
CCCG 2010, Winnipeg MB, August 9–11, 2010

Any Monotone Boolean Function Can Be Realized by Interlocked Polygons

Erik D. Demaine∗ Martin L. Demaine∗ Ryuhei Uehara†

Abstract

We show how to construct interlocked collections of sim-
ple polygons in the plane that fall apart upon remov-
ing certain combinations of pieces. Precisely, interior-
disjoint simple planar polygons are interlocked if no
subset can be separated arbitrarily far from the rest,
moving each polygon as a rigid object as in a sliding-
block puzzle. Removing a subset S of these polygons
might keep them interlocked or free the polygons, al-
lowing them to separate. Clearly freeing removal sets
satisfy monotonicity: if S ⊆ S′ and removing S frees
the polygons, then so does S′. In this paper, we show
that any monotone Boolean function f on n variables
can be described by m > n interlocked polygons: n of
the m polygons represent the n variables, and remov-
ing a subset of these n polygons frees the remaining
polygons if and only if f is 1 when the corresponding
variables are 1.

1 Introduction

Since Sam Loyd invented the famous 15 puzzle, sliding-
block puzzles have played an important role in math-
ematical recreations. There are many variations of
sliding-block puzzles (Figure 1), and they have been
investigated widely; see, for example, [1]. Recently, a
new framework involving games on graphs led to es-
tablishing PSPACE-completeness of many sliding-block
and related puzzles [4]. In most of these puzzles, for a
given initial state, we aim at finding a way to its goal
state. Sometimes, the difficulty of the puzzles is changed
if we change the initial state. For example, the 15 puz-
zle becomes much easier if we remove more than one of
the sixteen possible pieces. In the puzzles in Figure 1,
if we remove more pieces, the problems (getting out a
specified car or disassembling the puzzle) become eas-
ier. More generally, in a sliding-block puzzle, removing
pieces makes for an easier puzzle. In this paper, we
investigate such monotonicity of sliding-block puzzles.

Suppose we have a collection of n simple polygons
in the plane, none of which overlap each other (except

∗Computer Science and Artificial Intelligence Lab, Mas-
sachusetts Institute of Technology, MA 02139, USA. {edemaine,
mdemaine}@mit.edu

†School of Information Science, Japan Advanced Institute of
Science and Technology, Ishikawa 923-1292, Japan. uehara@jaist.
ac.jp

Figure 1: Typical sliding-block puzzles in 2D and 3D.

along their boundaries). We call the polygons inter-
locked if no subset can be separated arbitrarily far from
the rest. Otherwise, we call the polygons free. (Our re-
sults hold equally well if we define “free” to mean that
every polygon can separate arbitrarily far from every
other polygon; we will guarantee full interlocking or full
freedom.)

If we remove a subset S of the polygons, the remaining
polygons might be interlocked or free. Define δ(S) = 1
if the remaining polygons become free after removing
S, and δ(S) = 0 if they remain interlocked. Clearly f
is monotone: if S ⊆ S′, then δ(S) ≤ δ(S′). (Removing
more makes the polygons less interlocked.)

A natural question arises: which monotone Boolean
functions f can be described by n interlocked polygons?
Figure 2 shows some simple examples. For a specified n
and k, this technique can design n interlocked polygons
such that removing any k of them makes them all free.

Figure 2: Interlocked polygons freed by removing any
one, two, or three of the polygons (from left to right).

Monotone Boolean functions have long been inves-
tigated in computer science, especially in the context
of the lower bound of circuit complexity; see, e.g., [5,
Chapter 14.4]. In general, monotone Boolean functions
are formed by and and or operations (without NOT).
Thus we need to build and and or gates using in-
terlocked polygons. Doing so, however, seems difficult

{edemaine,mdemaine}@mit.edu
{edemaine,mdemaine}@mit.edu
uehara@jaist.ac.jp
uehara@jaist.ac.jp


22nd Canadian Conference on Computational Geometry, 2010

without some extra pieces.
Thus our problem becomes the following: can any

monotone Boolean functions f on n variables be de-
scribed by m > n interlocked polygons, where f oper-
ates on a particular subset of n polygons? In this paper,
we give an affirmative answer to this question:

Theorem 1 For any given monotone Boolean function
f on n variables x1, x2, . . . , xn, there is a collection S
of m > n simple polygons such that (1) S is interlocked,
(2) a subset S′ ⊂ S of n simple polygons correspond to
the variables, and (3) δ(S′′) = 1 for S′′ ⊆ S′ (removing
the pieces in S′′ ⊆ S′ frees the remaining polygons) if
and only if f(x1, x2, . . . , xn) = 1, where xi indicates
whether xi ∈ S′′.

