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ABSTRACT
We study the power of fractional allocations of resources to max-
imize our influence in a network. This work extends in a natu-
ral way the well-studied model by Kleinberg, Kempe, and Tardos
(2003), where a designer selects a (small) seed set of nodes in a
social network to influence directly, this influence cascades when
other nodes reach certain thresholds of neighbor influence, and the
goal is to maximize the final number of influenced nodes. Despite
extensive study from both practical and theoretical viewpoints, this
model limits the designer to a binary choice for each node, with
no chance to apply intermediate levels of influence. This model
captures some settings precisely, such as exposure to an idea or
pathogen, but it fails to capture very relevant concerns in others,
for example, a manufacturer promoting a new product by distribut-
ing five “20% off” coupons instead of giving away a single free
product.

While fractional versions of problems tend to be easier to solve
than integral versions, for influence maximization, we show that
the two versions have essentially the same computational complex-
ity. On the other hand, the two versions can have vastly different
solutions: the added flexibility of fractional allocation can lead to
vastly improved influence. Our main theoretical contribution is to
show how to adapt the major positive results from the integral case
to the fractional case. Specifically, Mossel and Roch (2006) used
the submodularity of influence to obtain their integral results; we
introduce a new notion ofcontinuous submodularity, and use this to
obtain matching fractional results. We conclude that similar algo-
rithms and heuristics from the integral case apply to the fractional
case. In practice, we find that the fractional model performs sub-
stantially better than the integral model, according to simulations
on real-world social network data.

∗A full version of this paper is available athttp://www.cs.
umd.edu/~hmahini/fracinf.pdf
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1. INTRODUCTION
The ideas we are exposed to and the choices we make are sig-

nificantly influenced by our social context. It has long been stud-
ied how our social network (i.e., who we interact with) impacts
the choices we make, and how ideas and behaviors can spread
through social networks [3, 10, 21, 22]. With websites such as
Facebook and Google+ devoted to the forming and maintaining of
social networks, this effect becomes ever more evident. Individuals
are linked together more explicitly and measurable, making it both
easier and more important to understand how social networks affect
the behaviors and actions that spread through a society.

A key problem in this area is to understand how such a behavioral
cascade can start. For example, if a company wants to introduce
a new product but has a limited promotional budget, it becomes
critical to understand how to target their promotional efforts in or-
der to generate awareness among as many people as possible. A
well-studied model for this is the Influence Maximization problem,
introduced by Kleinberg, Kempe, and Tardos [15]. The problem
asks to find a small set of individuals to influence, such that this
influence will cascade and grow through the social network to the
maximum extent possible. For example, if a company wants to in-
troduce a new piece of software, and believes that friends of users
are likely to become users themselves, how should they allocate
free copies of their software in order to maximize the size of their
eventual user base?

Since the introduction of the Influence Maximization problem
[15], there has been a great deal of interest and follow-up work in
the model. While Kempe et al. [15] give a greedy algorithm for ap-
proximating the Influence Maximization problem, it requires costly
simulation at every step; thus, while their solution provides a good
benchmark, a key area of research has been on finding practical,
fast algorithms that themselves provide good approximations to the
greedy algorithm [4, 5, 6, 7, 16]. The practical, applied nature of
the motivating settings means that even small gains in performance
(either runtime or approximation factor) are critical, especially on
large, real-world instances.

We believe that the standard formulation of the Influence Max-
imization problem, however, misses a critical aspect of practical
applications. In particular, it forces a binary choice upon the opti-
mizer, forcing a choice of either zero or complete influence on each
individual, with no options in between. While this is reasonable for
some settings — e.g., exposure to an idea or pathogen – it is far
less reasonable for other settings of practical importance. For ex-



ample, a company promoting a new product may find that giving
away ten free copies is far less effective than offering a discount of
ten percent to a hundred people. We propose afractionalversion of
the problem where the optimizer has the freedom to split influence
across individuals as they see fit.

To make this concrete, consider the following problem an opti-
mizer might face. Say that an optimizer feels there is some small,
well-connected group whose adoption of their product is critical to
success, but only has enough promotion budget remaining to influ-
ence one third of the group directly. In the original version of Influ-
ence Maximization, the optimizer is forced to decide which third
of the group to focus on. We believe it is more natural to assume
they have the flexibility to try applying uniform influence to the
group, say offering everyone a discount of one third on the price of
their product, or in fact any combination of these two approaches.
While our results are preliminary, we feel that our proposed model
addresses some very real concerns with practical applications of In-
fluence Maximization, and offers many opportunities for important
future research.

1.1 Our Results and Techniques
This work aims to understand how our proposed fractional ver-

sion of the Influence Maximization problem differs from the in-
tegral version proposed by Kleinberg, Kempe, and Tardos [15].
We consider this question from both a theoretical and an empiri-
cal perspective. On the theoretical side, we show that, unlike many
problems, the fractional version appears to retain essentially the
same computational hardness as the integral version. The problems
are very different, however: we give examples where the objective
values for the fractional and integral versions differ significantly.
Nonetheless, we are able to carry over the main positive results to
the fractional setting. On the empirical side, we simulate the main
algorithms and heuristics on real-world social network data, and
find that the computed solutions are substantially more efficient in
the fractional setting.

Our main theoretical result shows that the positive results of
Mossel and Roch [18] extend to our proposed fractional model.
Their result states that, in the integral case, when influence between
agents is submodular, so too is the objective function in Influence
Maximization. We show that, for a continuous analog of submodu-
larity,1 the same results holds for our fractional case. First we con-
sider a discretized version of the fractional Influence Maximization
Problem, where each vertex can be assigned a weight that is a mul-
tiple of some discretization parameterε = 1

N
. Then we consider

the final influenced set by choosing a weighted seed setS, where
the weight of each element is a multiple ofε. We show that the
fractional Influence Maximization objective is a submodular func-
tion ofS for anyN ≥ 1 (Theorem 2). We further extend this result
to the continuous case (Theorem 3). Note that this result does not
follow simply by relating the fractional objective function to the
integral objective and interpolating, or other similar methods; in-
stead, we need to use a nontrivial reduction to the generalization
of the influence maximization problem given by Mossel and Roch
[18]. Not only does this result show that our problem admits a
greedy solution with good approximation guarantee, it furthermore
gives us hope that we can readily adapt the large body of work on
efficient heuristics for the integral case to our problem and achieve
good results.

