of fixed-parameter al-
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6 · E. D. DEMAINE ET AL.

gorithms for many NP-complete problems on planar graphs (see, e.g., [11; 40; 4;
8]). (See also Cai and Juedes [9] for discussions on lower bounds of subexponen-
tial algorithms on planar graphs.) Recently, Demaine et al. [24; 23; 15] extended
these results to many NP-complete problems on map graphs and graphs excluding
a single-crossing-graph such as K5 or K3,3 as a minor. As mentioned before, we
extend these results for bounded-genus graphs and more generally H-minor-free
graphs for any fixed H.

2.3 Treewidth and Branchwidth

The notion of treewidth was introduced by Robertson and Seymour [43] and plays
an important role in their fundamental work on graph minors. To define this notion,
first we consider the representation of a graph by a tree, which is the basis of our
algorithms in this article.

A tree decomposition of a graph G is a pair (T, χ) where T is a tree and χ = {χi |
i ∈ V (T )} is a family of subsets of V (G) such that

(1)
⋃

i∈V (T ) χi = V (G);

(2) for each edge e = {u, v} ∈ E(G), there is an i ∈ V (T ) such that both u and v
belong to χi;

(3) for all v ∈ V (G), the set of nodes {i ∈ V (T ) | v ∈ χi} forms a connected
subtree of T .

To distinguish between vertices of the original graph G and vertices of the tree T ,
we call vertices of T nodes and call their corresponding χi’s bags. The maximum
size of a bag in χ minus one is called the width of the tree decomposition (T, χ).
The treewidth of a graph G, denoted tw(G), is the minimum width over all tree
decompositions of G. A tree decomposition is called a path decomposition if T is a
path. The pathwidth of a graph G, denoted pw(G), is the minimum width over all
possible path decompositions of G.

A branch decomposition of a graph G is a pair (T, τ) where T is a tree with
vertices of degree 1 or 3 and τ is a bijection from the set of leaves of T to E(G).
The order of an edge e in T is the number of vertices v ∈ V (G) such that there are
leaves t1, t2 in T in different components of T −e = (V (T ), E(T )−e) with τ(t1) and
τ(t2) both containing v as an endpoint. The width of (T, τ) is the maximum order
over all edges of T , and the branchwidth of G, denoted bw(G), is the minimum
width over all branch decompositions of G. (In the case |E(G)| ≤ 1, we define
the branchwidth to be 0; if |E(G)| = 0, then G has no branch decomposition; if
|E(G)| = 1, then G has a branch decomposition consisting of a tree with one vertex,
and the width of this branch decomposition is considered to be 0.)

It is known that, if H is a minor of G, then tw(H) ≤ tw(G) and bw(H) ≤
bw(G) [45]. The following connection between treewidth and branchwidth is due
to Robertson and Seymour:

Theorem 2.1. [45, Theorem 5.1] For any connected graph G where |E(G)| ≥ 3,
bw(G) ≤ tw(G) + 1 ≤ 3

2bw(G).

Journal of the ACM, Vol. 52, No. 6, November 202005.
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3. GRAPHS ON SURFACES

3.1 Preliminaries

In this section we describe some of the machinery developed in the Graph Minors
series that we use in our proofs. See also [46].

A surface Σ is a connected compact 2-manifold without boundary. A line in Σ
is a subset homeomorphic to [0, 1]. An O-arc is a subset of Σ homeomorphic to a
circle. A subset of Σ is an open disk if it is homeomorphic to {(x, y) | x2 + y2 < 1},
and it is a closed disk if it is homeomorphic to {(x, y) | x2 + y2 ≤ 1}.

A 2-cell embedding of a graph G in a surface Σ is a drawing of the vertices as
points in Σ and the edges as lines in Σ such that every region (face) bounded by
edges is an open disk. To simplify notation, we do not distinguish between a vertex
of G and the point of Σ used in the drawing to represent the vertex, or between
an edge and the line representing it. We also consider G as the union of points
corresponding to its vertices and edges. Also, a subgraph H of G can be seen as a
graph H where H ⊆ G. A region of G is a connected component of Σ−E(G)−V (G).
(Every region is an open disk.) We use the notation V (G), E(G), and R(G) for the
set of the vertices, edges, and regions of G.

If ∆ ⊆ Σ, then ∆ denotes the closure of ∆, and the boundary of ∆ is bd(∆) =
∆ ∩ Σ−∆. A vertex or an edge x is incident to a region r if x ⊆ bd(r).

A subset of Σ meeting the drawing only at vertices of G is called G-normal. If
an O-arc is G-normal, then we call it a noose. The length of a noose is the number
of vertices it meets. We say that a disk D is bounded by a noose N if N = bd(D).
A graph G 2-cell embedded in a connected surface Σ is θ-representative if every
noose of length less than θ is contractable (null-homotopic in Σ).

Tangles were introduced by Robertson and Seymour in [45]. A separation of a
graph G is a pair (A,B) of subgraphs with A ∪B = G and E(A ∩B) = ∅, and its
order is |V (A∩B)|. A tangle of order θ ≥ 1 is a set T of separations of G, each of
order less than θ, such that

(1) for every separation (A,B) of G of order less than θ, T contains one of (A,B)
and (B,A);

(2) if (A1, B1), (A2, B2), (A3, B3) ∈ T , then A1 ∪A2 ∪A3 6= G; and
(3) if (A,B) ∈ T , then V (A) 6= V (G).

Let G be a graph 2-cell embedded in a connected surface Σ. A tangle T of order
θ is respectful if, for every noose N in Σ of length less than θ, there is a closed disk
∆ ⊆ Σ with bd(∆) = N such that the separation (G ∩∆, G ∩ Σ−∆) ∈ T .

Our proofs are based on the following results from the Graph Minors series of
papers by Robertson and Seymour.

Theorem 3.1. [45, Theorem 4.3] Let G be a graph with at least one edge. Then
there is a tangle in G of order θ if and only if G has branchwidth at least θ.

Theorem 3.2. [46, Theorem 4.1] Let Σ be a connected surface, not homeomor-
phic to a sphere; let θ ≥ 1; and let G be a θ-representative graph 2-cell embedded
in Σ. Then there is a unique respectful tangle in G of order θ.

Roughly speaking, a tangle of order θ assigns a notion of “inside” for each sepa-
ration of order at most θ. Theorem 3.2 says that, if the surface has positive genus
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8 · E. D. DEMAINE ET AL.

and the embedding is θ-representative, then every separation of order θ splits Σ
into parts in such a way that exactly one part is homeomorphic to a disk, and a
tangle selects the corresponding component of the graph. When the surface is the
sphere, this partition is more ambiguous, and the tangle disambiguates which part
is considered “inside”. See [46, Section 1] for more intuition.

Our proofs also use the notion of the radial graph. Informally, the radial graph
of a graph G 2-cell embedded in Σ is the bipartite graph RG obtained by selecting
a point in every region r of G and connecting it via an edge to every vertex of
G incident to that region. However, a region may be incident to the same vertex
“more than once”, so we need a more formal definition. Precisely, RG is a radial
graph of a graph G 2-cell embedded in Σ if

(1) E(G) ∩ E(RG) = V (G) ⊆ V (RG);
(2) each region r ∈ R(G) contains a unique vertex vr ∈ V (RG);
(3) RG is bipartite with a bipartition (V (G), {vr: r ∈ R(G)});
(4) if e, f are edges of RG with the same ends v ∈ V (G), vr ∈ V (RG), then e ∪ f

does not bound a closed disk in r ∪ {v}; and
(5) RG is maximal subject to Conditions (1)–(4).

The radial graph is unique up to isomorphism [46, Section 3].

3.2 Bounding the Representativity

Define the (r × r)-grid to be the graph on r2 vertices {(x, y) | 1 ≤ x, y ≤ r}
with edges between vertices differing by ±1 in exactly one coordinate. A partially
triangulated (r× r)-grid is any planar supergraph of the (r× r)-grid with the same
set of vertices.

