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Abstract. We consider the problem of approximately integrating a Lipschitz
function f (with a known Lipschitz constant) over an interval. The goalis to
achieve an error of at mostǫ using as few samples off as possible. We use
the adaptive framework: on all problem instances an adaptive algorithm should
perform almost as well as the best possible algorithm tuned for the particular
problem instance. We distinguish betweenDOPT andROPT, the performances
of the best possible deterministic and randomized algorithms, respectively. We
give a deterministic algorithm that usesO(DOPT(f, ǫ)·log(ǫ−1/DOPT(f, ǫ)))
samples and show that an asymptotically better algorithm isimpossible. How-
ever, any deterministic algorithm requiresΩ(ROPT(f, ǫ)2) samples on some
problem instance. By combining a deterministic adaptive algorithm and Monte
Carlo sampling with variance reduction, we give an algorithm that uses at most
O(ROPT(f, ǫ)4/3 + ROPT(f, ǫ) · log(1/ǫ)) samples. We also show that any
algorithm requiresΩ(ROPT(f, ǫ)4/3 + ROPT(f, ǫ) · log(1/ǫ)) samples in ex-
pectation on some problem instance(f, ǫ), which proves that our algorithm is
optimal.

1 Introduction

We consider the problem of approximating a definite integralof a univariate Lipschitz
function (with known Lipschitz constant) to withinǫ using the fewest possible samples.
The function is given as a black box: sampling it at a parameter value is the only allowed
operation. It is easy to show thatΘ(ǫ−1) samples are necessary and sufficient for a
deterministic algorithm in the worst case (see, e.g., [1]).The results in [2] imply a
Monte-Carlo method that requires onlyΘ(ǫ−2/3) samples in the worst case.

The Adaptive Framework. The univariate Lipschitz integration problem becomes
more interesting in the adaptive setting. The motivation isthat, for a givenǫ, some
problem instances have much lower complexity than others. For example, iff(x) = Lx,
whereL is the Lipschitz constant, then evaluatingf at the endpoints of the interval
over which the integral is taken is sufficient to solve the problem for anyǫ. Thus, it is
desirable to have an algorithm that is guaranteed to use fewer samples on easier problem
instances. Such an algorithm is calledadaptive. We formalize this notion by defining



the difficulty of a problem as the performance of the best possible algorithm on that
problem:

Definition 1. Let P be a class of problem instances. LetA be the set of all correct
algorithms forP (among some reasonable class of algorithms). LetCOST(A, P ) be
the performance of algorithmA ∈ A on problem instanceP ∈ P . DefineOPT(P ) =
minA∈A COST(A, P ). We useDOPT whenA is the set of deterministic algorithms
andROPT whenA is the set of randomized algorithms that are correct on eachP ∈ P
with probability at least2/3.

By definition, for every problem instanceP , there is an algorithm whose cost onP
is OPT(P ). A good adaptive algorithm is a single algorithm whose cost is not much
greater thanOPT(P ) for everyproblem instanceP . Therefore, an adaptive guarantee
is in general much stronger than a worst-case guarantee.

The ultimate goal of investigating a problem in the adaptiveframework is to de-
sign an “optimally adaptive” algorithm. SupposeP is the set of problem instances and
each problem instanceP ∈ P has certain natural parameters,v1(P ), . . . , vk(P ), with
the first parameterv1(P ) = OPT(P ). An algorithm isoptimally adaptiveif its perfor-
mance on every problem instanceP ∈ P is within a constant factor of every algorithm’s
worst-case performance on the family of instances with the same values for the param-
eters:{P ′ ∈ P | vi(P

′) = vi(P ) for all i}. Note that this definition depends on the
choice of parameters, so in addition toOPT, we need to choose reasonable parameters,
such asǫ, the desired output accuracy.

Related Work. While approximate definite integration is well-studied both in numer-
ical analysis (see, e.g., [3]) and in information-based complexity [4], those algorithms
do not have provable guarantees about adaptivity. In that literature, the term “adaptive”
typically refers to an algorithm that is allowed to pick samples based on previous sample
values, which is quite different from our meaning.

