Optimally Adaptive Integration of Univariate Lipschitz
Functions

llya Barart, Erik D. Demainé, and Dmitriy A. KatZ

1 MIT Computer Science and Artificial Intelligence Laborator
32 Vassar Street, Cambridge, MA 02139, USA,
{ibaran,edemaine }@mit.edu
2 Sloan School of Management, Massachusetts Institute diriEéogy,
50 Memorial Drive, Cambridge, MA 02142, USA,
dimdim@mit.edu

Abstract. We consider the problem of approximately integrating a tijz
function f (with a known Lipschitz constant) over an interval. The gizato
achieve an error of at mostusing as few samples of as possible. We use
the adaptive framework: on all problem instances an adatigorithm should
perform almost as well as the best possible algorithm tumedhle particular
problem instance. We distinguish betwde®PT andROPT, the performances
of the best possible deterministic and randomized algosthrespectively. We
give a deterministic algorithm that us@$DOPT(f, ¢)-log(¢ "' /DOPT(f, ¢)))
samples and show that an asymptotically better algorithimmossible. How-
ever, any deterministic algorithm requir€YROPT(f, €)?) samples on some
problem instance. By combining a deterministic adaptigoathm and Monte
Carlo sampling with variance reduction, we give an algonitthat uses at most
O(ROPT(f,€)*? + ROPT(f,¢) - log(1/¢)) samples. We also show that any
algorithm requireg2(ROPT(f, €)*/® + ROPT(f, €) - log(1/¢)) samples in ex-
pectation on some problem instangg ¢), which proves that our algorithm is
optimal.

1 Introduction

We consider the problem of approximating a definite integfa univariate Lipschitz
function (with known Lipschitz constant) to withirusing the fewest possible samples.
The functionis given as a black box: sampling it at a paranvetiee is the only allowed
operation. It is easy to show thét(¢~!) samples are necessary and sufficient for a
deterministic algorithm in the worst case (see, e.g., [Ihe results in [2] imply a
Monte-Carlo method that requires or(e /%) samples in the worst case.

The Adaptive Framework. The univariate Lipschitz integration problem becomes
more interesting in the adaptive setting. The motivatiothit, for a givene, some
problem instances have much lower complexity than otherseXample, iff (x) = Lz,
where L is the Lipschitz constant, then evaluatifigat the endpoints of the interval
over which the integral is taken is sufficient to solve thelppean for anye. Thus, it is
desirable to have an algorithm that is guaranteed to use f@meples on easier problem
instances. Such an algorithm is calledaptive We formalize this notion by defining

the difficulty of a problem as the performance of the best iptsslgorithm on that
problem:

Definition 1. Let P be a class of problem instances. Létbe the set of all correct
algorithms for? (among some reasonable class of algorithms).COST(A, P) be
the performance of algorithrd € .4 on problem instancé& € P. DefineOPT(P) =
minge 4 COST(A4, P). We useDOPT whenA is the set of deterministic algorithms
andROPT whenA is the set of randomized algorithms that are correct on edch P
with probability at least/3.

By definition, for every problem instand®, there is an algorithm whose cost én
is OPT(P). A good adaptive algorithm is a single algorithm whose cestat much
greater tharOPT(P) for everyproblem instancé’. Therefore, an adaptive guarantee
is in general much stronger than a worst-case guarantee.

The ultimate goal of investigating a problem in the adaptreenework is to de-
sign an “optimally adaptive” algorithm. SuppaoBes the set of problem instances and
each problem instancB € P has certain natural parametess(P), .. ., v, (P), with
the first parameter, (P) = OPT(P). An algorithm isoptimally adaptivef its perfor-
mance on every problem instanBes P is within a constant factor of every algorithm’s
worst-case performance on the family of instances with #mesvalues for the param-
eters:{P’ € P | v;(P’) = v;(P) forall i}. Note that this definition depends on the
choice of parameters, so in addition@®T, we need to choose reasonable parameters,
such asg;, the desired output accuracy.