Lemma 3.3. Let G be a graph 2-cell embedded in a surface Σ, not homeomorphic
to a sphere, of representativity at least 4r > 0. Then G contains as a contraction a
partially triangulated (r × r)-grid.

Proof. Let θ = 4r be (a lower bound on) the representativity of G. By Theo-
rem 3.2, G has a respectful tangle of order θ. Let A(G) be the set of vertices, edges,
and regions (collectively, atoms) of the graph G. According to [46, Section 9] (see
also [47]), the existence of a respectful tangle of order θ makes it possible to define
a metric d on A(G) as follows:

(1) If a = b, then d(a, b) = 0.
(2) If a 6= b, and a and b are interior to a contractible closed walk in the radial

graph RG of length less than 2θ, then d(a, b) is half the minimum length of
such a walk. (Here by interior we mean the direction in which the walk can be
contracted, and we include the boundary as part of the interior.)

(3) Otherwise, d(a, b) = θ.

Let c be any vertex in G; refer to Figure 1. For 0 ≤ i < θ, define Zi to be the
union of all atoms of distance at most i from c (where distance is measured according
to the metric d). By [46, Theorem 8.10], Zi is a nonempty simply connected set,
for all i. (A subset of a surface is simply connected if it is connected and has no
Journal of the ACM, Vol. 52, No. 6, November 202005.
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bd(Zθ/2)

bd(Zθ−1)

bd(Z0)

θ/2 vertex-disjoint paths

edge of original graph

edge of radial graph

c

Fig. 1. The radial graph in the proof of Lemma 3.3.

noncontractible closed curves.) Thus, the boundary bd(Zi) of each Zi is a closed
walk in the radial graph.

We claim that the closed walks bd(Zi) and bd(Zi+1) are vertex-disjoint. Con-
sider any vertex a of RG on bd(Zi) and an adjacent vertex b of RG outside Zi.
The distance between a and b, measured according to d, is 1 because there is
a length-2 closed walk connecting them, doubling the edge (a, b) in the radial
graph. By [46, Theorem 9.1], the metric d satisfies the triangle inequality, and
hence d(c, b) ≤ d(c, a) + 1 = i + 1. In fact, this bound must hold with equality,
because b /∈ Zi. Therefore, every vertex a of RG on bd(Zi) is surrounded on the
exterior of Zi by vertices of RG at distance exactly i+1 from c, so bd(Zi) is strictly
enclosed by bd(Zi+1).

Consider the “annulus” A = (Zθ−1−Zθ/2)∪bd(Zθ−1)∪bd(Zθ/2), which includes
the boundary bd(A) = bd(Zθ−1) ∪ bd(Zθ/2). We claim that there are at least
θ/2 vertex-disjoint paths in RG within A connecting vertices of RG in bd(Zθ/2)
to vertices of RG in bd(Zθ−1). By Menger’s Theorem, the contrary implies the
existence of a cut in A of size less than θ/2 separating the two sets, which by
simple connectedness (essentially, planarity) of Zθ−1 implies the existence of a cycle
of length less than θ that separates the two sets, but such a cycle must be contained
in Zθ/2.

Now we form a (θ/2 × θ/2)-grid in the radial graph. The row lines in the grid
are formed by taking, for each i = θ/2, θ/2+1, θ/2+2, . . . , θ−1, the unique simple

Journal of the ACM, Vol. 52, No. 6, November 202005.



10 · E. D. DEMAINE ET AL.

cycle that encloses c and that is a subset of the closed walk bd(Zi). The column
lines in the grid are formed by the θ/2 vertex-disjoint paths found above. Therefore,
we obtain a subdivision of the (θ/2× θ/2)-grid as a subgraph of the radial graph.
Note that, by our construction, the rows of this grid can in fact form cycles, not
just paths.

Finally, we transform this grid into a (θ/4 × θ/4)-grid in the original graph G.
Each row of the grid in the radial graph, viewed as a cycle C, corresponds in the
original graph to a cyclic sequence of faces “surrounding” the row. We replace this
row by the “inner half” of each face, that is, the unique simple cycle that encloses c,
is enclosed by C, and whose edges are edges of these surrounding faces. In this way,
each row in the radial graph maps in the original graph to a curve contained within
this row line. Two adjacent mapped row lines may touch but cannot properly cross,
so row lines of distance 2 or more in the grid cannot overlap when mapped to the
original graph. Similarly, we can map each column of the grid in the radial graph
to the original graph, trimming the ends to where they meet the second and last
mapped rows (where the innermost row is considered first). Thus, by discarding the
odd-numbered rows and columns, we obtain a subdivision of the (θ/4 × θ/4)-grid
in the original graph. Because Zθ−1 is simply connected, the grid is embedded in
a simply connected subset of Σ, so if we apply contractions without deletions, we
obtain a partially triangulated grid.

4. BIDIMENSIONAL PARAMETERS AND BOUNDED-GENUS GRAPHS

In this section, we define a general framework of parameterized problems for which
subexponential algorithms with small constants can be obtained. Our framework
is sufficiently broad that an algorithmic designer needs to check only two simple
properties of any desired parameter to determine the applicability and practicality
of our approach.

4.1 Definitions

Recall from Section 3.2 that a partially triangulated (r×r)-grid is any planar graph
obtained by adding edges between pairs of nonconsecutive vertices on a common
face of a planar embedding of an (r × r)-grid.

Definition 4.1. A parameter P is any function mapping graphs to nonnegative
integers. The parameterized problem associated with P asks, for some fixed k,
whether P (G) ≤ k for a given graph G.

Definition 4.2. A parameter P is minor bidimensional with density δ if

(1) contracting or deleting an edge in a graph G cannot increase P (G), and

(2) for the (r × r)-grid R, P (R) = (δr)2 + o((δr)2).

A parameter P is called contraction bidimensional with density δ if

(1) contracting an edge in a graph G cannot increase P (G),

(2) for any partially triangulated (r × r)-grid R, P (R) ≥ (δr)2 + o((δr)2), and

(3) δ is the smallest real number for which this inequality holds.
Journal of the ACM, Vol. 52, No. 6, November 202005.
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In either case, P is called bidimensional. The density δ of P is the minimum
of the two possible densities (when both definitions are applicable). We call the
sublinear function f(x) = o(x) in the bound on P (R) the residual function of P .

Notice that density assigns a positive real number, typically at most 1, to any
bidimensional parameter. Interestingly, this assignment defines a total order on all
such parameters.

4.2 Examples

Many parameters are bidimensional. Here we mention just a few. Examples of
minor-bidimensional parameters are the following:

Vertex Cover. A vertex cover of a graph G is a set C of vertices such that every
edge of G has at least one endpoint in C. The vertex-cover problem is to find a
minimum-size vertex cover in a given graph G. The corresponding parameter, the
size of a minimum vertex cover, is minor bidimensional with density δ = 1/

√
2.

(Roughly half the vertices must be in any vertex cover of the grid, and one color
class in a vertex 2-coloring of the grid is a vertex cover.)

Feedback Vertex Set. A feedback vertex set of a graph G is a set U of vertices
such that every cycle of G passes through at least one vertex of U . The size of
a minimum feedback vertex size is a minor-bidimensional parameter with density
δ ∈ [1/2, 1/

√
2]. (δ ≥ 1/2 because there are r2/4 + o(r2) vertex-disjoint squares

in the (r × r)-grid, each of which must be broken; δ ≤ 1/
√

2 because it suffices to
remove one color class in a vertex 2-coloring of the grid.)

Minimum Maximal Matching. A matching in a graph G is a set E′ of edges
without common endpoints. A matching in G is maximal if it is contained by
no other matching in G. The size of a minimum maximal matching is a minor-
bidimensional parameter with density δ ∈ [1/

√
8, 1/

√
2]. (δ ≥ 1/

√
8 because any

maximal matching must include at least one edge interior to any 3×4 subgrid, and
there are r2/8+o(r2) interior-disjoint 3×4 subgrids; δ ≤ 1/

√
2 because the number

of edges in a matching is at most r2/2.)