This problem was originally motivated by analogy to
a corresponding topological problem: design a braid of
n strands, or a link of n components, that trivializes
(and therefore the parts separate freely) only when re-
moving certain subsets of the parts. Again any mono-
tone Boolean function is possible [6, 2], and furthermore
without the need for extra pieces.

2 Construction

The proof of the main theorem by the construction
of the desired interlocked polygons for any monotone
Boolean function f on n variables x1, x2, . . . , xn. Fig-
ure 3 gives an outline of the construction.

A
...

...

...

...

Function
gadget 
area

F

C

x1

x2

xn

B

E

D

Figure 3: Outline of the construction.

The polygons B, C, D, E, and F form an outer frame.
When polygon A is at the initial position as in the figure,
these polygons are interlocked. However, once we slide
A left, B can be slid up and right, and all of C, D
and E can be removed in this order; then all remaining
polygons can be moved out from F on the right side, so
all polygons become free.

We construct all other gadgets inside of this frame.
Each of the variables x1, x2, . . . , xn corresponds to a
polygon in S on the left of the frame, as depicted in
Figure 3. If we remove the polygon xi (we sometimes
identify a variable/operator and the corresponding gad-
get), which is equivalent to setting xi = 1, then the
input wire can slide one unit to the left. Thus a true
input wire effectively pulls the polygons one unit length.

To complete the construction of the gadgets that real-
ize a monotone Boolean function f within the frame, we
have to design six kinds of gadgets: (0) wire to transfer
a signal, (1) and gate for the conjunction of two signals,
(2) or gate for the disjunction of two signals, (3) split
to duplicate a signal, (4) turn to route a signal, and (5)
cross to enable nonplanar routes. Then it is easy to
assemble these gadgets to construct the output of any
monotone Boolean function on the n inputs. (Techni-
cally, split is not necessary to achieve all monotone
Boolean functions, but it enables efficient construction
of monotone circuits with fanout.)

The wire, and, and split gadgets are relatively sim-
ple to realize. In Figure 4(a), the operation (x1 and x2)
is computed by the and block, and the signal is sent to
right by the wire blocks, and split by the split block.
(In fact, split is essentially the same as and, but back-
wards.)

Wire block

...

...

AND

SPLIT

x1

x2

(a)

(b)

AND

SPLIT

Local lock mechanism

Figure 4: The gadgets for wire, and, and split.

In each move, each block moves one unit length. One
may wonder what happens if some blocks are moved
out from our assumption. For example, the wire block
between the x1 and and blocks in Figure 4(a) can be
moved up after removing x1. But we can avoid these
unexpected cases: the blocks can be locked locally if
we attach some long arms as shown in Figure 4(b). To
simplify, we omit the arms in the other figures.

The or gadget is more complicated, as shown in Fig-
ure 5. The initial position is depicted in Figure 5(a).
If one of x1 and x2 moves one unit from the or block,



CCCG 2010, Winnipeg MB, August 9–11, 2010

... ...OR OR

(a) (b)

L1

L2

L1

L2

x2

x1

x2

x1

Figure 5: or gadget.

then the or block can move left as in Figure 5(b). (In
the figure, x1 moves up.) We note that, even if both
x1 and x2 move far from the or block, the or block is
still locked in with the L1 and L2 blocks. Otherwise,
moving just x1 might have some unintended influence
on the variable x2 and vice versa; intuitively, this mech-
anism prevents the signal from x1 to bounce back into
x2 through this gadget.

Figure 6 shows the turn gadget. The initial position
is depicted in Figure 6(a). When the left block moves
left, the blocks can move as in Figure 5(b).

(a) (b)

Input

Output

...

TURN
TURN

Figure 6: turn gadget.

In many reductions, crossing wires is the key gadget;
see, e.g., [4]. In this problem, the crossover gadget took
a long time to find, but in the end is simple, as shown
in Figure 7.

Using these gadgets, we can construct polygons to
compute f(x1, x2, . . . , xn), and connect the final out-
put to the polygon A in Figure 3. Figure 8 shows a
simple example of the construction for f(x1, x2, x3) =
((x1∧x2)∨x3)∧ (x1∨x3) (This example can be simpli-
fied logically, but serves for illustrative purposes.) Some
blocks are stretched in a trivial way to adjust their size.