In addition to showing the submodularity of the objective persists
from the integral case to the fractional case, we show that the hard-

1Note that our notion of continuous submodularity is neither of the
two most common continuous extensions of submodularity, namely
the multilinear and Lovász extensions.

ness of the integral case persists as well. In the case of fixed thresh-
olds, we show that all of the hardness results of Kempe et al. [15]
extend readily to the fractional case. Specifically, we show that,
for the fractional version of linear influence model, even finding
an n1−ε-approximation is NP-hard. First we prove NP-hardness
of the problem by a reduction from the independent set problem
(Theorem 6), and then we strengthen the result to prove inapprox-
imability (Corollary 7). In addition, when thresholds are assumed
to be independent and uniformly distributed in[0, 1], we show that
it is NP-hard to achieve better than a(1 − 1/e)-approximation in
the Triggering model introduced by Kempe et al. [15]. This holds
even for the simple case where triggering sets are deterministic and
have constant sizes, and shows that even for this simple case the
greedy approximation is tight, just as in the integral case. An im-
portant aspect of all of these reductions is that they use very simple
directed acyclic graphs (DAGs), with only two layers of vertices.

Our last set of results focus on the special case where the net-
work is a DAG. Here, we focus on the linear influence model with
uniform thresholds. In this case, we see that we can easily compute
the expected influence from any single node via dynamic program-
ming; this closely resembles a previous result for the integral case
[7]. In the fractional case, this gives us a sort of linearity result.
Namely, if we are careful to avoid interference between the influ-
ences we place on nodes, we can conclude that the objective is
essentially linear in the seed set. While the conditions on this theo-
rem seem strong at first glance, it has a very powerful implication:
all of the hardness results we presented involved choosing optimal
seed sets from among the sources in a DAG, and this theorem says
that with uniform thresholds the greedy algorithm finds theoptimal
such seed set.

1.2 Related Work
Economics, sociology, and political science have all studied and

modeled behaviors arising from information and influence cascades
in social networks. Some of the earliest models were proposed by
Granovetter [10] and Schelling [21]. Since then, many such models
have been studied and proposed in the literature [3, 20, 22].

The advent of social networking platforms such as Facebook,
Twitter, and Flickr has provided researchers with unprecedented
data about social interactions, albeit in a virtual setting. The ques-
tion of monetizing this data is critically important for the entities
that provide these platforms and the entities that want to leverage
this data to engineer effective marketing campaigns. These two
factors have generated huge interest in algorithmic aspects of these
systems.

A question of central importance is to recognize “important in-
dividuals” in a social network. Domingos and Richardson [8, 19]
were the first to propose heuristics for selection of customers on
a network for marketing. This work focuses on evaluating cus-
tomers based on their intrinsic and network value. The network
value is assumed to be generated by a customer influencing other
customers in her social network to buy the product. In a seminal
paper, Kempe et al. [15] give an approximation algorithm for se-
lection of influential nodes under the linear threshold (LT) model.
Mossel and Roch [17] generalized the results of Kempe et al. [15]
to cases where the activation functions are monotone and submod-
ular. Gunnec and Raghavan [12] were the first to discuss fractional
incentives (they refer to these as partial incentives/inducements) in
the context of a product design problem. They consider a frac-
tional version of the target set selection problem (i.e., fixed thresh-
olds, fractional incentives, a linear influence model, with the goal
of minimizing the fractional incentives paid out so that all nodes in
the graph are influenced). They provide an integer programming



model, and show that when the neighbors of a node have equal in-
fluence on it, the problem is polynomially solvable via a greedy
algorithm [11, 12, 13].

Some recent work has directly tackled the question of revenue
maximization in social networks by leveraging differential pricing
to monetize positive externalities arising due to adoption of prod-
uct by neighbors of a customer [1, 2, 9, 14]. Other work has fo-
cused on finding faster algorithms for the target set selection prob-
lem [5, 6, 7, 16]. A very recent theoretical result in this direction is
anO( (m+n) logn

ε3
) algorithm giving an approximation guarantee of

1− 1
e
−ε [4]. While Leskovec et al. [16] do not compare their algo-

rithm directly with the greedy algorithm of Kempe et al. [15], the
heuristics in other papers [5, 6, 7] approach the performance of the
greedy algorithm quite closely. For example, in [6], the proposed
heuristic achieves an influence spread of approximately 95% of the
influence spread achieved by the greedy algorithm. An interesting
fact on the flip side is that none of the heuristics beat the greedy
algorithm (which itself is a heuristic) for even a single data set.

2. MODEL

Integral Influence Model. We begin by describing the model
used for propagation of influence in social networks used by Mos-
sel and Roch [18]; it captures the model of Kempe et al. [15] as
a special case. While the latter described the spread of influence
in terms of an explicit network, the former leaves the underlying
social network implicit. In this model, the social network is given
by a vertex setV and an explicit description of how vertices influ-
ence each other. For each vertexv ∈ V , we are given a function
fv : 2V → [0, 1] specifying the amount of influence each subset
S ⊆ V exerts onv. We denote the set of all influence functions by
F = {fv}v∈V .

Given a social network specified by(V,F), we want to under-
stand how influence propagates in this network. The spread of in-
fluence is modeled by a process that runs in discrete stages. In
addition to the influence functionfv, each vertexv has a threshold
θv ∈ [0, 1] representing how resistant it is to being influenced. If,
at a given stage, the currently activated set of vertices isS ⊆ V ,
then any unactivatedv ∈ V \S becomes activated in the next stage
if and only if fv(S) ≥ θv. Our goal is to understand how much
influence different sets of vertices exert on the social network as
a whole under this process; we can measure this by running this
process to completion starting with from a particularseed set, and
seeing how large the final activated set is. In some settings, we
may value activating certain (sets of) vertices more highly, and to
capture this we define a weight functionw : 2V → R+ on subsets
of V . We now define the value of a seed setS as follows. For
an initially activated setS0, let SΘ

1 , SΘ
2 , . . . , SΘ

n be the activated
sets after1, 2, . . . , n = |V | stages of our spreading process, when
Θ = (θv)v∈V is our vector of thresholds. Our goal is understand-
ing the value ofw(SΘ

n ) when we setS0 = S. Note this depends
strongly onΘ; the exact values of thresholds can have a significant
impact on the final activated set. If the vectorΘ can be arbitrary,
finding the best seed set – or even any nontrivial approximation of
it – becomes NP-Hard (see Section 5 for discussion and proofs of
this). Thus, we follow the lead of Kempe et al. [15] and assume
that each threshold is independently distributed asθv ∼ U [0, 1].
Then, our goal in this problem is understanding the structure of the
functionσ : 2V → R+ given by

σ(S) = E
Θ
[ w(SΘ

n ) | S0 = S ],

with the goal of finding seed setsS maximizingσ(S).

Fractional Influence Model. A major shortcoming of the model
described above is that it isolates the effects of influence directly
applied by the optimizer from those of influence cascading from
other individuals in the network. In particular, note that every in-
dividual in the social network is either explicitly activated by the
optimizer (and influence from their neighbors has no effect), or is
activated by influence from other agents with no (direct) involve-
ment from the optimizer. This separation is artificial, however, and
in practical settings a clever optimizer could try to take advantage
of known influences between the individuals they try to affect. For
example, if an optimizer is already planning to activate some setS
of individuals, it should require notably less effort to ensure activa-
tion of any individual who is heavily influenced by the setS.