For other problems, optimally adaptive algorithms have been previously designed in
the context of set operations [5], aggregate ranking [6], and independent set discovery
in [7]. Lipschitz functions also lend themselves well to adaptive algorithms. It is shown
in [8] that Piyavskii’s algorithm [9] for minimizing a univariate Lipschitz function per-
formsO(OPT) samples. [10] gives an adaptive algorithm for minimizing the distance
from a point to a Lipschitz curve that is within a logarithmicfactor ofOPT. [11] gives
adaptive algorithms for several problems on Lipschitz functions.

Our Results. In this paper we give a deterministic algorithm that makes atmost
O(DOPT · log(ǫ−1/DOPT)) samples. We also prove a matching lower bound on de-
terministic algorithms. When comparing toROPT, however, we show that any deter-
ministic adaptive algorithm usesΩ(ROPT2) samples on some problem instance. We
present a randomized adaptive algorithm,LIPSCHITZ-MC-INTEGRATE, that always uses
O(ROPT4/3 + ROPT · log(ǫ−1)) samples and prove a matching lower bound.

We therefore give optimally adaptive algorithms for the Lipschitz integration prob-
lem in the deterministic and randomized settings. Althoughthe algorithms are simple,
in both cases analyzing their adaptive performance is nontrivial. To our knowledge,
LIPSCHITZ-MC-INTEGRATE is the first randomized optimally adaptive algorithm. Also,



a simple corollary of the randomized lower bound is that the non-adaptive algorithm
based on the results in [2] is optimal in the worst case.

Some of the results in this paper, primarily in Sections 3 and4, are based on the
first author’s master’s thesis [11]. Many of the proofs are omitted from this extended
abstract.3

2 Problem Basics

We start by giving a precise formulation of the problem we consider:
ProblemLIPSCHITZ-INTEGRATION:

Given: (f, a, b, L, ǫ)

Such that: f : [a, b]→ R

and forx1, x2 ∈ [a, b], |f(x2)− f(x1)| ≤ L|x2 − x1|

Compute: I ∈ R such that

∣
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A randomized algorithm needs to be correct with probabilityat least2/3.
Some input parameters can be eliminated without loss of generality. The problem

instance(f, a, b, L, ǫ) is equivalent to the problem instance(f̂ , 0, 1, 1, ǫ/L(b − a)2)

wheref̂(x) = f
(

x−a
b−a

)

/

L(b − a), so we can assume without loss of generality that

a = 0, b = 1, andL = 1.
We now develop some basic tools we will need for discussing and analyzing the

algorithms. Essentially, we show how to make use of the Lipschitz condition to bound
the error of our estimates.

The Lipschitz condition allows an algorithm that has sampled f at two points to
bound the value of the integral off on the interval between them. We call the quality
of this boundarea looseness, and it depends on both the length of the interval and the
values off at the sampled points. A greater difference between values of f (a steeper
function) results in a smaller area looseness. We define arealooseness as follows (see
Figure 1):

Definition 2. Given a Lipschitz functionf on[0, 1], define thearea loosenessof a subin-
terval [x1, x2] of [0, 1] asALf (x1, x2) = ((x2 −x1)

2− (f(x1)− f(x2))
2)/2. When it

is clear whichf we are talking about, we simply writeAL(x1, x2).

Our analysis relies on area looseness being well behaved. The following proposition
shows that it has the properties one would expect a bound on integration error to have
and that an additional sample in the middle of the interval decreases total area looseness
quickly.

3 The full version of this paper is available at
http://www.mit.edu/˜ibaran/papers/intfull. {pdf,ps }
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Fig. 1. Illustration of area looseness. Lipschitz bounds are dashed.

Proposition 1. Area-looseness has the following properties:
(1) 0 ≤ AL(x1, x2) ≤ (x2 − x1)

2/2.
(2) If x′

1 ≤ x1 < x2 ≤ x′
2 thenAL(x1, x2) ≤ AL(x′

1, x
′
2).