Related Work. While approximate definite integration is well-studiedtiot numer-
ical analysis (see, e.g., [3]) and in information-basedmlexity [4], those algorithms
do not have provable guarantees about adaptivity. In tteaatiure, the term “adaptive”
typically refers to an algorithm that is allowed to pick sdegbased on previous sample
values, which is quite different from our meaning.

For other problems, optimally adaptive algorithms havenh@eviously designed in
the context of set operations [5], aggregate ranking [6d,iadependent set discovery
in [7]. Lipschitz functions also lend themselves well to jpiikee algorithms. It is shown
in [8] that Piyavskii's algorithm [9] for minimizing a univéate Lipschitz function per-
formsO(OPT) samples. [10] gives an adaptive algorithm for minimizing tlistance
from a point to a Lipschitz curve that is within a logarithnféctor of OPT. [11] gives
adaptive algorithms for several problems on Lipschitz fioms.

Our Results. In this paper we give a deterministic algorithm that makesast
O(DOPT - log(e~1/DOPT)) samples. We also prove a matching lower bound on de-
terministic algorithms. When comparing ROPT, however, we show that any deter-
ministic adaptive algorithm use8(ROPT?) samples on some problem instance. We
present a randomized adaptive algorithrRSCHITZ-MC-INTEGRATE, that always uses
O(ROPT*? + ROPT - log(e~')) samples and prove a matching lower bound.

We therefore give optimally adaptive algorithms for theddhitz integration prob-
lem in the deterministic and randomized settings. Althotighalgorithms are simple,
in both cases analyzing their adaptive performance is imltrTo our knowledge,
LIPSCHITZ-MC-INTEGRATE s the first randomized optimally adaptive algorithm. Also,

a simple corollary of the randomized lower bound is that the-adaptive algorithm
based on the results in [2] is optimal in the worst case.

Some of the results in this paper, primarily in Sections 3 é4ndre based on the
first author’'s master’s thesis [11]. Many of the proofs ardttad from this extended
abstract

2 Problem Basics

We start by giving a precise formulation of the problem wesider:
ProblemLIPSCHITZ-INTEGRATION:

Given: (f,a,b,L,¢)
Such that: fila, b)) = R
and forxy, x5 € [a,b], | f(22) — f(a1)| < L|zg — 21

Compute: I € R such that <e

I—/abf(x)dx

A randomized algorithm needs to be correct with probabittieast2 /3.

Some input parameters can be eliminated without loss ofrgétye The problem
instance(f,a,b, L, ¢) is equivalent to the problem instanéﬁ,o, 1,1,¢/L(b — a)?)
wheref(z) = f (ﬁ) /L(b — a), so we can assume without loss of generality that
a=0,b=1,andL = 1.

We now develop some basic tools we will need for discussiryaralyzing the
algorithms. Essentially, we show how to make use of the lhpscondition to bound
the error of our estimates.

The Lipschitz condition allows an algorithm that has sampleat two points to
bound the value of the integral gfon the interval between them. We call the quality
of this boundarea loosenessand it depends on both the length of the interval and the
values off at the sampled points. A greater difference between valtigsa steeper
function) results in a smaller area looseness. We definelaosaness as follows (see
Figure 1):

Definition 2. Given a Lipschitz functiofi on |0, 1], define therrea loosenesd a subin-
terval [wl,xg] of [0, 1] aSALf(SCl, .’L‘g) = ((.%‘2 — .%'1)2 — (f(.%‘l) — f($2))2)/2 When it
is clear whichf we are talking about, we simply writéL(z1, z2).

Our analysis relies on area looseness being well behavedolibwing proposition
shows that it has the properties one would expect a boundtegration error to have
and that an additional sample in the middle of the intervatel@ses total area looseness
quickly.