We propose the following modification of the previously de-
scribed influence model in order to capture this phenomenon.
Rather than selecting a setS of nodes to activate, the optimizer
specifies a vectorx ∈ [0, 1]n indexed by V, wherexv indicates the
amount of direct influence we apply tov. We assume that this di-
rect influence is additive with influence from other vertices in the
network, in the sense that if the current activated set isS in a stage
of our process,v becomes activated in the next stage if and only if
fv(S) + xv ≥ θv. Here, we assume that no vertices are initially
activated, that isS0 = ∅. Note, however, that even without contri-
butions from other nodes, our directly-applied influence can cause
activations. Notably, it is easy to see that

SΘ
1 = {v ∈ V : xv ≥ θv}.

We point out, however, that our process is not simply a matter of se-
lecting an initial activated set at random with marginal probabilities
x. The influencexv we apply tov not only has a chance to activate
it at the outself, but also makes it easier for influence from other
vertices to activate it in all future stages of the process. Lastly, we
observe that this model captures the originally discussed model as
a special case, since selecting sets to initially activate corresponds
exactly with choosingx ∈ {0, 1}n, just with a single-round delay
in the process. This motivates us to term the original model as the
integral influence model, and this new model as the fractional in-
fluence model. As before, we want to understand the structure of
the expected value of the final influenced set as a function of how
we apply influence to nodes in a graph. We extend our function to
σ : [0, 1]n → R+ by

σ(x) = E
Θ
[ w(SΘ

n ) | we apply direct influencesx ].

As before, we want to both understand the structure ofσ and be
able to find (approximately) optimal inputsx.

Gap Between Integral and Fractional. A natural question when
presented with a new model is whether it provides any additional
power over the previous one. Here, we answer that question in the
affirmative for the fractional extension of the Influence Maximiza-
tion model. In particular, we present two examples here that show
that fractional influence can allow a designer to achieve strictly bet-
ter results than integral influence for a particular budget. The first
example shows that with fixed thresholds, this gap is linear (per-
haps unsurprisingly, given the hardness of the problem under hard
thresholds). The second example, however, shows that even with
independent uniform thresholds an optimizer with the power to ap-
ply fractional influence can see an improvement of up to a factor of
(1− 1/e).

EXAMPLE 1. The following example shows that when thresh-
olds are fixed, the optimal objective values in the fractional and
integral cases can differ by as much as a factor ofn, wheren is



the number of vertices in the graph. The instance we consider is a
DAG consisting of a single, directed path ofn vertices. Each edge
in the path has weight1/(n+ 1), and every vertex on the path has
threshold2/(n+1). Note that since thresholds are strictly greater
than edge weights, and every vertex, being on a simple path, has
in degree at most one, it is impossible for a vertex to be activated
without some direct influence being applied to it.

Consider our problem on the above graph with budget1. In the
integral case, we cannot activate more than a single vertex – as
previously observed, no vertex can be activated without direct ap-
plication of influence, and with a budget of1 we can only affect
one vertex directly. On the other hand, in the fractional case the
following strategy guarantees that all vertices are activated. Apply
2/(n + 1) influence to the earliest vertex, and1/(n + 1) influ-
ence to the remaining(n − 1) vertices. Now, this is sufficient to
activate the earliest vertex directly; furthermore, every other ver-
tex has sufficient direct influence that it will activate as long as the
vertex before it on the path does. Thus, a simple induction proves
the claim, and we can see that the optimal integral and fractional
solutions differ in objective value by a factor ofn.

EXAMPLE 2. Consider solving our problem on a directed
graph consisting of a single (one-directional) cycle withn vertices.
Assume that every edge has weight1 − K/n, and that thresholds
on nodes are drawn fromU [0, 1]. We consider the optimal integral
and fractional influence to apply.

In the fractional case, consider applying influence of exactly
K/n to every node. Note that for any node, the amount of influence
we apply directly plus the weight on its sole incoming edge sum to
1. Thus, any time a node’s predecessor on the cycle becomes acti-
vated, the node will become activated as well. Inductively, we can
then see that any time at least one node is activated in the cycle,
every node will eventually become activated. This means that the
expected number of activated nodes under this strategy is precisely

n · Pr[At least one node activates]

= n(1− Pr[Every node’s threshold is aboveK/n])

= n(1− (1−K/n)n).

In the integral case, however, we cannot spread our influence
as evenly. Note that each node we activate has some chance to
activate the nodes following it in the cycle; however, any cascade
must stop once we reach the next node we directly activated. If
we have an interval of lengthℓ between directly activated nodes
(including the initial node we activate directly in the length), we
can see that the expected number of nodes activated in the interval
is

ℓ
∑

i=1

Pr[Nodei in the interval is activated]

=

ℓ
∑

i=1

Pr[Nodes2, 3, . . . , i have thresholds below1−K/n]

=

ℓ
∑

i=1

(1−K/n)i−1 =
1− (1−K/n)ℓ

K/n
.

While this tells us the expected value for a single interval, we want
to know the expected value summed over all intervals. Observing
from the sum form that the benefit of adding another node to an
interval is strictly decreasing in the length of the interval, we can
see that we should always make the lengths of the intervals as close
to equal as possible. Noting that the lengths of the intervals always
sum ton, then, we can see that the total number of nodes activated

in expectation is bounded by

K
1− (1−K/n)n/K

K/n
= n(1− (1−K/n))n/K .

Note, however, that if we chooseK ≈ lnn, we get that

1− (1−K/n)n/K

1− (1−K/n)n
≈ 1− 1/e.

3. REDUCTION
In this section, we extend the submodularity results of Mossel

and Roch [18] for the integral version of Influence Maximization
to the fractional version. At a high level, our approach revolves
around reducing a fractional instance to an integral one, such that
evolution of the process and objective values are preserved. Thus,
before presenting our extension, we begin by stating the main re-
sult of [18]. Before stating the theorems, however, we give defi-
nitions for the function functions properties each requires. Finally,
we note that our main result of the section (Theorem 2) considers
a discretizationof the input space; at the end of this section we
show that such discretization cannot affect our objective value by
too much.

We begin by giving definitions for the following properties of set
functions. Given a setN and a functionf : 2N → R, we say that:

• f is normalizedif f(∅) = 0;

• f is monotoneif f(S) ≤ f(T ) for anyS ⊆ T ⊆ N ; and

• f is submodularif f(S∪{x})−f(S) ≥ f(T ∪{x})−f(T )
for anyS ⊆ T ⊆ N andx ∈ N \ T .

We say that a collection of functions satisfies the above properties
if every function in the collection does. With the above definitions
in hand, we are now ready to state the following result of Mossel
and Roch.

THEOREM 1. (Restatement of [18, Theorem 1.6]) LetI =
(V,F , w) be an instance of integral Influence Maximization. If
bothw andF are normalized, monotone, and submodular, thenσ
is as well.