(3) If x ∈ [x1, x2], thenAL(x1, x) + AL(x, x2) ≤ AL(x1, x2).
(4) AL

(

x1,
x1+x2

2

)

+ AL
(

x1+x2

2 , x2

)

≤ AL(x1, x2)/2.

For the lower bounds, both onOPT and on adaptive algorithms, we need “extremal”
Lipschitz functions, whose integral is either maximal or minimal, given the samples.
We call these functionsHI andLO . We also definelooseness, the maximum difference
betweenHI andLO over an interval.

Definition 3. Given a Lipschitz functionf , and0 ≤ a < b ≤ 1, define the Lipschitz
functionsHI

b
a and LO

b
a on [a, b] as: HI

b
a(x) = min(f(a) + x − a, f(b) + b − x)

and LO
b
a(x) = max(f(a) − x + a, f(b) − b + x). Also defineLf as Lf (a, b) =

b− a− |f(b)− f(a)|.

Proposition 2. Given a Lipschitz functionf , the functionsHI
b
a andLO

b
a have the fol-

lowing properties:
(1) If g is Lipschitz,g(a) = f(a), andg(b) = f(b), then forx ∈ [a, b], HI

b
a(x) ≥

g(x) ≥ LO
b
a(x).

(2)AL(a, b)/(b−a) ≤ max
x∈[a,b]

(HI
b
a(x) − LO

b
a(x)) = L(a, b) ≤ 2AL(a, b)/(b−a)

(3)
∫ b

a
HI

b
a(x) dx = (b − a) f(a)+f(b)

2 + AL(a, b)/2 and
∫ b

a
LO

b
a(x) dx = (b −

a)f(a)+f(b)
2 −AL(a, b)/2.



Proposition 3. Given a Lipschitz functionf , looseness has the following properties:
(1) 0 ≤ L(a, b) ≤ b− a
(2) If a′ ≤ a ≤ b ≤ b′, thenL(a, b) ≤ L(a′, b′).
(3) If x1 ≤ x2 ≤ · · · ≤ xn, then

∑n−1
i=1 L(xi, xi+1) ≤ L(x1, xn).

3 Proof Sets

In order to compare the running time of an algorithm on a problem instance toDOPT,
we define the concept of a proof set for a problem instance. A set P of points in[0, 1]
is aproof setfor problem instance(f, ǫ) and outputx if for everyf ′ that is equal tof
on P , x is a correct output on(f ′, ǫ). In other words, samplingf at a proof set proves
the correctness of the output. We say that a set of samples is aproof set for a particular
problem instance without specifying the output if some output exists for which it is a
proof set.

It is clear from the definition that sampling a proof set is theonly way a deterministic
algorithm can guarantee correctness: if an algorithm doesn’t sample a proof set for
some problem instance, we can feed it a problem instance thathas the same value on
the sampled points, but for which the output of the algorithmis incorrect. Conversely
an algorithm can terminate as soon as it has sampled a proof set and always be correct.
Thus,DOPT is equal to the size of a smallest proof set.

In order to analyze the deterministic algorithm, we will compare the number of
samples it makes to the size of a proof setP . We will need some tools for doing this.

Let P be a nonempty finite set of points in[0, 1]. Consider the execution of an
algorithm which samples a function at points on the interval[0, 1) (if it samples at 1,
ignore that sample). Lets1, s2, . . . , sn be the sequence of samples that the algorithm
performs in the order that it performs them. LetIt be the set of unsampled intervals
after samplest, i.e., the connected components of[0, 1) − {s1, . . . , st}, except make
each element ofIt half-open by adding its left endpoint, so that the union of all the
elements ofIt is [0, 1). Let [lt, rt) be the element ofIt−1 that containsst.

Then samplest is a:

split if [lt, st) ∩ P 6= ∅ and[st, rt) ∩ P 6= ∅
squeeze if [lt, st) ∩ P 6= ∅ or [st, rt) ∩ P 6= ∅, but not both

fizzle if [lt, rt) ∩ P = ∅.