Examples of contraction-bidimensional parameters are

Dominating Set. A dominating set of a graph G is a set D of vertices of G such
that each of the vertices of V (G)−D is adjacent to at least one vertex of D. The
size of a minimum dominating set is a contraction-bidimensional parameter with
density δ = 1/3. (δ ≥ 1/3 because every vertex dominates at most 9 vertices;
δ ≤ 1/3 because there is a triangulation of the (r × r)-grid with dominating set of
size r2/9 + o(r2).)

Edge Dominating Set. An edge dominating set of a graph G is a set D of edges
of G such that every edge in E(G)−D shares at least one endpoint with some edge
in D. The size of a minimum edge domainting set is a contraction-bidimensional pa-
rameter with density δ = 1/

√
14. (δ ≥ 1/

√
14 because every edge in a triangulated

grid dominates at most 14 edges; δ ≤ 1/
√

14 because size-14 neighborhoods of a
diagonal edge can be tiled to form a triangulated (r×r)-grid requiring r2/14+o(r2)
dominating edges.)
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Many of our results can be applied not only to bidimensional parameters but
also to parameters that are bounded by bidimensional parameters [24; 14]. For
example, the clique-transversal number of a graph G is the minimum number of
vertices intersecting every maximal clique of G. This parameter is not contraction-
bidimensional because an edge contraction may create a new maximal clique and
cause the clique-transversal number to increase. On the other hand, it is easy to
see that this graph parameter always exceeds the size of a minimum dominating
set. In particular, this fact can be used to obtain a parameter-treewidth bound for
the clique-transversal number.

Our results can also be applied to maximization problems. For example, maxi-
mum independent set is a contraction-bidimensional parameter.

4.3 Subexponential Algorithms and Planar Graphs

Almost all known techniques for obtaining subexponential parameterized algo-
rithms on planar graphs are based on the following “bounded-treewidth approach”
[1; 30; 38]:

(I1) Prove that tw(G) ≤ c
√

P (G) for some constant c;
(I2) Compute or approximate the treewidth (or branchwidth) of G;
(I3) Decide whether P (G) ≤ k as follows. If the treewidth is more than c

√
k, then

the answer to the decision problem is no. If treewidth is at most c
√

k, then run a
standard dynamic program for graphs of bounded treewidth in 2O(tw(G))nO(1) =
2O(

√
k)nO(1) time.

All previously known ways of obtaining the most important step (I1) use rather
complicated techniques based on separators. Next we give some hints why bidi-
mensional parameters are important for the design of subexponential algorithms
by showing how step (I1) can be performed for planar graphs. We need the follow-
ing result of Robertson, Seymour, and Thomas.

Theorem 4.3. [45, Theorem 4.3], [50, Theorem 6.3] Let r ≥ 1 be an integer.
Every planar graph with no (r× r)-grid as a minor has branchwidth at most 4r−3.

Using this theorem we obtain the following relation between treewidth and bidi-
mensional parameters:

Theorem 4.4. Let P be a bidimensional parameter. Then for any planar graph
G, tw(G) = O(

√
P (G)).

Proof. First, we consider the case when P is minor-bidimensional. Suppose,
for contradiction, that tw(G) > c

√
P (G) for a large constant c to be determined.

By Theorem 2.1, bw(G) > 2
3tw(G) > 2

3c
√

P (G). By Theorem 4.3, G must have
an (r × r)-grid R as a minor, where r ≥ 1

6c
√

P (G). Let δ be the density of P .
Then |V (R)| = r2 ≤ P (R)/δ2 − o(r2) ≤ P (G)/δ2 − o(r2) because P is minor-
bidimensional. But r2 ≥ 1

36c P (G), so we get a contradiction by choosing c large
enough.

If P is contraction-bidimensional, we can use the same proof with one change.
After obtaining the grid R as a minor, we remove the edge deletions and take only
the edge contractions that form R from G, to obtain a partially triangulated grid
Journal of the ACM, Vol. 52, No. 6, November 202005.
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R′ as a contraction of G. Then, the rest of the proof uses R′ instead of R; in
particular, P (R′) ≤ P (G).

The class of bidimensional parameterized problems contains all parameters known
from the literature to have subexponential parameterized algorithms for planar
graphs [2; 1; 4; 11; 40; 36]. Recently, Cai et al. [8] defined a class of parameters,
Planar TMIN1, and proved that, for every planar graph G and parameter P in
Planar TMIN1, tw(G) = O(

√
P (G)). Every problem in Planar TMIN1 can be

expressed as a special type of dominating-set problem on bipartite graphs. (We refer
to [8] for definitions and further properties of Planar TMIN1.) Using Theorem 4.4
it is possible to prove a similar result, establishing the bound tw(G) = O(

√
P (G))

for most parameters P in Planar TMIN1.
It is tempting to wonder whether every parameter admitting a 2O(

√
k)nO(1)-time

algorithm on planar graphs is bidimensional.

4.4 Parameter-Treewidth Bound for Bounded-Genus Graphs

To extend Theorem 4.4 to graphs of bounded genus, more work needs to be done.
If P is a bidimensional parameter with density δ and residual function f , then

we define the normalization factor of P to be the minimum number β ≥ 1 such
that ( δ

β r)2 ≤ (δr)2 + f(δr) for all r ≥ 1.

Lemma 4.5. Let P be a contraction (minor) bidimensional parameter with den-
sity δ. Then P (G) < ( δ

β r)2 implies that G excludes the (r × r)-grid as a minor
(and all partial triangulations of the (r × r)-grid as contractions).

Proof. If P is minor bidimensional and H is the (r× r)-grid and H is a minor
of G, then P (H) ≤ P (G). Because P (H) = (δr)2 + f(δr), we have that ( δ

β r)2 >

P (G) ≥ (δr)2 + f(δr), which contradicts the definition of β.
If P is contraction bidimensional and H is a partial triangulation of the (r×r)-grid

and H is a contraction of G, then P (H) ≤ P (G). Because P (H) = (δr)2+f(δr), we
have that ( δ

β r)2 > P (G) ≥ (δr)2 + f(δr), which contradicts the definition of β.

Let G be a graph and let v ∈ V (G) be a vertex. Also suppose we have a partition
Pv = (N1, N2) of the set of the neighbors of v. Define the splitting of G with respect
to v and Pv to be the graph obtained from G by

(1) removing v and its incident edges;
(2) introducing two new vertices v1 and v2; and
(3) connecting vi with the vertices in Ni, for i = 1, 2.

If H is the result of consecutive application of several such operations to some
graph G, then we say that H is a splitting of G. If, in addition, the sequence of
splittings never splits a vertex that was the result of a previous splitting, then we
say that H is a fair splitting of G. The vertices v of G involved in the splittings
that make up a fair splitting are called affected vertices.

A parameter P is α-splittable if, for every graph G and for each vertex v ∈ V (G),
the result G′ of splitting G with respect to v satisfies P (G′) ≤ P (G)+α. Many nat-
ural graph problems are α-splittable for small constants α. Examples of 1-splittable
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problems are dominating set, vertex cover, edge dominating set, independent set,
clique-transversal set, and feedback vertex set, among many others.

For the proof of our main result on properties of bidimensional parameters, we
need two technical lemmas used in induction on the genus.

It is convenient to work with Euler genus. The Euler genus eg(Σ) of a nonori-
entable surface Σ is equal to the nonorientable genus g̃(Σ) (or the crosscap number).
The Euler genus eg(Σ) of an orientable surface Σ is 2g(Σ), where g(Σ) is the ori-
entable genus of Σ.

The following lemma is very useful in proofs by induction on the genus. The first
part of the lemma follows from [41, Lemma 4.2.4] (corresponding to a nonseparating
cycle) and the second part follows from [41, Proposition 4.2.1] (corresponding to a
surface-separating cycle).