We want to extend Theorem 1 to the fractional influence model.
We proceed by showing that for arbitrarily fine discretizations of
[0, 1], any instance of our problem considered on the discretized
space can be reduced to an instance of the original problem. Fix
N ∈ Z+, and letδ = 1/N > 0 be our discretization parameter.
Let ∆ = {0, δ, 2δ, . . . , 1}. We consider the fractional objective
functionσ restricted to the domain∆n. Lastly, letδv be the vec-
tor with δ in the component corresponding tov, and0 in all other
components. We extend the relevant set function properties to this
discretized space as follows:

• we sayσ is normalizedif σ(0) = 0;

• we sayσ is monotoneif x ≤ y impliesσ(x) ≤ σ(y); and

• we sayσ is submodularif for any x ≤ y, and anyv ∈ V ,
eitheryv = 1 or σ(x+ δv)− σ(x) ≥ σ(y + δv)− σ(y),

where all comparisons and additions between vectors above are
componentwise. We get the following extension of Theorem 1.

THEOREM 2. Let I = (V,F , w) be an instance of fractional
Influence Maximization. For any discretization∆n of [0, 1]n (as
defined above), if bothw andF are normalized, monotone, and
submodular, thenσ is normalized, monotone, and submodular on
∆n.



PROOF. We prove this by reducing and instance of the (dis-
cretized) fractional problem forI to an instance of the integral
influence problem and then applying Theorem 1. We begin by
modifying I to produce a new instancêI = (V̂ , F̂ , ŵ). Then,
we show thatF̂ andŵ will retain the properties of normalization,
monotonicity, and submodularity. Lastly, we show a mapping from
(discretized) fractional activations forI to integral activations for̂I
such that objective values are preserved, and our desired fractional
set function properties forσ correspond exactly to their integral
counterparts for the objective function̂σ for Î. The result then
follows immediately from Theorem 1.

We begin by constructing the instanceÎ. The key idea is that we
can simulate fractional activation with integral activation by adding
a set of dummy activator nodes for each original node; each acti-
vator node applies an incremental amount of pressure on its associ-
ated original node. Then, for each original node we just need to add
the influence from activator node to that from other original nodes,
and truncate the sum to one. Fortunately, both of the aforemen-
tioned operations preserve the desired properties. Lastly, in order
to avoid the activator nodes interfering with objective values, we
simply need to give them weight zero. With this intuition in mind,
we now definêI = (V̂ , F̂ , ŵ) formally.

First, we construct̂V . For each nodev ∈ V , create a setAv =
{v1, v2, . . . , v1/δ} of activator nodes forv. Our node set in the
new instance is

V̂ = V ∪
(
⋃

v∈V Av

)

.

We now proceed to define the functionŝfv̂ for eachv̂ ∈ V̂ . If
v̂ is an activator node for somev ∈ V , we simply setf̂v̂ ≡ 0;
otherwise,̂v ∈ V and we set

f̂v̂(S) = min (fv̂(S ∩ V ) + δ|S ∩Av̂|, 1)

for eachS ⊆ V̂ . Lastly, we set

ŵ(S) = w(S ∩ V )

for all S ⊆ V̂ . Together, these make up our modified instanceÎ.
We now show that sincew andF are normalized, monotone,

and submodular,̂w andF̂ will be as well. We begin witĥw, since
it is the simpler of the two. Now,̂w is clearly normalized since
ŵ(∅) = w(∅). Similarly, for anyS ⊆ T ⊆ V̂ , we have that
S ∩ V ⊆ T ∩ V , and so

ŵ(S) = w(S ∩ V ) ≤ w(T ∩ V ) = ŵ(T ),

by the submodularity ofw. Lastly, letû ∈ V̂ \ T . If û ∈ V ,

ŵ(S ∪ {û})− ŵ(S) = w((S ∩ V ) ∪ {û})− ŵ(S ∩ V )

≥ w((T ∩ V ) ∪ {û})− ŵ(T ∩ V )

= ŵ(T ∪ {û})− ŵ(T ),

sincew is submodular. On the other hand, ifû /∈ V , we immedi-
ately get that

ŵ(S ∪ {û})− ŵ(S) = 0 = ŵ(T ∪ {û})− ŵ(T ).

Thus, we can see that̂w is normalized, monotone, and submodular.
Next, we show that̂F is normalized, monotone, and submodular.

For v̂ ∈ V̂ \ V , it follows trivially sinceF̂ is identically0. In the
case that̂V ∈ V , it is less immediate, and we consider each of the
properties below.

• f̂v̂ normalized. This follows by computing that

f̂v̂(∅) = min (fv̂(V ∩ ∅) + δ|Av̂ ∩ ∅|, 1)

= min (fv̂(∅) + δ|∅|, 1) = 0,

sincefv̂ is normalized.

• f̂v̂ monotone. LetS ⊆ T ⊆ V̂ . Then we have bothS∩V ⊆
T ∩ V andS ∩Av̂ ⊆ T ∩Av̂. Thus, we can see that

fv̂(V ∩ S) ≤ fv̂(V ∩ T )

|Av̂ ∩ S| ≤ |Av̂ ∩ T |,

where the former follows by the monotonicity offv̂. Com-
bining these, we get that

fv̂(V ∩ S) + δ|Av̂ ∩ S| ≤ fv̂(V ∩ T ) + δ|Av̂ ∩ T |.

Thus, we may conclude that̂fv̂(S) ≤ f̂v̂(T ), since it follows
from the above inequality that

fv̂(V ∩S)+δ|Av̂ ∩ S| > min (fv̂(V ∩ T ) + δ|Av̂ ∩ T |, 1)

implies

min (fv̂(V ∩ S) + δ|Av̂ ∩ S|, 1) = 1

= min (fv̂(V ∩ T ) + δ|Av̂ ∩ T |, 1) .

• f̂v̂ submodular. LetS ⊆ T ⊆ V̂ , andû ∈ V̂ \ T . Now, we
have three cases, depending on the choice ofû. If û ∈ V ,
we have that̂u /∈ Av̂, and so

(fv̂(S ∪ {û})− δ|(S ∪ {û}) ∩Av̂|)− (fv̂(S)− δ|S ∩Av̂|)

= fv̂(S ∪ {û})− fv̂(S);

and

(fv̂(T ∪ {û})− δ|(T ∪ {û}) ∩Av̂|)− (fv̂(T )− δ|T ∩Av̂|)

= fv̂(T ∪ {û})− fv̂(T ).

Thus, the submodularity offv̂ implies the former is greater
than or equal to the latter. On the other hand, ifû ∈ Av̂, then
û /∈ V , and we can see that

(fv̂(S ∪ {û})− δ|(S ∪ {û}) ∩Av̂|) = δ =

= (fv̂(T ∪ {û})− δ|(T ∪ {û}) ∩Av̂|) .