These definitions are, of course, relative toP . See Figure 2. We can now bound the
number of samples of different types:

Proposition 4. The number of splits is at most|P | − 1.

Proposition 5. Suppose that for alli and j with i 6= j, |si − sj | > ǫ and that for
all t, st = (lt + rt)/2. Then if |P | ≤ ǫ−1/2, the number of squeezes is at most
|P | log2(ǫ

−1/|P |).

We now characterize proof sets forLIPSCHITZ-INTEGRATION.
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Fig. 2.Different types of samples.

Proposition 6. Let P = {x1, x2, . . . , xn} such that0 ≤ x1 < x2 < · · · < xn ≤ 1.
ThenP is a proof set for problem instance(f, ǫ) if and only if x2

1 + (1 − xn)2 +
∑n−1

i=1 AL(xi, xi+1) ≤ 2ǫ.

4 Deterministic Algorithm and Analysis

Proposition 6, together with Proposition 1 immediately shows the correctness of a trivial
algorithm. Letn = ⌈ǫ−1/4⌉ and let the algorithm maken samples, at12n , 3

2n , . . . , 2n−1
2n

and output the integralM as in the proof of Proposition 6. It is correct because the area-
looseness of every interval is at most(1/n)2/2. Because there aren − 1 intervals, the
total area-looseness of all of them is at most(n − 1)/(2n2). Also, x2

1 = (1 − xn)2 =

1/(2n)2, sox2
1+(1−xn)2+

∑n−1
i=1 AL(xi, xi+1) = n/(2n2) ≤ 2ǫ. Therefore,Θ(ǫ−1)

samples are always sufficient (and if, for instance,f is a constant, necessary).
We now give a deterministic adaptive algorithm. The algorithm maintains the total

area-looseness of the current unsampled intervals, the unsampled intervals themselves
in a linked list, and uses a priority queue to choose the unsampled interval with the
largest area-looseness at every step and sample in the middle of it.

Let L be a linked list of(PARAMETER, VALUE) pairs and letQ be a priority queue
of (AL , ELEM) pairs where the first element is a real number (and defines the order of
Q) and the second element is a pointer into an element ofL. The algorithm follows:

Algorithm LIPSCHITZ-INTEGRATE

1. Add (0, f(0)) and(1, f(1)) to L and insert(AL(0, 1), (0, f(0))) into Q
2. A-LOOSENESS← AL(0, 1).
3. Do while A-LOOSENESS> 2ǫ:

4. (AL , P1)← EXTRACT-MAX [Q]
5. P2 ← NEXT[L, P1]
6. x← (PARAMETER[P1] + PARAMETER[P2])/2
7. AL1 ← AL(PARAMETER[P1], x), AL2 ← AL(x, PARAMETER[P2])
8. Insert(x, f(x)) into L afterP1 and insert(AL1, P1) and(AL2, (x, f(x))) into Q
9. A-LOOSENESS← A-LOOSENESS− AL + AL1 + AL2

10.Compute and outputM using the values stored inL as described in Proposition 6.

The correctness of the algorithm is clear from Proposition 6: the algorithm stops
precisely when the total area-looseness of the unsampled intervals is no more than2ǫ.
We need to analyze the algorithm’s performance.



Theorem 1. AlgorithmLIPSCHITZ-INTEGRATE makesO(DOPT · log(ǫ−1/DOPT))
samples on problem instance(f, ǫ).

Proof: We will actually compare the number of samples toDOPT(f, ǫ/2) rather than
to DOPT(f, ǫ). We can do this because if we take a proof set forDOPT(f, ǫ) and
sample in the middle of every unsampled interval, then by Proposition 1 (4), we will
obtain a proof set forDOPT(f, ǫ/2). Thus,DOPT(f, ǫ/2) ≤ 2 ·DOPT(f, ǫ) + 1. So
let P be a proof set for(f, ǫ/2) of sizeDOPT(f, ǫ/2).