Lemma 4.6. Let G be a connected graph 2-cell embedded in a surface Σ not
homeomorphic to a sphere, and let N be a noncontractible noose on G. Then there
is a fair splitting G′ of G affecting the set S = {v1, . . . , vρ} of vertices of G met by
N such that one of the following holds:

(1 ) G′ can be 2-cell embedded in a surface with Euler genus strictly smaller than
eg(Σ); or

(2 ) each connected component Gi of G′ can be 2-cell embedded in a surface with
Euler genus strictly smaller than eg(Σ) and is a contraction of some graph G∗

i

obtained from G after at most ρ splittings.

The following lemma is a consequence of the definition of branchwidth.

Lemma 4.7. Let G be a graph and let G′ be the splitting of a vertex in G. Then
bw(G) ≤ bw(G′) + 1.

Proof. Consider a branch decomposition (T, τ) of G′ of width bw(G′). The
same (T, τ) is also a branch decomposition of G if we replace each edge of G′ with
the unique correponding edge in G. The order of each edge e of T increases by
at most 1 because all vertices except the split vertex have the same incident edges
so are counted the same and, at worst, the split vertex is counted in G whereas
its two copies in G′ might not be counted (because each copy is incident to edges
corresponding to leaves in only one connected component of T − e).

Theorem 4.8. Suppose that P is an α-splittable bidimensional parameter (α ≥
0) with density δ > 0 and normalization factor β ≥ 1. Then, for any (connected)
graph G 2-cell embedded in a surface Σ of Euler genus eg(Σ), bw(G) ≤ 4β

δ (eg(Σ)+
1)

√
P (G) + 1 + 8α(β

δ (eg(Σ) + 1))2.

Proof. We induct on the Euler genus of Σ.
In the base case that eg(Σ) = 0, Lemma 4.5 implies that, if P (G) < ( δ

β r)2, then
G excludes the (r×r)-grid as a minor. This implication is precisely Lemma 4.5 when
P is minor bidimensional. If P is contraction bidimensional, then the implication
follows because, if a connected planar graph G can be transformed to a graph H
(e.g., the (r×r)-grid) via a sequence of edge contractions and/or removals, then by
applying only the contractions in this sequence, we obtain a partial triangulation
Journal of the ACM, Vol. 52, No. 6, November 202005.
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S S1 S2

split

Fig. 2. Splitting a noose.

of H as a contraction of G. Now by Theorem 4.3, if P (G) < ( δ
β r)2, then bw(G) ≤

4r − 6. If we set r = bβ
δ

√
P (G)c + 1, we have that bw(G) ≤ 4bβ

δ

√
P (G)c − 2.

Because α, β, δ ≥ 0, the induction base follows.
Suppose now that eg(Σ) ≥ 1 and that the induction hypothesis holds for any

graph 2-cell embedded in a surface with Euler genus less than eg(Σ). Let G be a
graph 2-cell embedded in Σ. We set k = P (G) and claim that the representativity
of this embedding of G is at most 4bβ

δ

√
k + 1c. Lemma 4.5 implies that, if k <

( δ
β r)2, then G excludes any triangulation of the (r × r)-grid as a contraction. By

the contrapositive of Lemma 3.3, this implies that the representativity of G is
less than 4r. If we set r = b δ

β

√
k + 1c + 1, we have that the representativity

of G is at most 4bβ
δ

√
k + 1c. Let N be a minimum-size noncontractible noose

N on Σ meeting ρ vertices of G where ρ ≤ 4bβ
δ

√
k + 1c. By Lemma 4.6, there

is a fair splitting along the vertices met by N such that either Condition 1 or
Condition 2 holds; see Figure 2. Let G′ be the resulting graph and let Σ′ be a
surface such that eg(Σ′) ≤ eg(Σ) − 1 and every connected component of G′ is
2-cell embedable in Σ′. We claim that, given either Condition 1 or Condition 2,
bw(G′) ≤ 4β

δ eg(Σ)
√

k + αρ + 1 + 8α(β
δ )2(eg(Σ))2.

Given Condition 1, we apply the induction hypothesis to G′ and get that bw(G′) ≤
4β

δ (eg(Σ′) + 1)
√

P (G′) + 1 + 8α(β
δ )2(eg(Σ′) + 1)2. Because G′ is obtained from

G after at most ρ splittings and P is an α-splittable parameter, we have P (G′) ≤
k + αρ. Because eg(Σ′) ≤ eg(Σ)− 1, we obtain bw(G′) ≤ 4β

δ eg(Σ)
√

k + αρ + 1 +
8α(β

δ )2(eg(Σ))2.
Given Condition 2, we apply the induction hypothesis to each of the connected

components of G. Let Gi be such a component. We get that bw(Gi) ≤ 4β
δ (eg(Σ′)+

1)
√

P (Gi) + 1 + 8α(β
δ )2(eg(Σ′) + 1)2. Because Gi is a contraction of some graph

G∗
i obtained from G after at most ρ splittings and P is an α-splittable parameter,

we get that P (Gi) ≤ P (G∗
i ) ≤ k + αρ. Again because eg(Σ′) ≤ eg(Σ) − 1,

we have bw(Gi) ≤ 4β
δ eg(Σ)

√
k + αρ + 1 + 8α(β

δ )2(eg(Σ))2. Because bw(G′) =
maxi(bw(Gi)), we obtain bw(G′) ≤ 4β

δ eg(Σ)
√

k + αρ + 1 + 8α(β
δ )2(eg(Σ))2.

Because G′ is the result of at most ρ consecutive vertex splittings on G, Lemma 4.7
yields that bw(G) ≤ bw(G′) + ρ. Therefore,

bw(G) ≤ 4β
δ eg(Σ)

√
k + αρ + 1 + 8α(β

δ )2(eg(Σ))2 + ρ

≤ 4β
δ eg(Σ)

√
k + α(4β

δ

√
k + 1) + 1 + 8α(β

δ )2(eg(Σ))2 + 4β
δ

√
k + 1
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= 4β
δ eg(Σ)

√
(
√

k + 1)(
√

k + 1 + 4αβ
δ ) + 8α(β

δ )2(eg(Σ))2 + 4β
δ

√
k + 1

≤ 4β
δ eg(Σ)

√
(
√

k + 1 + 4αβ
δ )(

√
k + 1 + 4αβ

δ ) + 8α(β
δ )2(eg(Σ))2 + 4β

δ

√
k + 1,

because α, β, δ ≥ 0
= 4β

δ eg(Σ)(
√

k + 1 + 4αβ
δ ) + 8α(β

δ )2(eg(Σ))2 + 4β
δ

√
k + 1

= 4β
δ eg(Σ)

√
k + 1 + 16α(β

δ )2eg(Σ) + 8α(β
δ )2(eg(Σ))2 + 4β

δ

√
k + 1

= 4β
δ (eg(Σ) + 1)

√
k + 1 + 8α(β

δ )2(eg(Σ)2 + 2eg(Σ))

≤ 4β
δ (eg(Σ) + 1)

√
k + 1 + 8α(β

δ )2(eg(Σ)2 + 2eg(Σ) + 1),
because α, β, δ ≥ 0

= 4β
δ (eg(Σ) + 1)

√
k + 1 + 8α(β

δ (eg(Σ) + 1))2.

Theorem 4.8 is a general theorem that applies to any α-splittable bidimensional
parameter. For minor-bidimensional parameters, the bound for branchwidth can
be further improved.

Theorem 4.9. Suppose that P is a minor-bidimensional parameter with density
δ ≤ 1 and normalization factor β ≥ 1. Then, for any graph G 2-cell embedded in a
surface Σ of Euler genus eg(Σ), bw(G) ≤ 4β

δ (eg(Σ) + 1)
√

P (G) + 1.

Proof. The proof is similar to the proof of Theorem 4.8. The only difference is
that, instead of a fair splitting along the vertices of a minimum-size noncontractible
noose, we just remove vertices of the noose from the graph. Because the parameter
is minor bidimensional, the parameter cannot increase by this operation. The rest
of the proof proceeds as before. Let G be a graph 2-cell embedded in a surface Σ of
Euler genus eg(Σ), and let k = P (G). We have the following substantially simpler
inequality than the one in Theorem 4.8:

bw(G) ≤ 4β
δ eg(Σ)

√
k + 1 + ρ ≤ 4β

δ eg(Σ)
√

k + 1 + 4β
δ

√
k + 1

= 4β
δ (eg(Σ) + 1)

√
k + 1.