Lastly, if û /∈ V ∪Av̂, we can immediately see that

(fv̂(S ∪ {û})− δ|(S ∪ {û}) ∩Av̂|) = 0 =

= (fv̂(T ∪ {û})− δ|(T ∪ {û}) ∩Av̂|) .

Thus, in every case, we may conclude that

(fv̂(S ∪ {û})− δ|(S ∪ {û}) ∩Av̂|) ≥

≥ (fv̂(T ∪ {û})− δ|(T ∪ {û}) ∩Av̂|) ,

and hence (by the same reasoning as for monotonicity) we
may conclude that

f̂v̂(S ∪ {û})− f̂v̂(S) ≥ f̂v̂(T ∪ {û})− f̂v̂(T ).

Thus, we can see that̂F is normalized, monotone, and submodular
on V̂ , exactly as desired.

As such, we can apply Theorem 1 to our function and get that for
our modified instancêI = (V̂ , F̂ , ŵ), the corresponding function
σ̂ must normalized, monotone, and submodular. All that remains is
to demonstrate our claimed mapping from (discretized) fractional
activations forI to integral activations for̂I.

We do so as follows. For eachv ∈ V and eachd ∈ ∆, let
Ad

v = {v1, v2, . . . , vd}. Then, given the vectorx ∈ ∆n, we set

Sx =
⋃

v∈V Axv

v ,

wherexv is the component ofx corresponding to the nodev.



We first show that under this definition we have thatσ(x) =
σ̂(Sx). In fact, as we will see the sets influenced will be the same
not just in expectation, but for every set of thresholdsΘ for the ver-
ticesV . Note that in the modified settinĝI we also have thresholds
for each vertex in̂V \ V ; however, since we chosêfv̂ ≡ 0 for all
v̂ ∈ V̂ \ V , and thresholds are independent draws fromU [0, 1], we
can see that with probability1 we havef̂v̂(S) < θv̂ for all S and
all v̂ ∈ V̂ \ V . Thus, in the following discussion we do not bother
to fix these thresholds, as their precise values have no effect on the
spread of influence.

Fix some vectorΘ of thresholds for the vertices inV . Let
SΘ
1 , . . . , SΘ

n andŜΘ
1 , . . . , ŜΘ

n be the influenced sets in each round
in the settingI with influence vectorx and in the settinĝI with
influence setSx, respectively. We show by induction that for all
i = 0, 1, . . . , n, ŜΘ

i ∩V = SΘ
i . By the definition ofŵ, this imme-

diately implies thatw(SΘ
n ) = ŵ(ŜΘ

n ), as desired.
While we give full details of the induction in the full version,

we sketch the key ideas here. The key observation is that for each
vertexv ∈ V , the only difference betweenI andÎ is that in every
stagev hasxv influence directly applied to it in the former but not
the latter, and experiencesxv influence from elements ofAv in the
latter but not the former. Since these have equivalent effects, the
vertices inI andÎ activate similarly. Observing that our definitions
ensureŜ0 ∩ V = Sx ∩ V = ∅ = S0 completes the induction.

We have now shown that for all vectors of thresholdsΘ for ver-
tices inV , with probability 1 we have thatŜΘ

i ∩ V = SΘ
i for

i = 0, 1, . . . , n. In particular, note that̂SΘ
n ∩ V = SΘ

n , and so
ŵ(ŜΘ

n ) = w(SΘ
n ). Thus, we may conclude thatσ̂(Sx) = σ(x).

Lastly, we need to show that for our given mapping from (dis-
cretized) fractional activation vectorsx to setSx, we have that the
desired properties forσ are satisfied if the corresponding properties
are satisfied for̂σ. So we assume that̂σ is normalized, monotone,
and submodular (as, in fact, it must be by the above argument and
Theorem 1), and show thatσ is as well. First, note thatx = 0

impliesSx = ∅, and soσ(x) = σ̂(∅) = 0. Second, letx,y ∈ ∆n

such thatx ≤ y componentwise. Then we can see thatSx ⊆ Sy

and so

σ(x) = σ̂(Sx) ≤ σ̂(Sy) = σ(y).

Finally, pick somev ∈ V such thatyv < 1. Recall our definition
of f̂v̂; by inspection, we can see that we havef̂v̂(S) = f̂v̂(T ) any
time bothS ∩ V = T ∩ V and |S ∩Av| = |T ∩Av|, for any
S, T ∈ V̂ . Thus, we can see thatSx+δi = Sx ∪ {vxv+1} and
Sy = Sy ∪ {vyv+1}. So we have

σ(x+ δi)− σ(x) = σ̂(Sx ∪ {vxv+1})− σ̂(Sx)

= σ̂(Sx ∪ {vyv+1})− σ̂(Sx)

≥ σ̂(Sy ∪ {vyv+1})− σ̂(Sy)

= σ(y + δi)− σ(y).

Thus,σ has exactly the claimed properties on∆n, and the theorem
follows.

In fact, we can use the same technique as achieve the following
extension to fully continuous versions of our properties. We define
the following properties forσ on the continuous domain[0, 1]n:

• we sayσ is normalizedif σ(0) = 0;

• we sayσ is monotoneif x ≤ y impliesσ(x) ≤ σ(y); and

• we sayσ is submodularif for any x ≤ y, anyv ∈ V , and
for any ε > 0 such thatyv + ε ≤ 1, we have thatσ(x +
εv)− σ(x) ≥ σ(y + εv)− σ(y),

whereεv is the vector with a value ofε in the coordinate corre-
sponding tov and a value of0 in all other coordinates. As before,
all comparisons and additions between vectors above are compo-
nentwise. The same techniques immediately give us the following
theorem; in the interests of space, we defer the proof to the full
version of the paper.

THEOREM 3. Let I = (V,F , w) be an instance of our prob-
lem. If bothw andF are normalized, monotone, and submodular,
thenσ is normalized, monotone, and submodular on[0, 1]n.

One concern with discretizing the space we optimize over as in
Theorem 2 is what effect the discretization has on the objective
values that can be achieved. As the following theorem shows, how-
ever, that we can only lose anδn factor from our objective when
we discretize the space to multiples ofδ.

THEOREM 4. Let I = (V,F , w) be an instance of our prob-
lem. Then for any discretization∆n of [0, 1]n (as defined above), if
σ is normalized, monotone, and submodular on∆n, we have that

max
x∈∆n:
‖x‖1≤K

σ(x) ≥ (1− δn) max
x∈[0,1]n:
‖x‖1≤K

σ(x),

for anyK.

PROOF. Letx∗ be an optimal solution to our problem on[0, 1]n,
i.e. we have

argmax
x∈[0,1]n:‖x‖1≤K

σ(x).