First, we argue that no interval of length smaller than4ǫ is ever subdivided. Suppose
for contradiction that amongn intervalsI1, . . . , In of lengthsa1, . . . , an, intervalIk

with ak < 4ǫ is chosen for subdivision. By Proposition 1 (1),AL(Ii) ≤ a2
i /2, so

√

AL(Ik) ≤ 2ǫ. On the other hand,
∑

ai = 1, so
∑

√

AL(Ii) ≤ 1. Multiplying the
inequalities, we get

∑

AL(Ii) ≤
∑

√

AL(Ii)AL(Ik) ≤ 2ǫ. But this implies that the
algorithm should have terminated, which is a contradiction.

Now, we count the number of samples relative toP . The number of splits isO(|P |)
by Proposition 4. The above paragraph shows that we can use Proposition 5 to conclude
that there areO(|P | log(ǫ−1/|P |)) squeezes. We now show that there areO(|P |) fizzles
and so prove the theorem.

A fizzle occurs when an interval not containing a point ofP is chosen for subdivi-
sion. Consider the situation aftern points have been sampled. Let the sampled points
be0 = x1 ≤ x2 ≤ · · · ≤ xn = 1. Because the total area-looseness of intervals be-
tween points ofP is at mostǫ, by repeated application of Proposition 1 (2,3), we have
∑

[xi,xi+1)∩P=∅ AL(xi, xi+1) ≤ ǫ. The algorithm has not terminated, so the total area-
looseness must be more than2ǫ, which implies that

∑

[xi,xi+1)∩P 6=∅ AL(xi, xi+1) > ǫ.

Because there are at most|P | elements in the sum on the left hand side, the largest el-
ement must be greater thanǫ/|P |. Therefore, there exists ak such that[xk, xk+1) con-
tains a point ofP andAL(xk, xk+1) > ǫ/|P |. So if a fizzle occurs, the area-looseness
of the chosen interval must be at leastǫ/|P |.

Now let St be the set of samples made by the algorithm after timet. DefineAt

as follows: let{y1, y2, . . . , yn} = St ∪ P with 0 = y1 ≤ y2 ≤ · · · ≤ yn and let
At =

∑n−1
i=1 AL(yi, yi+1). Clearly,At ≥ 0, At ≥ At+1 (by Proposition 1 (3)), and

therefore,At ≤ A0 ≤ 2ǫ. Every fizzle splits an interval between adjacenty’s into
two. Because the area-looseness of the interval before the split was at leastǫ/|P |, by
Proposition 1 (4),At decreases by at leastǫ/(2|P |) as a result of every fizzle. Therefore,
there can be at most4|P | fizzles during an execution. 2

We prove a matching lower bound, showing that the logarithmic factor is necessary
and thatLIPSCHITZ-INTEGRATE is optimally adaptive:

Theorem 2. For any deterministic algorithm and for anyǫ > 0 and any integerk such
that0 < k < ǫ−1/2, there exists a problem instance(f, ǫ) of LIPSCHITZ-INTEGRATION

withDOPT(f, ǫ) = O(k) on which that algorithm performsΩ(k log(ǫ−1/k)) samples.

5 Algorithm LIPSCHITZ-MC-INTEGRATE

A standard strategy in a Monte Carlo integration algorithm is to sample at a point picked
uniformly at random from an interval. The expected value of such a sample, scaled by



the length of the interval, is precisely the value of the integral over the interval, so the
goal is to minimize the variance. When the function is Lipschitz, the variance of the
integral estimate based on such a sample can be as high as a constant times the fourth
power of the length of the interval. However, if we use the fact that when the area
looseness of an interval is low, we approximately know the function, we can adjust the
sample to get an unbiased estimator of the integral over thatinterval whose variance is
the square of the area looseness in the worst case. ProcedureMC-SAMPLE shows how
to do this.