4.5 Combinatorial Results and Further Improvements

As a consequence of Theorem 4.9, we establish an upper bound on the treewidth
(or branchwidth) of a bounded-genus graph that excludes some planar graph H as
a minor.

As part of their seminal Graph Minors series, Robertson and Seymour proved
the following:

Theorem 4.10. [44] If G excludes a planar graph H as a minor, then the
branchwidth of G is at most bH and the treewidth of G is at most tH , where bH and
tH are constants depending only on H.

The current best estimate of these constants is the exponential upper bound
tH ≤ 202(2|V (H)|+4|E(H)|)5 [50]. However, it is known that planar graphs can be
excluded “quickly” from planar graphs. More precisely, the following result says
that, for planar graphs, the constants depend only linearly on the size of H:
Journal of the ACM, Vol. 52, No. 6, November 202005.
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Theorem 4.11. [50] If G is planar and excludes a planar graph H as a minor,
then the branchwidth of G is at most 4(2|V (H)|+ 4|E(H)|)− 3.

This theorem follows from combining Theorem 4.3 with Theorem 1.5 of [50] that
every planar graph H is a minor of an (r × r)-grid where r = 2|V (H)|+ 4|E(H)|.

Essentially the same proofs of Theorems 4.8 and 4.9 yield the following general-
ization of Theorem 4.3 for graphs of bounded genus. In fact, though, we can prove
the following result directly from Theorem 4.9.

Theorem 4.12. If G is a graph of Euler genus eg(G) with branchwidth more
than 4r(eg(G) + 1), then G has the (r × r)-grid as a minor.

Proof. Consider the parameter ξ(G) = max{r2 | G has an (r × r)-grid as a
minor}. This parameter never increases when taking minors, and has value r2 on
the (r×r)-grid, so is minor bidimensional with density 1 and normalization factor 1.
If G excludes the (r × r)-grid as a minor, then ξ(G) < r2, so ξ(G) ≤ r2 − 1. By
Theorem 4.9, we have that bw(G) ≤ 4(eg(G) + 1)

√
ξ(G) + 1 ≤ 4(eg(G) + 1)r,

proving the contrapositive of the theorem.

As above, by combining Theorem 4.12 with [50, Theorem 1.5], we obtain the
following generalization of Theorem 4.11:

Corollary 4.13. If G is a graph of Euler genus eg(G) that excludes a planar
graph H as a minor, then its branchwidth is at most 4(2|V (H)|+4|E(H)|)(eg(G)+
1).

4.6 Algorithmic Consequences

As we already discussed, the combinatorial upper bounds for branchwidth/treewidth
are used for constructing subexponential parameterized algorithms as follows. Let
G be a graph and P be a parameterized problem we need to solve on G. First
one constructs a branch/tree decomposition of G that is optimal or “almost” op-
timal. A (θ, γ, λ)-approximation scheme for branchwidth/treewidth consists of, for
every w, an O(2γwnλ)-time algorithm that, given a graph G, either reports that
G has branchwidth/treewidth at least w or produces a branch/tree decomposi-
tion of G with width at most θw. For example, the current best schemes are a
(3 + 2/3, 3.698, 3 + ε)-approximation scheme for treewidth [5] and a (3, lg 27, 2)-
approximation scheme for branchwidth [48].

If the branchwidth/treewidth of a graph is “large”, then combinatorial upper
bounds come into play and we conclude that P has no solution on G. Otherwise we
run a dynamic program on graphs of bounded branchwidth/treewidth and compute
P (G).

Thus, we conclude with the main algorithmic result of this section:

Theorem 4.14. Let P be a bidimensional parameter with density δ and nor-
malization factor β. Suppose P is either minor bidimensional, in which case we
set µ = 0, or P is contraction bidimensional and α-splittable, in which case we
set µ = 2. Suppose that there is an algorithm for the associated parameterized
problem that runs in O(2awnb) time given a tree/branch decomposition of the graph
G with width w. Suppose also that we have a (θ, γ, λ)-approximation scheme for
treewidth/branchwidth. Set τ = 1 in the case of branchwidth and τ = 1.5 in the
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case of treewidth. Then the parameterized problem asking whether P (G) ≤ k can
be solved in O(2max{aθ,γ}τ4 β

δ (g(G)+1)(
√

k+1+µα β
δ (g(G)+1))nmax{b,λ}) time.

The existence of an O(2awnb)-time algorithm for treewidth/branchwidth w holds
for many examples of bidimensional parameters with small values of a and b; see [1;
4; 11; 24; 30; 40; 31]. Observe that the correctness of our algorithms is sim-
ply based on Theorems 4.8 and 4.9, despite their nonalgorithmic natures, and
(θ, γ, λ)-approximation scheme for branch/tree decomposition. We note that the
time bounds we provide do not contain any hidden constants, and the constants
are reasonably low for a broad collection of problems covering all the problems for
which 2O(

√
k)nO(1)-time algorithms already exist.

5. H-MINOR-FREE GRAPHS

In this section, we show how the results on graphs of bounded genus can be gener-
alized on graphs with excluded minors.

5.1 Clique Sums

Suppose G1 and G2 are graphs with disjoint vertex sets and let k ≥ 0 be an integer.
For i = 1, 2, let Wi ⊆ V (Gi) form a clique of size k and let G′

i be obtained from
Gi by deleting some (possibly no) edges from Gi[Wi] with both endpoints in Wi.
Consider a bijection h : W1 → W2. We define a k-sum G of G1 and G2, denoted
by G = G1 ⊕k G2 or simply by G = G1 ⊕ G2, to be the graph obtained from the
union of G′

1 and G′
2 by identifying w with h(w) for all w ∈ W1. See Figure 3. The

images of the vertices of W1 and W2 in G1 ⊕k G2 form the join set.
Note that each vertex v of G has a corresponding vertex in G1 or G2 or both. It

is also worth mentioning that ⊕ is not a well-defined operator: it can have a set of
possible results.

The following lemma shows how the treewidth changes when we apply a clique-
sum operation, which plays an important role in our results.

Lemma 5.1. [21, Lemma 3] For any two graphs G and H, tw(G ⊕ H) ≤
max{tw(G), tw(H)}.

5.2 Characterizations of H-Minor-Free Graphs

Our result uses the deep theorem of Robertson and Seymour [49] on graphs exclud-
ing a non-planar graph as a minor. Intuitively, their theorem says that, for every
graph H, every H-minor-free graph can be expressed as a “tree structure” of pieces,
where each piece is a graph that can be drawn in a surface in which H cannot be
drawn, except for a bounded number of “apex” vertices and a bounded number of
“local areas of nonplanarity” called vortices. Here, the bounds depend only on H.

Roughly speaking we say a graph G is h-almost-embeddable in a surface Σ if
there exists a set X of size at most h of vertices, called apex vertices or apices, such
that G−X can be obtained from a graph G0 embedded in Σ by attaching at most
h graphs of pathwidth at most h to G0 within h faces in an orderly way. More
precisely:

Definition 5.2. A graph G is h-almost-embeddable in a surface Σ if there exists
a vertex set X of size at most h called apices such that G − X can be written as
Journal of the ACM, Vol. 52, No. 6, November 202005.
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G1 G2

join set

G = G1 ⊕G2

G2

W2

h

G1

W1

|W1| = k |W2| = k

Fig. 3. A k-sum of two graphs G1 and G2.