Let x̄∗ be the result of roundingx∗ up componentwise to the near-
est element of∆n. Formally, we definēx∗ by x̄∗

v = min{d ∈
∆ : d ≥ x∗}. Note that by monotonicity, we must have that
σ(x̄∗) ≥ σ(x∗); we also have that‖x̄∗‖1 ≤ ‖x

∗‖1 + δn.
Now, consider constructinḡx∗ greedily by addingδ to a single
coordinate in each step. Formally, setx0 = 0, and for each
i = 1, 2, . . . , ‖x̄∗‖1/δ set

x
i = x

i−1+δv for somev ∈ argmax
v: xi−1

v <1

(σ(xi−1+δv) = σ(xi−1)),

where (as before)δv is a vector withδ in the component corre-
sponding tov and0 in all other components. Note that the sub-
modularity ofσ implies thatσ(xi) − σ(xi−1) is decreasing ini.
An immediate consequence of this is that, for anyi, we have that

σ(xi) ≥
i

‖x̄∗‖1
σ(x̄∗).

Invoking the above fori = K/δ we get that

σ(xK/δ) ≥
K/δ

‖x̄∗‖1
σ(x̄∗) ≥

K

K + δn
σ(x̄∗) ≥ (1− δn)σ(x̄∗).

We observe that‖xK/δ‖1 = K, andxK/δ ∈ ∆n, and so the
desired theorem follows.

4. DAGS
In this section, we focus on a special case of fractional influ-

ence model called the linear influence model, and argue that some
aspects of the problem become simpler on DAGs. In the linear
variant of the problem, our influence functions are computed as
follows. We are given a digraphG = (V,E) and a weight function

w on edges. We useδ
−

(v) andδ
+

(v) to denote the sets of nodes



with edges to and edges fromv, respectively. Then, we denote the
influence functionfv for v by

fv(S) =
∑

u∈S∩δ
−

(v)

wuv.

In this model, we assume that
∑

u∈δ
−

(v)
wuv ≤ 1 always. Similar

to the fractional influence model, our goal is to pick an influence
vectorx ∈ [0, 1]|V | indexed byV to maximize

σ(x) = E
Θ
[ |SΘ

n | | we apply direct influencesx ],

whereSΘ
1 , . . . , SΘ

n is the sequence of sets of nodes activated under
thresholdsΘ and direct influencex. We sometimes abuse notation
and useσ(S) to denoteσ applied to the characteristic vector of the
setS ∈ 2V . Given a DAGG = (V,E) and a fractional influence
vectorx ∈ [0, 1]|V | indexed byV , we define the sets

I(x) = {v ∈ V : xv > 0}, and

S(x) = {v ∈ V : xv +
∑

u∈δ
−

(v)
wuv > 1},

as the sets of nodesinfluencedbyx and(over-)saturatedbyx. Note
thatS(x) ⊆ I(x). Following, we show that under specific circum-
stances,σ becomes a linear function and therefore the influence
maximization problem tractable.

THEOREM 5. Given a DAGG and influence vectorx, if G con-
tains no path from an element ofI(x) to any element ofS(x), then
we have that

σ(x) =
∑

v∈V xvσ(1v)

, and therefore the influence maximization problem can be solved
efficiently for these instances.

PROOF. We prove this by induction on the number of vertices.
In the case thatV contains only a single vertex, the claim is trivial.
Otherwise, letG = (V,E) andx satisfy our assumptions, with
|V | = n > 1, and assume out claim holds for any DAG with
(n − 1) or fewer nodes. Lets ∈ V be a source vertex (i.e. have
in-degree0) in G. Now, if s /∈ I(x), we know thats is never
activated. Let̂σ andx̂ beσ onG restricted toV \s andx restricted
toV \ s, respectively, and observe that we may apply our induction
hypothesis tôσ(x̂) since removings from G cannot cause any of
the requirements for our theorem to become violated. Thus, we can
see that

σ(x) = σ̂(x̂) =
∑

v∈V \s

xvσ̂(1v) =
∑

v∈V

xvσ(1v),

sincexs = 0.
Now, assume thats ∈ I(x). Recall that by our conditions onG,

therefore, we know thatG contains no path froms to any elements
of S(x). One critical implication of this is that none of the nodes

in δ
+

(s) have paths to elements ofS(x) either, and so we made
apply influence to them without violating the assumptions of our
inductive hypothesis, as long as we are careful not to add so much
weight that they become saturated.

In order to prove our claim, we focus onG restricted toV \
{s}, call it Ĝ. Let σ̂ beσ overĜ, and consider the following two
influence vectors for̂G. Definex̂ to simply be the restriction ofx

to Ĝ; defineŷ by yv = wsv if v ∈ δ
+

(s) and0 otherwise. Letting
Î and ˆSat beI andS, respectively, restricted tôG, we can see that

Î(x̂), Î(ŷ), Î(x̂+ ŷ) ⊆ I(x) ∪ δ
+

(s), and

Ŝ(x̂), Ŝ(ŷ), Ŝ(x̂+ ŷ) ⊆ S(x).

}

(1)

The observation that gives the above is that, compared tox, the only
vertices with increased influence applied to them are the elements

of δ
+

(s), and the amounts of these increases are precisely balanced
by the removal ofs (and its outgoing edges) from̂G. In particular,
note that for anyv ∈ V \ {s}, by our definition of ˆ]ys we have that

xv +
∑

u∈δ
−

(v)

wuv = x̂v + ŷv +
∑

u∈δ
−

(v)
u 6=s

wuv.

As previously notedG contains no paths from an element of

δ
+

(s) to any element ofS(x); this combined with (1) allows us
to conclude that we may apply our induction hypothesis toĜ with
any of x̂, ŷ, or x̂ + ŷ. We proceed by showing that for any vector
Θ of thresholds forG (and its restriction toĜ), we have that the
set activated underx in G always corresponds closely to one of the
sets activated bŷx or (x̂+ ŷ) in Ĝ. To that end, fix any vectorΘ.
We consider the cases wherexs ≥ θs andxs < θs separately.

We begin with the case wherexs < θs, since it is the simpler of
the two. LetSΘ

0 , . . . , SΘ
n andŜΘ

0 , . . . , ŜΘ
n denote the sets activated

in G underx and inĜ underx̂, respectively, in stages0, . . . , n.
Note that sinces is a source, andxs < θs, we know thats /∈ SΘ

i

for all i. However, this means that every node inV \ {s} has both
the same direct influence applied to it underx andx̂, and the same
amount of influence applied by any activated set in bothG andĜ.
So we can immediately see that sinceSΘ

0 = ∅ = ŜΘ
0 , by induction

we will have thatSΘ
i = ŜΘ

i for all i, and in particular fori = n.
The case wherexs ≥ θs requires more care. LetSΘ

0 , . . . , SΘ
n

andŜΘ
0 , . . . , ŜΘ

n denote the sets activated inG underx and inĜ
underx̂ + ŷ, respectively, in stages0, . . . , n. Note that our as-
sumption implies thats will be activated by our direct influence in
the first round, and so we haves ∈ ŜΘ

i for all i ≥ 1. Fix some
v ∈ V , v 6= s, and letfv(S) andf̂v(S) denote the total influence
– both direct and cascading – applied to inG andĜ, respectively,
when the current active set isS. Then, we can see that for any
S ⊆ V \ {s} we have that

f̂v(S) = x̂v+ŷv+
∑

u∈δ
−

(v)
u∈S

wuv = xv+
∑

u∈δ
−

(v)
u∈S∪{s}

wuv = fv(S∪{s}).