ProcedureMC-SAMPLE(x1, x2):

1. Let x be a random number, uniformly chosen from[x1, x2]
2. If f(x1) ≤ f(x2), thenSAMPLE←

(

f(x)− x + x1+x2

2

)

3. ElseSAMPLE←
(

f(x) + x− x1+x2

2

)

4. ReturnSAMPLE · (x2 − x1)

Proposition 7. MC-SAMPLE(x1, x2) returns an unbiased estimator of
∫ x2

x1
f(x) dx that

has variance at mostAL2(x1, x2).

In order to compute the integral over[0, 1], we would like an estimator for that
integral with low variance. If we split[0, 1] into intervals whose totalAL

2 is small
and runMC-SAMPLE on each interval, we will get such an estimator, as shown in the
following corollary.

Corollary 1. Let 0 = x1 < x2 < · · · < xn = 1 and suppose
∑n−1

i=1 AL
2(xi, xi+1) ≤

ǫ2/3. Let Î =
∑n−1

i=1 MC-SAMPLE(xi, xi+1). Let I =
∫ 1

0 f(x) dx. ThenPr[|Î − I| ≥
ǫ] ≤ 1/3.

The remaining difficulty is to find a small number of intervalswhose totalAL
2

is smaller thanǫ2/3. Note that the deterministic adaptive algorithm in Section4 finds
a small number of intervals whose totalAL is smaller thanǫ. We show that we can
use the same idea here. Thus, to obtain a randomized adaptivealgorithm, we use a
deterministic adaptive algorithm to get a rough idea of the function and then use Monte
Carlo sampling with variance reduction (MC-SAMPLE) to improve our estimate of the
integral.

Let L be a linked list of(PARAMETER, VALUE) pairs and letQ be a priority queue
of (AL , ELEM) pairs where the first element is a real number (and defines the order ofQ)
and the second element is a pointer into an element ofL. The algorithm is as follows:

Algorithm LIPSCHITZ-MC-INTEGRATE:

1. Add (0, f(0)) and(1, f(1)) to L and insert(AL
2(0, 1), (0, f(0))) into Q

2. ALSQ← AL
2(0, 1).

3. Do while ALSQ > ǫ2/3:
4. (AL , P1)← EXTRACT-MAX [Q]
5. P2 ← NEXT[P1]
6. x← (PARAMETER[P1] + PARAMETER[P2])/2
7. AL1 ← AL

2(PARAMETER[P1], x), AL2 ← AL
2(x, PARAMETER[P2])



8. Insert(x, f(x)) into L afterP1 and insert(AL1, P1) and(AL2, (x, f(x))) into Q
9. ALSQ← ALSQ− AL + AL1 + AL2

10. Î ← 0.
11.For each elementP of L except the last:

12. Î ← Î + MC-SAMPLE(PARAMETER[P ], PARAMETER[NEXT[P ]])
13.OutputÎ

Correctness is guaranteed by Corollary 1 because the algorithm exits the loop in
lines 3-9 only when the totalAL

2 of intervals between points inL is no more than
ǫ2/3.

6 Performance Analysis

For the analysis of the algorithm, letf be the Lipschitz function input toLIPSCHITZ-
MC-INTEGRATE.

Lemma 1. Givenf , there exists a set of points0 = x1 < x2 < · · · < xn = 1 such
that for 1 ≤ i ≤ n − 2, AL(xi, xi+1) = 3ǫ, andAL(xn−1, xn) ≤ 3ǫ. Furthermore,
ROPT(f, ǫ) ≥ (n− 2)/3.

Proof: We begin by constructing a set of points that satisfies the conditions. Obvi-
ously,x1 should be 0. Suppose we have constructed the firstk points andxk 6= 1. If
AL(xk, 1) ≤ 3ǫ, setxk+1 = 1 and we are done. Otherwise, notice thatf is continuous,
so AL is also continuous. By Proposition 1 (1),AL(xk, xk) = 0. Therefore, by the
intermediate value theorem, there is anx ∈ [xk, 1] such thatAL(xk, x) = 3ǫ and we
setxk+1 to be thatx.