% The full version of this paper is available at
http://www.mit.edu/"ibaran/papers/intfull. {pdf,ps }

o X2

Fig. 1. lllustration of area looseness. Lipschitz bounds are dhshe

Proposition 1. Area-looseness has the following properties:
(1)0 < AL(z1,22) < (22 — 11)2/2.
2 If 2} <y <29 <ahthenAL(zy,x2) < AL(Z), 25).
(3) If x € [x1, z2], thenAL(zy,x) + AL(x, x2) < AL(x1,x2).
(4) AL(,Tl, 11_-512) + AL(M—;LW, ,TQ) S AL(.I‘l, 1‘2)/2

For the lower bounds, both dnPT and on adaptive algorithms, we need “extremal”
Lipschitz functions, whose integral is either maximal ommial, given the samples.
We call these function& andLO. We also defindbosenesghe maximum difference
betweenHI andLO over an interval.

Definition 3. Given a Lipschitz functiorf, and0 < a < b < 1, define the Lipschitz
functionsHI® and LO® on [a,b] as: HI)(z) = min(f(a) + = — a, f(b) + b —)
and LOY(z) = max(f(a) — = + a, f(b) — b + x). Also defineL; as L¢(a,b) =
b—a—1[f(b) - f(a)l.

Proposition 2. Given a Lipschitz functiorf, the functionsH]Z andLOZ have the fol-
lowing properties:

(1) If g is Lipschitz,g(a) = f(a), andg(b) = f(b), then forz € [a,b], HI® (z) >
g(x) > LOY(x).

(2) AL(a,b)/(b—a) < m[aﬁl(H]Z(x) — LO%(x)) = L(a,b) < 2A4L(a,b)/(b—a)

re|a,

@) [P HIY () de = (b — o)L 4 AL(a,0)/2 and [0 LOY(z) de = (b —

a) L O Ar(a,b)/2.

Proposition 3. Given a Lipschitz functiorf, looseness has the following properties:
1)0< L(a,b)<b—a
2 Ifa’ <a<b<V,thenL(a,b) < L(d,V).
B)fry <o <+ <y, thenzzzll L(zi, xi41) < L(x1, 2p).

3 Proof Sets

In order to compare the running time of an algorithm on a gobinstance tddOPT,
we define the concept of a proof set for a problem instancet #s& points in[0, 1]
is aproof setfor problem instancéf, ¢) and outpute if for every f’ that is equal tof
on P, x is a correct output ofif’, €). In other words, sampling at a proof set proves
the correctness of the output. We say that a set of samplga@éset for a particular
problem instance without specifying the output if some atigxists for which it is a
proof set.

Itis clear from the definition that sampling a proof set isdhéy way a deterministic
algorithm can guarantee correctness: if an algorithm dbsample a proof set for
some problem instance, we can feed it a problem instancéfizathe same value on
the sampled points, but for which the output of the algoriterimcorrect. Conversely
an algorithm can terminate as soon as it has sampled a ptomfid@lways be correct.
Thus,DOPT is equal to the size of a smallest proof set.

In order to analyze the deterministic algorithm, we will quane the number of
samples it makes to the size of a proof BetWe will need some tools for doing this.

Let P be a nonempty finite set of points [f, 1]. Consider the execution of an
algorithm which samples a function at points on the intef9al) (if it samples at 1,
ignore that sample). Let, so, ..., s, be the sequence of samples that the algorithm
performs in the order that it performs them. Ligtbe the set of unsampled intervals
after samples,, i.e., the connected components[@fl) — {si,..., s}, except make
each element of; half-open by adding its left endpoint, so that the union oftz
elements ofl; is [0, 1). Let[l;, ;) be the element of;_; that contains;.

Then sample, is a:

Sp“t if [lt,St)mP# @and[st,rt)ﬂp#@
squeeze if [l;,s;) NP # Qorlss,) NP #), but not both
fizzle if [l;,r) NP = 0.

These definitions are, of course, relativeto See Figure 2. We can now bound the
number of samples of different types:

Proposition 4. The number of splits is at moge| — 1.

Proposition 5. Suppose that for all and j with ¢ # j, |s; — s;| > ¢ and that for
all t, sy, = (I +r¢)/2. Then if|[P| < ¢!/2, the number of squeezes is at most
| P|logy(e™t/|P)).