(2)
Furthermore, note that bothfv and f̂v are always monotone non-
decreasing. While we cannot show thatSΘ

i = ŜΘ
i for all i in this

case, we will instead show thatSΘ
i \{s} ⊆ ŜΘ

i ⊆ SΘ
i+1\{s} for all

i = 0, . . . , n−1. Recall that the propagation of influence converges
by n steps. That is, if we continued the process for an additional
step to produce activated setsSΘ

n+1 andŜΘ
n+1, we would have that

SΘ
n+1 = SΘ

n andŜΘ
n+1 = ŜΘ

n . However, our claim would extend to
this extra stage as well, and so we conclude that we must have that
SΘ
n = ŜΘ

n ∪ {s}. We prove our claim inductively. First, observe
that it holds trivially fori = 0, since we haveSΘ

0 = ŜΘ
0 = ∅, and

previously observed thats ∈ SΘ
1 . Now, the claim holds for somei.

Note, however, that by (2) and monotonicity we must have that for
all v ∈ V , v 6= s

fv(S
Θ
i ) = f̂v(S

Θ
i \ {s}) ≤ f̂v(Ŝ

Θ
i )

≤ f̂v(S
Θ
i+1 \ {s}) = fv(S

Θ
i+1).

But from the above, we can see thatSi+1 \ {s} ⊆ ŜΘ
i+1 ⊆ SΘ

i+2 \
{s} since such av in included in each of the above sets if and only
if fv(SΘ

i ), f̂v(ŜΘ
i ), or fv(SΘ

i+1), respectively, exceedsθv.
Thus, by observing thatθs is an independent draw fromU [0, 1],

we can see that taking expectations overΘ and conditioning on



which ofθs andxs is larger, gives us that

σ(x) = (1− xs)σ̂(x̂) + xs(1 + σ̂(x̂+ ŷ))

=
∑

v∈V
v 6=s

xvσ(1v) + xs(1 + σ̂(ŷ)).

We complete our proof by observing that, in fact,σ(1s) is precisely
equal to1 + σ̂(ŷ). We can see this by once again coupling the
activated sets under any vectorΘ of thresholds. In particular, let
SΘ
0 , . . . , SΘ

n andŜΘ
0 , . . . , ŜΘ

n denote the sets activated inG under
1s and inĜ underŷ, respectively, in stages0, . . . , n. Arguments
identical to those made above allow us to conclude that for alli, we
have thatSΘ

i+1 = ŜΘ
i ∪ {s}. Thus, by again noting that influence

cascades converge aftern steps we see thatSΘ
n = ŜΘ

n ∪ {s}, and
taking expectations with respect toΘ gives precisely the desired
equality.

Since we have the linearity ofσ, to maximizeσ(x), we just need
to sort vertices based onσ(1v), and put the influences on vertices
with higherσ(1v) until the budget is exhausted. Estimatingσ(1v)
can be done by letting the process run with influence vector1v for
several times, and taking the average number of activated nodes in
these trials.

5. HARDNESS
In this section, we present NP-hardness and inapproximability

results in the linear influence model. We assume that thresholds are
not chosen from a distribution, and they are fixed and given as part
of the input. We note that this is the main assumption that makes
our problem intractable, and to achieve reasonable algorithms, one
has to make some stochastic (distributional) assumptions on the
thresholds. In Section 4, we introduced the linear influence model
as a special case of fractional influence model, but it makes sense
to define it as a special case of integral influence model as well.
In the fractional linear influence model, we are allowed to apply
any influence vectorx ∈ [0, 1]n on nodes. By restricting the in-
fluence vectorx to be in{0, 1}n (a binary vector), we achieve the
integral version of linear influence model. Our hardness results in
Theorem 6, and Corollary 7 work for both fractional and integral
versions of linear influence model. We start by proving that the lin-
ear influence model is NP-hard with a reduction from independent
set problem in Theorem 6. We strengthen this hardness result in
Corollary 7 by showing that ann1−ε approximation algorithm for
the linear influence problem yields an exact algorithm for it as well
for any constantε > 0, and therefore even ann1−ε approximation
algorithm is NP-hard to achieve. At the end, we show the that it is
NP-hard to achieve any better than1 − 1/e approximation in the
Triggering model which is introduced in [15]. We will elaborate
on the Triggering Model and this hardness result at the end of this
section. We note that the proofs are omitted due to lack of space.

THEOREM 6. If we allow arbitrary, fixed thresholds, it is NP-
hard to compute for a given instance of the integral linear influ-
ence problem(G, k, T ) (graphG, budgetk, and a target goalT )
whether or not there exists a setS of k vertices inG such that
σ(S) ≥ T . Furthermore, the same holds in the factional version
of the problem (instead of a setS of sizek, we should look for a
influence vector withℓ1 norm equal tok in the fractional case).

COROLLARY 7. If we allow arbitrary, fixed thresholds, it is
NP-hard to approximate the linear influence problem to within a
factor ofn1−ε for anyε > 0. Furthermore, the same holds for the
fractional version of our problem.

Network # nodes # edges Avg. deg. Directed
NetHEPT 15,233 58,891 7.73 No
NetPHY 37,154 231,584 12.46 No

Facebook 4,039 88,234 21.84 No
Amazon 262,111 1,234,877 4.71 Yes

Table 1: Information about the real-world networks we use.

Before stating Theorem 8, we should define the triggering model
introduced in [15]. In this model, each nodev independently
chooses a random triggering setTv according to some distribu-
tion over subsets of its neighbors. To start the process, we target
a set A for initial activation. After this initial iteration, an inactive
node v becomes active in stept if it has a neighor in its chosen
triggering setTv that is active at timet − 1. For our purposes, the
distributions of triggering sets have support size one (deterministic
triggering sets). We also show that our hardness result even holds
when the size of these sets is two.

THEOREM 8. It is NP-hard to approximate linear influence
problem to within any factor better than1− 1/e, even in the Trig-
gering model where triggering sets have size at most2.

6. EXPERIMENTAL RESULTS
Datasets. We use the following real-world networks for evalu-

ating our claims. Table 1 gives some statistical information about
these networks.

• NetHEPT: An academic collaboration network based
on “High Energy Physics — Theory” section of the
e-print arXiv2 with papers from 1991 to 2003. In this
network, nodes represent authors and edges represent
co-authorship relationships. This network is available
at http://research.microsoft.com/en-us/
people/weic/graphdata.zip.