G0 ∪G1 ∪ · · · ∪Gh, where

(1) G0 has an embedding in Σ;
(2) the graphs Gi, called vortices, are pairwise disjoint;
(3) there are faces F1, . . . , Fh of G0 in Σ, and there are pairwise disjoint disks

D1, . . . , Dh in Σ, such that for i = 1, . . . , h, Di ⊂ Fi and Ui := V (G0)∩V (Gi) =
V (G0) ∩Di; and

(4) the graph Gi has a path decomposition (Bu)u∈Ui of width less than h, such
that u ∈ Bu for all u ∈ Ui. The sets Bu are ordered by the ordering of their
indices u as points along the boundary cycle of face Fi in G0.

An h-almost-embeddable graph is called apex free if the set X of apices is empty.

Now, the deep result of Robertson and Seymour is as follows.

Theorem 5.3. [49] For every graph H, there exists an integer h ≥ 0, depending
only on |V (H)|, such that every H-minor-free graph can be obtained by at most
h-sums of graphs that are h-almost-embeddable graphs in some surfaces in which H
cannot be embedded.

In particular, if H is fixed, any surface in which H cannot be embedded has
bounded genus. Thus, the summands in the theorem are h-almost-embeddable
graphs in bounded-genus surfaces. This structural theorem plays an important role
in obtaining the rest of the results of this article.

Another way to view Theorem 5.3 is that every H-minor-free graph G has a
tree decomposition (T, χ) such that, for each node i ∈ V (T ), the induced subgraph
G[χi] augmented with additional edges to form a clique on the vertices that overlap
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with the parent’s bag, and a clique on the vertices that overlap with each child’s
bag, is h-almost-embeddable in a bounded-genus surface. (This augmented graph
is called the torso [χi] in, e.g., [33; 26].) The intersections between bag χi and its
parent’s bag, and with each child’s bag, correspond to the join sets in the clique-
sum decomposition. Our development primarily follows the original clique-sum
viewpoint of Robertson and Seymour, but we will also occasionally view the sums
as being organized into the tree T .

Theorem 5.3 is very general and appeared in print only recently. However, several
nice applications (see, e.g., [6; 33; 25]) are already known.

In [20] the following algorithmic version of Theorem 5.3 is shown:

Theorem 5.4. [20] For any graph H, there is an algorithm with running time
nO(1) that either computes a clique-sum decomposition as in Theorem 5.3 for any
given H-minor-free graph G, or outputs that G is not H-minor-free. Here n is the
number of vertices in G, and the exponent in the running time depends on H.

In this article, we show that, given the tree decompositions computed by Theo-
rem 5.4, we can obtain efficient algorithms for problems on H-minor-free graphs.
Although our main development is in terms of dominating set, our approach can
be viewed as a guideline for solving other problems on H-minor-free graphs. Some
further results in this direction are described in Section 6.

5.3 Almost-Embeddable Graphs and r-Dominating Set

In order to treat each term separately in the clique-sum decomposition of an
H-minor-free graph, we need to solve a more general problem than dominating
set. This r-dominating set problem, which also arises in facility location, is also
contraction-bidimensional. This property enables us to obtain a parameter-treewidth
bound for this problem as well.

Definition 5.5. Let G be a graph. A subset D ⊆ V (G) of vertices r-dominates
another subset S ⊆ V (G) of vertices if each vertex in S is at distance at most r
from a vertex in D. We say that D is an r-dominating set if it r-dominates V (G).

We need the following result proved in [15].

Lemma 5.6. [15] Let ρ, k, r ≥ 1 be integers and G be a planar graph having
an r-dominating set of size k and containing a (ρ × ρ)-grid as a minor. Then
k ≥ (ρ−2r

2r+1 )2.

In other words, Lemma 5.6 says that, for any fixed r, r-dominating set is a bidi-
mensional parameter. It is also easy to see that it is 1-splittable. Thus, Theorem 4.8
yields the following lemma.

Lemma 5.7. For any constant r, if a graph G of genus g has an r-dominating
set of size at most k, then the treewidth of G is O(g

√
k + g2).

Now we extend this result to apex-free h-almost-embeddable graphs. Before
expressing this result, we need the following slight modification of [33, Lemma 2].

Lemma 5.8. Let G = G0 ∪ G1 ∪ · · · ∪ Gh be an apex-free h-almost-embeddable
graph. For 1 ≤ i ≤ h, let (Bu)u∈Ui

be the path decomposition of vortex Gi of width
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at most h. Suppose that, for each 1 ≤ i ≤ h, the vertices Ui = {u1
i , u

2
i , . . . , u

mi
i }

form a path in G0. Then, tw(G) ≤ (h2 + 1)(tw(G0) + 1)− 1.

Proof. Let B be a bag of a tree decomposition of G0 of minimum width tw(G0).
For each index 1 ≤ i ≤ h, and for each vertex u ∈ B ∩ Ui, we add to B the
corresponding bag Bu of the path decomposition of Gi. The size of each Bu is at
most h, and the original size of B is at most tw(G0) + 1. Thus such additions
increase the size of B by at most h2(tw(G0)+1). Performing these additions for all
bags B of a tree decomposition increases the maximum bag size from tw(G0) + 1
to (h2 + 1)(tw(G0) + 1). It can be easily seen that the resulting set of bags B form
a tree decomposition of G, because each Ui forms a path in G0.

Lemma 5.9. Let r be a constant and let G = G0 ∪G1 ∪ · · · ∪Gh be an apex-free
h-almost-embeddable graph on a surface Σ of genus g. Let k be the size of a set
D ⊆ V (G) that r-dominates V (G0). Then tw(G) = O(h2(g

√
k + h + g2)). In

particular, for fixed g and h, tw(G) = O(
√

k).

Proof. For each 1 ≤ i ≤ h, let (Bu)u∈Ui be the path decomposition of vortex
Gi, where Ui = {u1

i , u
2
i , . . . , u

mi
i }. Let G′

0 be the graph obtained from G0 by adding
new vertices C = {c1, c2, · · · , ch} and edges (ci, u

j
i ) and (uj

i , u
j+1
i ) (where j + 1 is

treated modulo mi) for all 1 ≤ i ≤ h and 1 ≤ j ≤ mi. Because G0 is embeddable
in Σ, G′

0 is also embeddable in Σ. G′
0 has an r-dominating set of size at most k+h,

namely, (D∩V (G0))∪C. By Lemma 5.7, tw(G′
0) = O(g

√
k + h+g2). The subgraph

G′′
0 = G′

0−C of G′
0 satisfies the same treewidth bound: tw(G′′

0) = O(g
√

k + h+g2).
Also, in G′′

0 , the vertices Ui, 1 ≤ i ≤ h, form a path. By Lemma 5.8, the treewidth
of G′′ = G′′

0∪G1∪· · ·∪Gh is O(h2(g
√

k + h+g2)). Finally, because G is a subgraph
of G′′, tw(G) ≤ tw(G′′).

5.4 H-Minor-Free Graphs and Dominating Set

Now that we have an understanding of r-dominating set in apex-free almost-embeddable
graphs, we return to the original problem of dominating set in the more general set-
ting of H-minor-free graphs. For this section we use the notation G∗ for the entire
H-minor-free graph so that the primary object of interest, an almost-embeddable
piece of G∗, can be referred to as G. The main result of this section is the following
algorithmic result.

Theorem 5.10. One can test whether an H-minor-free graph G∗ has a dominat-
ing set of size at most k in time 2O(

√
k)nO(1), where the constants in the exponents

depend on H.

The main intuition behind the proof of Theorem 5.10 is as follows. The algorithm
consists of two levels of dynamic programming. The top-level dynamic program is
over the clique-sum decomposition of G∗. Within each subproblem, we can focus on
a single almost-embeddable graph G. If G is apex free, then we have a parameter-
treewidth bound on G by Lemma 5.9. However, a single apex vertex in G can
dominate many vertices; hence, in general, we cannot bound the treewidth of G.
Therefore, the algorithm guesses which apex vertices are in the dominating set,
and removes the vertices of G that become “irrelavant” to our problem. (Roughly
speaking, a vertex is irrelevant if it is already dominated, and it cannot be used to
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dominate anyone else; however, the precise definition is more complicated because
of clique-sums.) If we remove the apex vertices in this way, then we show how
to obtain a parameter-treewidth bound for the remaining graph in Theorem 5.12.
Once we have a parameter-treewidth bound, the bottom-level dynamic program
solves (a generalized form of) the problem on this graph and thus G.

