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A classic problem in computational origami is flat
foldability : given a crease pattern (planar straight-
line graph with n edges) on a polygonal piece of pa-
per P , can P be folded flat isometrically without self-
intersection while creasing at all creases (edges) in
the crease pattern? The problem can also be defined
for assigned crease patterns, in which every crease is
labeled mountain or valley depending on the direc-
tion it is allowed to fold. The decision problem (for
both assigned or unassigned) is NP-hard [5], even
when the paper is an axis-aligned rectangle and the
creases are at multiples of 45◦ [2]. But even when a
crease pattern does fold flat, the motion to achieve
that folding can be complicated [6], making the pro-
cess impractical in some physical settings.

Motivated by practical folding processes in man-
ufacturing such as sheet-metal bending, Arkin et
al. [3] introduced the idea of simple foldability—flat
foldability by a sequence of simple folds. Informally,
a simple fold is defined by a line segment and ro-
tates a portion of the paper around this segment by
±180◦, while avoiding self-intersection. The problem
generalizes to d-dimensions. In particular, for 1D
paper, P is a line segment and creases are defined
by points in P . In [3], they defined several mod-
els for simple folds and, for many models, showed
that deciding simple foldability is polynomial for 1D
paper, polynomial for rectangular paper with axis-
aligned creases, weakly NP-complete for rectangular
paper with creases at multiples of 45◦, and weakly
NP-complete for orthogonal paper with axis-aligned
creases. In particular, they provided an algorithm
to determine simple foldability of a 1D paper in
O(n log n) deterministic time and O(n) randomized
time in the all-layers model, requiring that a simple
fold through one crease, also folds through all layers
overlapping that crease. Akitaya et al. [1] extended
the list of simple folding models, and for many mod-
els showed simple foldability to be strongly NP-hard
for 2D paper. In particular, they introduced the
infinite all-layers model of simple folds for 2D pa-
per which is studied here, requiring that each simple
fold be defined by an infinite line, and that all layers
of paper intersecting this line must be folded. This
model is probably the most practical simple folding
model; for example, Balkcom’s robotic folding sys-
tem [4] is restricted to this model.

In this paper, we improve on [3] giving a deter-
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ministic O(n)-time algorithm to decide simple fold-
ability of 1D crease patterns in the all-layers model.
Then, we prove two results concerning the complex-
ity of one of the few remaining open problems in
this area [1]: infinite all-layers simple foldability on
orthogonal crease patterns, axis-aligned orthogonal
2D paper with axis-aligned creases. First, we prove
that this problem can be solved in linear time when
creases are fully unassigned. On the other hand,
when the creases are partially assigned (some creases
must fold mountain, some creases must fold valley,
while others can freely fold mountain or valley), this
problem becomes strongly NP-complete, even for an
axis-aligned rectangle of paper.

Theorem 1 All-layers simple foldability of a 1D
crease pattern can be decided in deterministic linear
time.

Proof sketch: We reduce the problem to a “string
folding” problem as in [3], representing the input as
a string of the form `0d1`1d2 . . . dn−1`n−1dn`n where
each di ∈ {M,V } represents the assignment of the
i-th crease and `i ∈ R represents the length of the
i-th uncreased line segment in P . For an instance to
be simple foldable in this model, any fold must map
a crease onto another crease of opposite assignment.
After a fold is performed, we obtain a smaller crease
pattern by ignoring paper overlap. By [3] the smaller
crease pattern is simple foldable if and only if the
original one is. The size of a fold is defined by the
difference on the length of the strings representing
the crease patterns. We adapt the algorithm in [7]
to recognize the smallest possible fold in a crease
pattern that runs in linear time on the size of the
output fold, leading to an amortized linear time al-
gorithm overall. Unassigned crease patterns can also
be solved by a simple modification of this algorithm.

Theorem 2 Infinite all-layers simple foldability of
a fully unassigned orthogonal crease pattern can be
decided in deterministic linear time.

Proof sketch: We first provide a linear time reduc-
tion of infinite all-layers simple foldability of unas-
signed orthogonal crease patterns to instances on
rectangular paper. Such instances are equivalent in
the finite and infinite all-layers models [2]. We then
reduce the problem on a rectangle to two instances of
1D simple foldability which by Theorem 1 can each
be decided in deterministic linear time.
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Theorem 3 Deciding infinite all-layers simple
foldibility of partially assigned orthogonal crease
patterns is NP-Complete, even for creases on a
square grid on rectangular paper.

Proof sketch: The problem is in NP as a valid se-
quence of simple folds represents a certificate of at
most linear size that can be checked in polynomial
time. We show NP-hardness via a reduction from
3SAT. Given an instance of 3SAT on n variables
and m clauses, we build a partially assigned simple
foldability instance as illustrated in Figure 1. Infor-
mally, yellow dots on the same vertical line represent
a clause. The partial assignment forces any legal se-
quence of simple folds to fold through either t1 or
f1 but not both, forcing a yellow dot onto either a
green or red dot respectively, encoding the boolean
assignment of the variable x1. A vertical fold on the
right edge of the paper must occur next, followed by
folding along either t′1 or f ′1, consistent with whether
t1 or f1 was initially chosen. These folds force the
yellow dots directly below t1 and f1 to coincide with
the yellow dots directly above t1 and f1, and adds a
valley assignment to a crease incident to a yellow dot
if its corresponding clause contains a literal involving
x1 that evaluates to false. We apply induction on
the resulting crease pattern to bring all the yellow
dots to lie on top of the m upper-most yellow dots. A
crease pattern containing a vertex incident to only
valley creases is not flat foldable. After folding as
described for any given assignment of the variables,
we show that the each resulting yellow dot will be
incident to at least one non-valley crease if and only
if the SAT instance has a positive solution, and that
the resulting crease pattern can be folded by a se-
quence of infinite all-layers simple folds.
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Figure 1: Reduction from the instance (x1 ∨ x2 ∨
x3) ∧ (x1 ∨ x2 ∨ x3) of 3SAT to partially assigned
simple foldability under the infinite all-layers model.
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