• NetPHY: Another academic collaboration network, taken
from the full “Physics” section of the e-print arXiv.
Again, nodes represent authors and edges represent
co-authorship relationships. The network is available
at http://research.microsoft.com/en-us/
people/weic/graphdata.zip.

• Facebook: A surveyed portion of the Facebook friend
network. The nodes are anonymized Facebook users
and edges represents friendship relationships. The data
is available athttp://snap.stanford.edu/data/
egonets-Facebook.html.

• Amazon: Produced by crawling the Amazon website based
on the following observation: customers who bought prod-
uct i also bought productj. In this network, nodes represent
products and there is a directed edge from nodei to nodej
if product i is frequently co-purchased with productj. This
network is based on Amazon data in March 2003. The data
is available athttp://snap.stanford.edu/data/
amazon0302.html.

Algorithms. We compare the following algorithms in this
study. The first three algorithms are for the integral influence
model, and the last three algorithms work for the fractional influ-
ence model.
2http://www.arXiv.org



• DegreeInt: A simple greedy algorithm which selects nodes
with the largest degrees. This method was used by Kempe
et al. [15] and Chen et al. [5] as well.

• DiscountInt: A variant ofDegreeInt which selects nodeu
with the highest degree in each step. Moreover, after adding
nodeu to the seed set, the algorithm decreases the degrees of
neighbors ofu by 1. This method was proposed and evalu-
ated by Chen et al. [5].

• RandomInt: This algorithm randomly addsB nodes to the
seed set, i.e., by spending1 on each of them. We use this
algorithm as a baseline in our comparisons. Other works [5,
6, 15] also use this algorithm as a baseline.

• DegreeFrac: This algorithm selects each node fractionally
proportional to its degree. In particular, this algorithm spends

min{
Bd−

i

m
, 1} on nodei whereB is the budget,d−i is the

out-degree of nodei, andm is the total number of edges3.

• DiscountFrac: A heuristic for the fractional case given by
Algorithm 1. LetΓ−

v (A) be the total sum of the weight of
edges from nodev to setA, andΓ+

v (A) be the total sum of
the weight of edges from setA to nodev. This algorithm
starts with an empty seed setS, and in each step it adds node
v 6∈ S with the maximumΓ−

v (V − S) to seed setS by
spendingmax{0, 1 − Γ+

v (S)} on nodev. Note that in each
step the total influence from the current seed setS to nodev
is Γ+

v (S), and it is enough to spend1 − Γ+
v (S) for adding

nodev to the current seed setS. Note that no node would
pay a positive amount, and the algorithm spendsmax{0, 1−
Γ+
v (S)} on nodev.

• UniformFrac: This algorithm distributes the budget equally
among all nodes. We use this algorithm as another baseline
in our comparisons.

Algorithm 1 DiscountFrac
Input: GraphG = (V,E) and budgetB
Output: Influencing vectorx

1: S ← 0
2: b← B
3: x← 0

4: while b > 0 do
5: u← argmaxv∈V −S{Γ

−
v (V − S)}

6: xu ← min{b,max{0, 1− Γ+
u (S)}}

7: b← b− xu

8: S ← S ∪ {u}
9: end while

10: return x

All these heuristic algorithms are fast and are designed for run-
ning on large real-world networks. In particular, algorithmsDe-
greeInt andDegreeFrac only need the degree of nodes. We can
use a Fibonacci heap to implementDiscountInt, resulting in a run-
ning time ofO(B log n +m). Similarly, the running time ofDis-
countFrac is O(n log n + m) using a Fibonacci heap.4 Algo-
rithms RandomInt and UniformFrac are linear-time algorithms.
3If the graph is undirected, the cost is2m instead ofm
4In DiscountFrac, the while loop (lines 4–9 of Algorithm 1) may
run for n steps even when budgetB is less thann. Hence, the
running time isO(max{n,B} log n + m) = O(n log n + m)
instead ofO(B log n+m).

It also has been shown that the performance ofDiscountInt almost
matches the performance of the greedy algorithm which maximizes
a submodular function [5]. Hence, it seems thatDiscountInt is an
appropriate candidate for evaluating the power of the integral influ-
ence model.

Results. We have implemented all algorithms in C++, and have
run all experiences on a server with two 6-core/12-thread 3.46GHz
Intel Xeon X5690 CPUs, with 48GB 1.3GHz RAM. We run all of
the aforementioned algorithms for finding the activation vector/set,
and compute the performance of each algorithm by running 10,000
simulations and taking the average of the number of adopters.

We first examine the performance of a fractional activation vec-
tor in theweighted cascade model, where the weight of the edge
from u to v is 1

d−v
, whered−v is the in-degree of nodev. In this

model, the total sum of weight of incoming edges of each node is
∑

uv wuv =
∑

uv
1

d−v
= 1. This model was proposed by Kempe

et al. [15], and it has been used in the literature [5, 6, 7]. Results
are shown in Figure 1.

We then compare the performance of various algorithms when
the weight of edges are determined by theTRIVALENCYmodel, in
which the weight of each edge is chosen uniformly at random from
the set{0.001, 0.01, 0.1}. Here0.001, 0.01, and0.1 represent
low, medium, and high influences. In this model, the total sum of
the weights of incoming edges of each node may be greater than1.
This model and its variants have been used in [5, 6, 15]. We run
all proposed algorithms on real-world networks when their weights
are defined by TRIVALENCY model. Results are shown in Figure
2.

Discussion. In most of the plots, algorithms for the fractional
influence model do substantially better than algorithms for the in-
tegral influence model. Overall, for most datasets,DiscountFrac
is the best algorithm, with the only exception being the Facebook
dataset. As a simple metric of the power of the fractional model
versus the integral model, we consider the pointwise performance
gain of fractional model algorithms versus the integral model algo-
rithms. i.e., for a given budget, we compute the ratio of expected
number of adopters for the fractional model with the most adopters
and the expected number of adopters for the integral model algo-
rithm with the most adopters. Depending on the dataset, we get a
mean pointwise performace gain between3.4% (Facebook dataset,
TRIVALENCY model) and142.7% (Amazon dataset, weighted
cascade model) with the mean being31.5% and the median be-
ing 15.7% over all the datasets and both models (weighted cas-
cade and TRIVALENCY). Among the heuristics presented for the
integral model,DiscountInt is probably the best. If we compare
just it to its fractional adaptation,DiscountFrac, we get a simi-
lar picture: the range of average performace gain is between9.1%
(Facebook, TRIVALENT model) and397.6% (Amazon, weighted
cascade model) with the mean being64.1% and the median being
15.6%.

In summary, the experimental results clearly demonstrate that the
fractional model leads to a significantly higher number of adopters
across a wide range of budgets on diverse datasets.
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