Before detailing the proof, we need more precise definitions.

Definition 5.11. Consider a clique-sum decomposition of an H-minor-free graph
G∗ in accordance with Theorem 5.3, organized into a tree structure (T, χ) as de-
scribed in Section 5.2. Let G be one term in the clique-sum decomposition of G∗

that is h-almost embeddable on a surface of genus g, with apex set X. If we re-
move from T the node of T corresponding to term G, we obtain a forest T ′ of p
subtrees; let G1, G2, . . . , Gp denote the clique-sums of the terms corresponding to
the nodes in each connected component of T ′. We say that G is clique-summed
with each Gi, 1 ≤ i ≤ p, with join set Wi = V (G) ∩ V (Gi). Because the clique-
sums are at most h-sums, |Wi| ≤ h. A clique Wi is called fully dominated by a
subset S ⊆ V (G) of vertices in G if V (Gi)−X ⊆ NG∗(S); otherwise, clique Wi is
called partially dominated by S. A vertex v of G is fully dominated by a set S if
NG∗[V (G)−X](v) ⊆ NG∗(S).

Note that the only edges that can appear in G but not in G∗ are the edges among
vertices of Wi, 1 ≤ i ≤ p.

Theorem 5.12. Let G be an h-almost embeddable on a surface of genus g in a
clique-sum decomposition of a graph G∗. Suppose G is clique-summed with graphs
G1, . . . , Gp via join sets W1, . . . ,Wp, where |Wi| ≤ h, 1 ≤ i ≤ p. Suppose G∗ has
a dominating set D of size at most k. Then there is a subset S ⊆ D of size at
most h such that, if we form the graph Ĝ by removing all vertices fully dominated
by S that are not included in any partially dominated clique Wi from G, then
tw(Ĝ) = O(h2g

√
k + h + g2) = O(

√
k).

Proof. Suppose X is the set of apices in G, so that G − X is an apex-free
h-almost embeddable graph. Let S = X ∩D. We claim that S is our desired set.
The rest of the proof is as follows: we construct a set D̂ of size at most k for Ĝ−X
which 2-dominates every vertex v of Ĝ − X which is not included in any vortex.
Then since Ĝ−X is apex-free h-almost-embeddable on a surface of genus g with a
2-dominating set of size at most k desired by Lemma 5.9, it has treewidth at most
O(h2g

√
k + h+ g2). Then we can add vertices of X to all bags and still have a tree

decomposition of width O(h2g
√

k + h+ g2), as desired. We construct D̂ from D as
follows. First, we set D̂ = D ∩ V (G). For each 1 ≤ i ≤ p, if D ∩ (V (Gi)−Wi) 6= ∅
and Wi 6⊆ X, we add an arbitrary vertex w ∈ Wi−X to D̂. Here we say a vertex v
of D is mapped to a vertex w of D̂ if v = w or if v ∈ D ∩ (V (Gi)−Wi) and vertex
w ∈ Wi−X is the one that we have added to D̂. One can easily observe that since
each new vertex in D̂ is in fact accounted by a unique vertex in D, |D̂| ≤ k. It only
remains to show that D is a 2-dominating set for Ĝ−X. If a vertex v ∈ V (Ĝ)−X is
not fully dominated, then there exists a vertex w ∈ NG(v) which is not dominated
by S and thus not dominated by X (since S = D ∩ X). This means that v is
2-dominated by a vertex u of Ĝ − X which dominates w (we note that u can be
originally a vertex u′ in (V (Gi) −Wi) ∩D which is mapped to u in D̂). Also, we
Journal of the ACM, Vol. 52, No. 6, November 202005.



Subexponential Parameterized Algorithms on H-Minor-Free Graphs · 23

note that for each clique Wi in which there is a mapped vertex of D, this vertex
dominates all vertices of Wi−X in Ĝ−X and thus we keep the whole clique Wi−X
in G. It only remains to show that every vertex of a partially dominated clique Wi

is 2-dominated by a vertex of Ĝ−X. We consider two cases: if Wi ∩ S = ∅, since
V (Gi)−Wi 6= ∅, there must exists a (mapped) vertex of D̂ in Wi −X and we are
done. Now assume Wi ∩ S 6= ∅. If Wi ⊂ X then Wi ∩ (V (Ĝ) − X) = ∅ and we
are done (since there is no clique in Ĝ−X at all). Otherwise, there exists a vertex
Wi −X. If (V (Gi) −Wi) ⊆ NG∗(S) 6= ∅, then V (Gi) ∩D 6= ∅. Thus there exists
a mapped vertex w ∈ Wi − X and we have 1-dominated vertices of Wi − X. As
mentioned before if D∩ (Wi−X) 6= ∅, vertices Wi−X are 1-dominated and we are
done. The only remaining case is the case in which there exists a vertex w ∈ Wi−X
which is dominated by a vertex x ∈ V (G) and by assumption w 6∈ NG∗(S) (we note
that in this case, there is no dominating vertex in V (Gi)−Wi for any i for which
w ∈ Wi.) This means that vertex x is not fully dominated and thus it remains in
Ĝ. In addition, vertex x 2-dominates all vertices of Wi − X, since Wi is a clique
in G and thus all vertices of Wi −X are 2-dominated. This completes the proof of
the theorem.

We are now ready to prove Theorem 5.10.

Proof of Theorem 5.10. First, we use the nO(1)-time algorithm of Theo-
rem 5.4 to obtain the clique-sum decomposition of graph G∗. As mentioned before,
this clique-sum decomposition can be considered as a generalized tree decomposi-
tion of G∗.

More precisely, we consider the clique-sum decomposition as a rooted tree. We
try to find a dominating set of size at most k in this graph using a two-level dynamic
program. Suppose a graph G is an h-almost-embeddable graph on a surface of genus
g in a clique-sum decomposition of a graph G∗. Assume G is clique-summed with
graphs G0, G1, . . . , Gp via join sets W0,W1, . . . ,Wp, where |Wi| ≤ h, 0 ≤ i ≤ p.
Also assume that G0 is considered as the parent of G and G1, . . . , Gp are considered
as children of G.

Colorings.. The subproblems in our first-level dynamic program are defined by a
coloring of the vertices in Wi. Each vertex will be assigned one of 3 colors, labelled
0, ↑ 1, and ↓ 1. The meaning of the coloring of a vertex v is as follows. Color 0
represents that vertex v belongs to the chosen dominating set. Colors ↓1 and ↑1
represent that the vertex v is not in the chosen dominating set. Such a vertex v
must have a neighbor w in the dominating set (i.e., colored 0); we say that vertex
w resolves vertex v. Color ↓1 for vertex v represents that the dominating vertex
w is in the subtree of the clique-sum decomposition rooted at the current graph
G, whereas ↑1 represents that the dominating vertex w is elsewhere in the clique-
sum decomposition. Intuitively, the vertices colored ↓1 have already been resolved,
whereas the vertices colored ↑1 still need to be assigned to a dominating vertex.

Locally Valid Colorings.. A coloring of the vertices of Wi is called locally valid
with respect to sets S1, S2 ⊆ V (G) if the following properties hold:

—for any two adjacent vertices v and w in Wi, if v is colored 0, w is colored ↓1;
and
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—if v ∈ S1 ∩Wi, then v is colored 0; and
—if v ∈ S2 ∩Wi, then v is not colored 0.

Our colorings are similar to that of previous work (e.g., [1]), but we use them in
a new dynamic-programming framework that acts over clique-sum decompositions
instead of tree decompositions.

Dynamic Program Subproblems.. Our first-level dynamic program has one sub-
problem for each graph G in the clique-sum decomposition and for each coloring
c of the vertices in W0. Because each join set has at most h vertices, the num-
ber of subproblems is O(n · 3h). We define D(G, c) to be the size of the minimum
“semi”-dominating set of the vertices in subtree rooted at G subject to the following
restrictions:

(1) Vertices colored ↓1 are adjacent to at least one vertex in the dominating set.
(Vertices colored ↑1 are dominated “for free”.)