We now characterize proof sets faPSCHITZ-INTEGRATION.

fizzle squeeze split

| J

083 S \TJ 1
P

Fig. 2. Different types of samples.

Proposition 6. Let P = {x1,22,...,z,} suchthat) < z1 < 20 < -+ < x, < 1.
Then P is a proof set for problem instandgf, ¢) if and only if 22 + (1 — z,)% +
Z?;ll AL(SEZ, Il’Jrl) S 2€.

4 Deterministic Algorithm and Analysis

Proposition 6, together with Proposition 1 immediatelywssthe correctness of a trivial
algorithm. Letn = [¢~!/4] and let the algorithm makesamples, a-, 2, ..., 221
and output the integrdl/ as in the proof of Proposition 6. It is correct because tha-are
looseness of every interval is at m@syn)?/2. Because there are— 1 intervals, the
total area-looseness of all of them is at most- 1)/(2n?). Also, 23 = (1 — z,)? =
1/(2n)2, 5023 + (1 —2,)2 + 317 ALz, i41) = n/(2n2) < 2. Therefore@(e 1)
samples are always sufficient (and if, for instantés a constant, necessary).

We now give a deterministic adaptive algorithm. The aldonitmaintains the total
area-looseness of the current unsampled intervals, tteempisd intervals themselves
in a linked list, and uses a priority queue to choose the upkairinterval with the
largest area-looseness at every step and sample in theenoiitl|

Let L be a linked list off PARAMETER, VALUE) pairs and let) be a priority queue
of (AL, ELEM) pairs where the first element is a real number (and definesrtfez of
Q) and the second element is a pointer into an elemeht @he algorithm follows:

Algorithm LIPSCHITZ-INTEGRATE

1.Add (0, f(0)) and(1, f(1)) to L and inser{ AL(0, 1), (0, f(0))) into @
2.A-LOOSENESS— AL(0,1).
3. Do while A-LOOSENESS> 2e¢:
4. (AL, Py) < EXTRACT-MAX [Q]
5. P, « NEXT[L, P]
6.2 < (PARAMETER[P|| + PARAMETER[P%])/2
7.ALy — AL(PARAMETER[P,], z), ALs «— AL(x, PARAMETER[P])
8.Insert(x, f(z)) into L after P, and inser{AL;, P;) and(AL», (x, f(z))) into @
9. A-LOOSENESS— A-LOOSENESS— AL + ALj + ALs
10.Compute and outpu¥/ using the values stored ihas described in Proposition 6.

The correctness of the algorithm is clear from Propositiothé algorithm stops
precisely when the total area-looseness of the unsampiedvats is no more thage.
We need to analyze the algorithm’s performance.

Theorem 1. Algorithm LIPSCHITZ-INTEGRATE makesO(DOPT - log(¢~!/DOPT))
samples on problem instan¢g ¢).

Proof: We will actually compare the number of sample$XOPT(f, ¢/2) rather than
to DOPT(f,¢e). We can do this because if we take a proof setB@PT(f,e) and
sample in the middle of every unsampled interval, then by®&sdion 1 (4), we will
obtain a proof set foDOPT(f,e/2). Thus,DOPT(f,e/2) < 2-DOPT(f,¢) + 1. So
let P be a proof set fo(f, ¢/2) of sizeDOPT(f,¢/2).

First, we argue that no interval of length smaller tHais ever subdivided. Suppose
for contradiction that among intervals/y, ..., I, of lengthsa,...,a,, interval I}
with a;, < 4e is chosen for subdivision. By Proposition 1 (WL(I;) < a?/2, so
AL(I;) < 2e. On the other handy_a; = 1,s0>_ /AL(I;) < 1. Multiplying the
inequalities, we gep " AL(I;) < > /AL(I;)AL(I;) < 2e. But this implies that the
algorithm should have terminated, which is a contradiction

Now, we count the number of samples relativé*toThe number of splits i® (| P|)
by Proposition 4. The above paragraph shows that we can apes$ttion 5 to conclude
thatthere ar®(|P|log(e~1/| P|)) squeezes. We now show that there@(eP|) fizzles
and so prove the theorem.