Consider an algorithmA that is correct with probability at least2/3 on all inputs
and consider its executions onf . Let ei for 1 ≤ i ≤ n − 2 be the expected number
of samplesA performs in(xi, xi+1). We claim that in order forA to be correct, it
must haveei ≥ 1/3 for all i and therefore, the total expected number of samples is
∑n−2

i=1 ei ≥ (n− 2)/3.
Suppose for contradiction, thatei < 1/3 for somei. Then, by Markov’s inequal-

ity, the probability thatA samples in(xi, xi+1) is less than1/3. Now consider two
functions defined as follows:̂f1(x) = f̂2(x) = f(x) everywhere except(xi, xi+1)

andf̂1(x) = LO
xi+1
xi

(x) andf̂2(x) = HI
xi+1
xi

(x) on (xi, xi+1). By Proposition 2 (3),
∫ 1

0 f̂2(x)dx−
∫ 1

0 f̂1(x) = AL(xi, xi+1) = 3ǫ, so no output is correct for botĥf1 andf̂2.

Suppose, that we feed̂f1 andf̂2 with probability1/2 each as input toA. Conditioned
onA not sampling in(xi, xi+1), the output ofA is independent of which function was
input. Therefore, conditioned onA not sampling in(xi, xi+1), the probability of error is
at least1/2. Becausêf1 = f̂2 = f not on(xi, xi+1), the probability ofA not sampling
on (xi, xi+1) is greater than2/3, so the probability of error is greater than1/3, which
implies thatA is invalid. 2

Because the number of samples in steps 11–13 is smaller (by 1)than the number of
samples in steps 1–9, we only focus on the samples in steps 1-9. For the analysis, we
split the execution of the algorithm into two phases. The algorithm is in Phase 1 while



there is a pair of adjacent elementsxi andxi+1 in L for which AL(xi, xi+1) > 3ǫ.
When all pairs of adjacent elements haveAL at most3ǫ, the algorithm is in Phase 2.
Note that by Proposition 1 (2), area looseness between adjacent points inL never
increases as the algorithm executes, so once it enters Phase2, it never goes back to
Phase 1. We now bound the number of samples made in steps 1–9 inthe phases.

Lemma 2. In Phase 1,LIPSCHITZ-MC-INTEGRATE makesO(ROPT(f, ǫ) log(1/ǫ))
samples on problem instance(f, ǫ).

Proof: Let X be the set ofxi’s constructed as in Lemma 1. We count the samples
made byLIPSCHITZ-MC-INTEGRATE relative toX . By Proposition 4, there are at most
O(|X |) splits. We now need a lower bound on the size of intervals in Phase 1 to count
the number of squeezes. We note that an interval whose lengthis smaller than

√
6ǫ has

area looseness at most3ǫ (by Proposition 1 (1)) and will therefore never be chosen for
subdivision in Phase 1. Therefore, in Phase 1, every interval has length at least

√
6ǫ/2.

So by Proposition 5, there are at most|X | log((
√

6ǫ/2)−1/|X |) = O(|X | log(1/ǫ))
squeezes. There are no fizzles because any interval whose area looseness is greater
than3ǫ must have a point ofX (by Proposition 1 (2) and by construction ofX). By
Lemma 1,|X | = O(ROPT(f, ǫ)), so we have the claimed bound. 2

Lemma 3. In Phase 2,LIPSCHITZ-MC-INTEGRATE uses at mostO(ROPT(f, ǫ)4/3 +
ROPT(f, ǫ) log(1/ǫ)) samples on problem instance(f, ǫ).

Proof: After Phase 1 is complete,L consists of points such that the area looseness
between adjacent pairs is at most3ǫ. Let 0 = y1 < y2 < · · · < ym = 1 be the smallest
subset of points inL (including 0 and 1) such thatAL(yi, yi+1) ≤ 3ǫ for all y. We
claim thatm ≤ 6 ·ROPT(f, ǫ). Consider the set ofxi’s constructed as in Lemma 1. If
yi’s are a minimal set of points with area looseness no greater than3ǫ between adjacent
ones, then every interval of the form[xi, xi+1] has at most twoyi’s (if there are three,
the middle one is unnecessary). Therefore there are at most twice as manyyi’s asxi’s.