(2) Vertices colored 0 are precisely the vertices in the dominating set.
(3) Vertices in W0 are colored according to c.

If we solve every such subproblem, then in particular, we solve the subproblems
involving the root node of the clique-sum decomposition and in which every vertex
is colored 0 or ↓1. The final dominating set of size k is given by the best solution
to these subproblems.

Induction Step.. Suppose for each coloring c of Wi, 1 ≤ i ≤ p, we know D(Gi, c).
If the graph G is of size at most h, then we can try all colorings in O(3h ·h2) = O(1)
time (where the factor of h2 is for checking validity). Thus, we focus on almost-
embeddable graphs G. First, we guess a subset X of size at most h. Then for each
subset S of X, we put the vertices of S in the dominating set and forbid vertices of
X−S from being in the dominating set. Now we remove from G all fully dominated
vertices of G−X that are not included in any partially dominated clique Wi. Call
the resulting graph Ĝ. By Theorem 5.12, tw(Ĝ) = O(

√
k), or else we can ignore

this subset S. We can obtain such a tree decomposition of width 3 + 2/3 times
optimum (or determine that tw(Ĝ) is too large), in 2O(

√
k)n3+ε time by a result

of Amir [5]. All vertices absent from this tree decomposition are fully dominated
and thus, in any minimum dominating set that includes S, they will not appear
except the following case. It is possible that up to |X − S| = O(h) vertices, which
are either fully dominated or belong to V (Gi) −Wi where Wi is fully dominated,
appear in the dominating set to dominate vertices of X − S. Call the set of such
vertices S′. We can guess this set S′ by choosing at most h vertices among the
discarded vertices that have at least one neighbor in X − S, and then add S′ to
the dominating set. On the other hand, for any partially dominated clique Wi, we
know that all of its vertices are present in the tree decomposition; because they
form a clique, there is a bag αi in any tree decomposition that contains all vertices
of Wi. We find αi in our tree decomposition and map Wi and Gi to this bag. We
also assume W0 is contained in all bags, because its size is at most h. Now, for
each coloring c of W0, we run the dynamic program of Alber et al. [1] on the tree
decomposition, with the restriction that the colorings of the bags are locally valid
with respect to S1 := S ∪S′ and S2 := X −S, and are consistent with the coloring
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c of W0. For each bag αi to which we mapped Gi, we add to the cost of the bag
the value D(Gi, c

′) for the current coloring c′ of Wi. Using this dynamic program,
we can obtain D(G, c) for each coloring c of W0.

Running Time.. The running time for each coloring c of W0 and each choice of S

is 2O(
√

k)n according to [1]. We have 3h choices for c, O(nh+1) choices for X, O(2h)
choices for S, and O(nh+1) choices for S′. Thus the running time for this inductive
step is 6hn2h+22O(

√
k). There are O(n) graphs in the clique-sum decomposition

of G. Therefore, the total running time of the algorithm is O(6hn2h+32O(
√

k))+nO(1)

(the latter term for creating the clique-sum decomposition), which is 2O(
√

k)nO(1)

as desired.

6. CONCLUSIONS AND FURTHER WORK

We have shown how to obtain subexponential fixed-parameter algorithms for the
broad class of bidimensional problems on bounded-genus graphs, and for dominat-
ing set on general H-minor-free graphs for any fixed H. Our approach can also
be used to obtain subexponential algorithms for other problems on H-minor-free
graphs. We now demonstrate some examples of such problems.

The first example is vertex cover, where we use the following reduction. For a
graph G, let G′ be the graph obtained from G by adding a path of length two
between any pair of adjacent vertices. The following lemma is obvious.

Lemma 6.1. For any Kh-minor-free graph G, h ≥ 4, and integer k ≥ 1,

—G′ is Kh-minor-free, and
—G has a vertex cover of size ≤ k if and only if G′ has a dominating set of size
≤ k.

Combining Lemma 6.1 with Theorem 5.10, we conclude that parameterized ver-
tex cover can be solved in subexponential time on graphs with an excluded minor.

Another example is the set-cover problem. Given a collection C = {C1, C2, . . . , Cm}
of subsets of a finite set S = {s1, s2, . . . , sn}, a set cover is a subcollection C ′ ⊆ C
such that

⋃
Ci∈C′ Ci = S. The minimum set cover problem is to find a cover of

minimum size. For an instance (C,S) of minimum set cover, its graph GS is a
bipartite graph with bipartition (C,S). Vertices si and Cj are adjacent in GS if
and only if si ∈ Cj . Theorem 5.10 can be used to prove that minimum set cover can
be solved in subexponential time when GS is H-minor free for some fixed graph H.
Specifically, for a given graph GS , we construct an auxiliary graph AS by adding
new vertices v, u, w and making v adjacent to {u, w,C1, C2, . . . , Cm}. Then

—(C,S) has a set cover of size ≤ k if and only if AS has a dominating set of size
≤ k + 1, and

—if GS is Kh-minor-free, then AS is Kh+1-minor-free.

It is reasonable to believe that Theorem 5.10 generalizes to obtain a subexpo-
nential fixed-parameter algorithm for the (k, r)-center problem on H-minor-free
graphs. The (k, r)-center problem is a generalization of the dominating-set prob-
lem in which the goal is to determine whether an input graph G has at most k
vertices (called centers) such that every vertex of G is within distance at most r
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from some center. Demaine et al. [15] consider this problem for planar graphs and
map graphs, and present a generalization of dynamic programming mentioned in
the proof of Theorem 5.10 to solve the (k, r)-center problem for graphs of bounded
treewidth/branchwidth. This dynamic program and Theorem 5.12 can be gener-
alized to establish the desired result for H-minor-free graphs. A consequence is
that we can solve the dominating-set problem in constant powers of H-minor-free
graphs, which is the most general class of graphs so far for which one can obtain
the exponential speedup.

It is an open and tempting question whether our technique can be generalized
to solve in subexponential time on H-minor-free graphs every problem that can be
solved in subexponential time on bounded-genus graphs. Recent positive progress
on this question has been made [19]. Based on our results, they obtain subexponen-
tial algorithms for any minor-bidimensional problem on H-minor-free graphs, and
for any contraction-bidimensional problem on apex-minor-free graphs. (A graph
is apex-minor-free if it excludes a fixed apex graph; an apex graph is a graph in
which the removal of a vertex leaves a planar graph.) Note that these results, while
general, cannot be applied directly to dominating set on H-minor-free graphs. In
particular, it remains open to extend the algorithmic approaches of Section 5 for
H-minor-free graphs to all bidimensional parameters.

We also suspect that there is a strong connection between bidimensional param-
eters and the existence of linear-size kernels for the corresponding parameterized
problems in bounded-genus graphs. Such a linear kernel has recently been obtained
for dominating set [31].

Another question asked in the conference version of this article is whether the
upper bounds of Theorems 4.8 and 4.9 can be extended to larger graph classes. The
first steps in this direction were obtained in [14] for minor-closed graph families. A
graph family F has the domination-treewidth property if there is some function f(d)
such that, for every graph G ∈ F with dominating set of size ≤ k, tw(G) ≤ f(k).
In [14] it is shown that a minor-closed graph family has the domination-treewidth
property if and only if the family has bounded local treewidth. In [17] it is shown
further that, for any minor-closed graph family F of bounded local treewidth,
tw(G) = O(

√
P (G)) for any G ∈ F , where P is the dominating-set parameter.

More recently the same result has been established for any bidimensional parameter
P [19].

The theory of bidimensionality can also be applied to obtain fixed-parameter al-
gorithms and polynomial-time approximation schemes for most bidimensional prob-
lems on planar graphs and more generally H-minor-free graphs. We refer the reader
to [18; 19] for details.

Finally, we point out that all papers cited in this section were based on the results
of this article.
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