A fizzle occurs when an interval not containing a pointrdis chosen for subdivi-
sion. Consider the situation afterpoints have been sampled. Let the sampled points
be) = 21 < 2y < --- < 2, = 1. Because the total area-looseness of intervals be-
tween points ofP is at most, by repeated application of Proposition 1 (2,3), we have
Z[mi,mm)mP:@ AL(z;,z;+1) < e. The algorithm has not terminated, so the total area-
looseness must be more thza which implies thaﬁj[zi_’zm)mpﬂ AL(x;,2i41) > €.
Because there are at mé#t elements in the sum on the left hand side, the largest el-
ement must be greater thaf| P|. Therefore, there existskasuch thafxzy,, x;41) con-
tains a point of? and AL(zx, xx+1) > €/|P|. So if a fizzle occurs, the area-looseness
of the chosen interval must be at leastP|.

Now let S; be the set of samples made by the algorithm after timefine A,
as follows: let{y1,y2,...,ynt = St UP with 0 = y; < yo < --- < y,, and let
Ay = Z?;ll AL(y;,yi41). Clearly, Ay > 0, A, > A;41 (by Proposition 1 (3)), and
therefore,A; < Ay < 2e. Every fizzle splits an interval between adjaceist into
two. Because the area-looseness of the interval beforepthienss at least/|P|, by
Proposition 1 (4)A; decreases by at least(2| P|) as a result of every fizzle. Therefore,
there can be at mogtP| fizzles during an execution. O

We prove a matching lower bound, showing that the logarithfaitor is necessary
and thatLIPSCHITZ-INTEGRATE is optimally adaptive:

Theorem 2. For any deterministic algorithm and for ary> 0 and any integek such
that0 < k < e~1/2, there exists a problem instan¢g ¢) of LIPSCHITZ-INTEGRATION
with DOPT(f, €) = O(k) on which that algorithm perform@(k log(¢ ! /k)) samples.

5 Algorithm LIPSCHITZ-MC-INTEGRATE

A standard strategy in a Monte Carlo integration algoritetimisample at a point picked
uniformly at random from an interval. The expected valueunfrsa sample, scaled by

the length of the interval, is precisely the value of the gné over the interval, so the
goal is to minimize the variance. When the function is Lipsghhe variance of the
integral estimate based on such a sample can be as high astarddimes the fourth
power of the length of the interval. However, if we use thet flkat when the area
looseness of an interval is low, we approximately know thecfion, we can adjust the
sample to get an unbiased estimator of the integral oveirtexval whose variance is
the square of the area looseness in the worst case. ProcedtsaMPLE shows how

to do this.

ProcedureMC-SAMPLE(z1, 2):

1.Letx be a random number, uniformly chosen from, x|
2.1f f(z1) < f(x2), thensAMPLE — (f(z) — o + Lt22)
3.ElseSAMPLE « (f(z) + oz — £1f22)

4. ReturnSAMPLE - (x2 — 1)

Proposition 7. MC-SAMPLE(x1, z2) returns an unbiased estimatorﬁjf f(z) dx that
has variance at most L2 (z1, z2).

In order to compute the integral ové, 1], we would like an estimator for that
integral with low variance. If we splif0, 1] into intervals whose totall L is small
and runMc-SAMPLE on each interval, we will get such an estimator, as shownen th
following corollary.

Corollary 1. Let0 =21 <29 < --- <z, = 1 and suppos{jﬁ;ll AL (2, zi41) <
¢?/3. Let] = "' MC-SAMPLE(2;, z;41). Letl = [f(x) da. ThenPr[|[— I| >
€] <1/3.