Now assume the algorithm makes more samples in Phase 2 than inPhase 1 be-
cause otherwise, it makesO(ROPT(f, ǫ) log(1/ǫ)) samples and we are done. We ap-
ply Propostion 8 to prove this lemma. LetY be the set ofyi’s, let Z(0) be the set
of points in L at the end of Phase 1 and lett0 = 550 · ROPT4/3. We haveA =
∑m−1

i=1 AL(yi, yi+1) ≤ 18 ·ROPT · ǫ. By Proposition 8, aftert0 samples, the totalAL
2

will be at most4608·(6·ROPT)2·(18·ROPT)2ǫ2

5503ROPT4 ≤ ǫ2/3 so the algorithm will stop aftert0
steps. 2

The following proposition shows that as our algorithm samples, the total squared
area looseness declines as the cube of the number of samples.We prove it by associating
a number with each interval that is an upper bound on its area looseness. We then show
that these numbers are within a factor of four of each other and use this to show that
that the sum of their squares decreases as the cube of the number of samples.

Proposition 8. Let Y = {y1, . . . , ym} with 0 = y1 < · · · < ym = 1, and let
A =

∑m−1
i=1 AL(yi, yi+1). Consider the sequenceZ(0), Z(1), Z(2), . . . of sets of sam-

ples whereZ(0) ⊇ Y is an arbitrary superset ofY and, for eacht ≥ 1, Z(t) =



Z(t−1) ∪ {z(t)} wherez(t) is the midpoint(x(t) + y(t))/2 of the interval(x(t), y(t))
of Z(t−1) with the largest area loosenessAL(x(t), y(t)). Then, for anyt0 ≥ |Z0|,
∑

(x,y)∈I(Z(t)) AL
2(x, y) ≤ (4608m2A)/t30.

The upper bound follows immediately from the two lemmas we have shown.

Theorem 3. On problem instance(f, ǫ) algorithm LIPSCHITZ-MC-INTEGRATE per-
formsO(ROPT4/3(f, ǫ) + ROPT(f, ǫ) log(1/ǫ)) samples.

7 Randomized Lower Bounds

We first show that Lemma 1 is actually a tight (to within a constant factor) lower bound
onROPT by proving the following upper bound.

Lemma 4. Given a Lipschitz functionf , there is a set of points0 = x1 < x2 < · · · <
xk = 1 such that for1 ≤ i ≤ k − 2, AL(xi, xi+1) = ǫ/4, andAL(xk−1, xk) ≤ ǫ/4.
Furthermore,ROPT(f, ǫ) ≤ 2k − 1.

The above lemma implies that deterministic algorithms are not very powerful rel-
ative to ROPT. For instance, iff(x) = 0 for all x, ROPT(f, ǫ) = O(ǫ−1/2) by
Lemma 4, butDOPT is Θ(ǫ−1). Therefore every deterministic algorithm requires
Ω(ROPT2) samples on some instances.

Theorem 4. Given anǫ > 0 and an integerk such that0 < k < ǫ−1/2, there is a fam-
ily of problem instances such thatROPT = O(k) on every member on the family, but
any algorithm requiresΩ(k4/3 + k log(1/ǫ)) samples in expectation on some member
of that family.

A simple corollary shows that the nonadaptive method in [2] is optimal.

Corollary 2. Any algorithm requiresΩ(ǫ−2/3) samples on some problem instance.

8 Conclusion

We gave optimally adaptive deterministic and randomized algorithms forLIPSCHITZ-
INTEGRATION. To simplify the analysis, we have been lax with constant factors in the
randomized algorithm and the related proofs. Thus, it is possible to improve both the
algorithm’s performance and its analysis by constant factors.

A more interesting open problem is to design adaptive algorithms for definite in-
tegration over two or higher-dimensional domains or to prove that good adaptive al-
gorithms do not exist. Although simple Monte Carlo methods readily extend to higher
dimensions, designing and analyzing adaptive algorithms seems difficult.
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