The remaining difficulty is to find a small number of intervakose totalAL?
is smaller thare? /3. Note that the deterministic adaptive algorithm in Sectidinds
a small number of intervals whose totdl. is smaller thare. We show that we can
use the same idea here. Thus, to obtain a randomized adajfdivethm, we use a
deterministic adaptive algorithm to get a rough idea of thecfion and then use Monte
Carlo sampling with variance reductiom¢-SAMPLE) to improve our estimate of the
integral.

Let L be a linked list off PARAMETER, VALUE) pairs and let) be a priority queue
of (AL, ELEM) pairs where the first elementis a real number (and definesdee of())
and the second element is a pointer into an elemeht dhe algorithm is as follows:

Algorithm LIPSCHITZ-MC-INTEGRATE:

1.Add (0, f(0)) and(1, f(1)) to L and inser{ AL?(0, 1), (0, £(0))) into Q
2.ALSQ «— AL*(0,1).
3.Do while ALSQ > €2/3:

4. (AL, Py) < EXTRACT-MAX [Q]

5. Py « NEXT[P]

6.2 < (PARAMETER[P;] + PARAMETER[P%])/2

7.AL; — AL*(PARAMETER[P],z), ALy «— AL*(z, PARAMETER[P;])

8.Insert(z, f(x)) into L after P, and inser{ALq, P;) and(ALo, (z, f(x))) into @
9.ALSQ «+ ALSQ — AL + AL + AL

10.1 < 0.

11.For each elemen® of L except the last:
12.1 — I + MC-SAMPLE(PARAMETER|P], PARAMETER|NEXT|P]])

13.Output/

Correctness is guaranteed by Corollary 1 because the #goexits the loop in
lines 3-9 only when the totall L? of intervals between points ifi is no more than
2
€*/3.

6 Performance Analysis

For the analysis of the algorithm, Ig¢tbe the Lipschitz function input toiPSCHITZ-
MC-INTEGRATE.

Lemma 1. Given f, there exists a set of points= 21 < 22 < --- < z, = 1 such
thatforl < i <n—2, AL(x;,2,11) = 3¢, and AL(zy,—1,z,) < 3e. Furthermore,
ROPT(f,e) > (n—2)/3.

Proof: We begin by constructing a set of points that satisfies thelitons. Obvi-
ously, z; should be 0. Suppose we have constructed theHimtints andr, # 1. If
AL(zg, 1) < 3¢, setzy+1 = 1 and we are done. Otherwise, notice tlfias continuous,
so AL is also continuous. By Proposition 1 (13,L(xx,xx) = 0. Therefore, by the
intermediate value theorem, there is@arm [z, 1] such thatd L(zy,) = 3¢ and we
setzy 1 to be thatr.

Consider an algorithml that is correct with probability at leagt/3 on all inputs
and consider its executions gh Lete; for 1 < i < n — 2 be the expected number
of samplesA performs in(z;, z;+1). We claim that in order ford to be correct, it
must havee; > 1/3 for all : and therefore, the total expected number of samples is
Yile > (n—2)/3.

Suppose for contradiction, that < 1/3 for somei. Then, by Markov’s inequal-
ity, the probability thatd samples in(x;,z;+1) is less thanl/3. Now consider two
functions defined as followsf; (z) = fo(z) = f(x) everywhere exceptr;, ;1)
andf(z) = LOZ " (x) andfs(z) = HIZ " (x) on (24, x;11). By Proposition 2 (3),
fol fg(:c)d:v—fol fi(x) = AL(z;, z41) = 3¢, 50 no outputis correct for both and fs.
Suppose, that we feef] andfz with probability 1/2 each as input tel. Conditioned
on A not sampling inx;, x;+1), the output ofA is independent of which function was
input. Therefore, conditioned afinot sampling in(«;, z; 41), the probability of error is
at leastl /2. Becausef; = f, = f noton(xz;, ;11), the probability ofA not sampling
on (z;,x;+1) is greater tharz/3, so the probability of error is greater thap3, which
implies thatA is invalid.]

Because the number of samples in steps 11-13 is smaller (bgrithe number of
samples in steps 1-9, we only focus on the samples in step&drse analysis, we
split the execution of the algorithm into two phases. Thedlgm is in Phase 1 while

there is a pair of adjacent elementsandz; in L for which AL(z;, x;+1) > 3e.
When all pairs of adjacent elements havé at most3e, the algorithm is in Phase 2.
Note that by Proposition 1 (2), area looseness between extjgoints inL never
increases as the algorithm executes, so once it enters Phéseever goes back to
Phase 1. We now bound the number of samples made in steps the9ghases.

Lemma 2. In Phase 1LIPSCHITZ-MC-INTEGRATE makesO(ROPT(f,¢)log(1/¢))
samples on problem instan¢g ¢).

Proof: Let X be the set ofr;’s constructed as in Lemma 1. We count the samples
made byLIPSCHITZ-MC-INTEGRATE relative to X. By Proposition 4, there are at most
O(]X|) splits. We now need a lower bound on the size of intervals esBH. to count
the number of squeezes. We note that an interval whose lengthaller than,/6e has
area looseness at makt (by Proposition 1 (1)) and will therefore never be chosen for
subdivision in Phase 1. Therefore, in Phase 1, every intbaglength at leasy/6e/2.

So by Proposition 5, there are at moat|log((v/6¢/2)~/|X|) = O(|X|log(1/¢))
squeezes. There are no fizzles because any interval whasdoaseness is greater
than3e must have a point oK (by Proposition 1 (2) and by construction &f). By
Lemma 1,X| = O(ROPT(f,¢)), so we have the claimed bound. ad

Lemma 3. In Phase 2/ IPSCHITZ-MC-INTEGRATE uses at mosD(ROPT(f, ¢)*/3 +
ROPT(f,€)log(1/¢)) samples on problem instan¢g, e).

Proof: After Phase 1 is completd, consists of points such that the area looseness
between adjacent pairsis at méstLet) = y; < y2 < --- < y,, = 1 be the smallest
subset of points in_ (including 0 and 1) such thad L(y;, y;+1) < 3e for all y. We
claim thatm < 6 - ROPT(f, €). Consider the set af;’s constructed as in Lemma 1. If
y;'s are a minimal set of points with area looseness no gresaeBt between adjacent
ones, then every interval of the forim;, ;1] has at most twa;’s (if there are three,
the middle one is unnecessary). Therefore there are at migst &s manyy;'s asx;’s.
Now assume the algorithm makes more samples in Phase 2 ttimase 1 be-
cause otherwise, it maké(ROPT(f,) log(1/¢)) samples and we are done. We ap-
ply Propostion 8 to prove this lemma. L&t be the set ofy;’s, let Z(?) be the set
of points in L at the end of Phase 1 and lgt = 550 - ROPT*/?. We haveAd =
Z;’;‘ll AL(yi,yi+1) < 18-ROPT - €. By Proposition 8, aftet, samples, the total L

will be at most46°8'(G'Rgifgé(giﬁopT)zez < €2/3 so the algorithm will stop aftet

steps. O

The following proposition shows that as our algorithm sasspthe total squared
arealooseness declines as the cube of the number of salvglpsove it by associating
a number with each interval that is an upper bound on its aesehess. We then show
that these numbers are within a factor of four of each othdruse this to show that
that the sum of their squares decreases as the cube of theenafidamples.

Proposition8. LetY = {y1,...,ym} With0 = y; < -+ < y,, = 1, and let
A =" AL(y;, yis1). Consider the sequenc&®, Z(D), Z(2) . of sets of sam-
ples whereZ(®) O Y is an arbitrary superset o¥” and, for eacht > 1, Z() =

Zt=D U {2} wherez(®) is the midpoint(z® + y(®)/2 of the interval(z®), y®)
of Z(=1 with the largest area loosenessL(z*),y®)). Then, for anyt, > |Z|,
Y (emezzoy AL (w,y) < (4608m?A) /t3.

The upper bound follows immediately from the two lemmas weetshown.

Theorem 3. On problem instancéf, e) algorithm LIPSCHITZ-MC-INTEGRATE per-
formsO(ROPT*3(f, e) + ROPT(f,) log(1/¢)) samples.

7 Randomized Lower Bounds

We first show that Lemma 1 is actually a tight (to within a cansfactor) lower bound
on ROPT by proving the following upper bound.

Lemma 4. Given a Lipschitz functioif, there is a set of point§ = z; < 22 < --- <
xp = 1suchthatforl <i <k —2, AL(z;,2i41) = €/4, and AL(xp_1, 2x) < €/4.
Furthermore ROPT(f,¢) < 2k — 1.

The above lemma implies that deterministic algorithms artevery powerful rel-
ative to ROPT. For instance, iff(z) = 0 for all z, ROPT(f,e) = O(e~'/?) by
Lemma 4, butDOPT is ©(e~!). Therefore every deterministic algorithm requires
2(ROPT?) samples on some instances.

Theorem 4. Given ane > 0 and an integek such thad) < k < e~!/2, there is a fam-

ily of problem instances such thRIOPT = O(k) on every member on the family, but
any algorithm requireg2(k*/® + klog(1/¢)) samples in expectation on some member
of that family.

A simple corollary shows that the nonadaptive method ing2jptimal.

Corollary 2. Any algorithm requires?(¢~2/3) samples on some problem instance.

8 Conclusion

We gave optimally adaptive deterministic and randomizgdr@thms forLIPSCHITZ-
INTEGRATION. To simplify the analysis, we have been lax with constantioiacin the
randomized algorithm and the related proofs. Thus, it isibdes to improve both the
algorithm’s performance and its analysis by constant facto

A more interesting open problem is to design adaptive algms for definite in-
tegration over two or higher-dimensional domains or to prthat good adaptive al-
gorithms do not exist. Although simple Monte Carlo methastsdily extend to higher
dimensions, designing and analyzing adaptive algoritteess difficult.

References

10.

11.

. Werschulz, A.G.: An overview of information-based coexity. Technical Report CUCS-

022-02, Computer Science Department, Columbia Unive(2(p2)

. Barabesi, L., Marcheselli, M.: A modified monte carlo gregion. International Mathemat-

ical JournalBB(5) (2003) 555-565

. Dauvis, P.J., Rabinowitz, P.. Methods of Numerical In&igin. second edn. Academic Press,

San Diego (1984)

. Traub, J., Wasilkowski, G., Wozniakowski, H.: Inforrmat-Based Complexity. Academic

Press, New York (1988)

. Demaine, E.D., Lopez-Ortiz, A., Munro, J.I.: Adaptivat stersections, unions, and differ-

ences. In: Proceedings of the 11th Annual ACM-SIAM Sympasan Discrete Algorithms,
San Francisco, California (2000) 743-752

. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation aitions for middleware. Journal of

Computer and System Sciend@&&4) (2003) 614—656

. Biedl, T., Brejova, B., Demaine, E.D., Hamel, A.M., L@p@rtiz, A., Vinaf, T.: Finding

hidden independent sets in interval graphs. Theoreticaifler Scienc810(1-3) (2004)
287-307

. Hansen, P., Jaumard, B., Lu, S.H.: On the number of iteratof piyavskii's global opti-

mization algorithm. Mathematics of Operations Resed&R) (1991) 334-350

. Piyavskii, S.: An algorithm for finding the absolute extiem of a function. USSR Compu-

tational Mathematics and Mathematical Phydi241972) 57-67

Baran, I., Demaine, E.D.: Optimal adaptive algorithmsfinding the nearest and farthest
point on a parametric black-box curve. In: Proceedings@20th Annual ACM Symposium
on Computational Geometry, Brooklyn, NY (2004) To appear.

Baran, I.: Adaptive algorithms for problems involvinigdk-box lipschitz functions. Mas-
ter's thesis, Massachusetts Institute of Technology, Galge, Massachusetts (2004) At
http://www.mit.edu/"ibaran/papers/mthesis. {pdf,ps }.