How many pieces does the construction use? Sup-
pose we are given f as a monotone Boolean circuit
with w ≥ n wires (edges). We start by converting
the circuit to have bounded fan-in and fan-out, con-
sisting of two-input one-output and and or gates and

CROSS

Figure 7: cross gadget.

one-input two-output split gates. This conversion in-
creases the number of gates to Θ(w) by the Handshaking
Lemma. Next we view the circuit as a maximum-degree-
3 graph, and make the graph planar by adding degree-4
“crossover” vertices. This planarization increases the
number of gates to at most O(w2). Now we use orthog-
onal graph drawing algorithms [3] to embed each edge as
an orthogonal path with a constant number of bends,
which become turn gadgets. All other vertices (and,
or, split, and crossovers) become the corresponding
gadgets. Each gadget consists of O(1) pieces, so the to-
tal number of pieces is O(w2). The pieces can be drawn
on a grid O(1) times finer than the orthogonal graph
drawing, so it is O(w2)×O(w2).

Proof of Theorem 1. Consider the construction
desrcibed above for a monotone Boolean function f
on n variables x1, x2, . . . , xn. Let α be any assign-
ment of x1, x2, . . . , xn, and S(α) ⊆ S be the set of
polygons xi in S for which α(xi) = 1. When we
remove the polygons in S(α) from S, the shift of wire
gadgets propagates as described above. Then the
remaining interlocked polygons are free if and only if
f(α(x1), α(x2), . . . , α(xn)) = 1. It is easy to see that
the other conditions in the main theorem are satisfied
by the reduction. �

3 Concluding remarks

In Figure 2, there is no space between the interlocked
polygons. Although we can pad some extra polygons in
Figure 8, some spaces around the gadgets and inside the
gadgets cannot be padded while preserving the motion
of the polygons. In particular, the spaces in the cross
gadget seem to be essential. It would be interesting
to determine what monotone Boolean functions can be



22nd Canadian Conference on Computational Geometry, 2010

F

C

x1

x2

x3

AND

SPLIT

OR

L1

L2

SPLIT

L1

L2

AND

TURN

TURN

TURN

TURN

OR

CROSS

B
A

E

D

Figure 8: A construction for f(x1, x2, x3) = ((x1 ∧ x2) ∨ x3) ∧ (x1 ∨ x3).

represented by interlocked polygons without any empty
space (before polygon removal).

In our reduction, some gadgets can be glued together
into one piece. Typically, a sequence of wire blocks can
be replaced by one long block, and this long block can
be glued to the output of the last gadget. These extra
blocks serve their function, but they do not represent
variables. It is an intriguing open problem whether we
can construct any monotone Boolean function on all
m = n of the pieces, as in Figure 2. What if we allow
m = O(n) or m = nO(1) pieces?

We can also set a weaker goal for this problem. Sup-
pose we are given a function on n pieces, and a “robust-
ness” k > 0. Then we can ask to construct m = O(n+k)
polygons, n of which are special and m−n of which are
extra, such that even if we remove up to k extra pieces,
freedom is determined by which special pieces we re-
move. Wires can be made robust in this way by an idea
similar to Figure 2. However, the cross gadget seems
to be difficult to make robust.

Acknowledgments

This work was initiated at the 25th Bellairs Winter
Workshop on Computational Geometry, co-organized
by Erik Demaine and Godfried Toussaint, held on
February 6–12, 2010, in Holetown, Barbados. We

thank the other participants of that workshop—Greg
Aloupis, Brad Ballinger, Nadia Benbernou, Prosen-
jit Bose, David Charlton, Sébastien Collette, Mirela
Damian, Karim Doüıeb, Robin Flatland, Ferran Hur-
tado, John Iacono, Krishnam Raju Jampani, Anna Lu-
biw, Vera Sacristan, Vida Dujmović, Stefan Langerman,
Pat Morin, Diane Souvaine—for providing a stimulat-
ing research environment. We thank the anonymous
referees for helpful comments.

References

[1] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Win-
ning Ways for Your Mathematical Plays, 2nd edition,
volumes 1–4. A K Peters Ltd., 2001–2003.

[2] E. D. Demaine, M. L. Demaine, Y. N. Minsky, and
J. S. B. Mitchell. Picture-hanging puzzles. Manuscript,
2004.

[3] M. Eiglsperger, S. P. Fekete, and G. W. Klau. Orthog-
onal graph drawing. In Drawing Graphs: Method and
Models, LNCS 2025, chapter 6, pages 121–171, 2001.

[4] R. A. Hearn and E. D. Demaine. Games, Puzzles, and
Computation. A K Peters Ltd., 2009.

[5] J. Leeuwen. Handbook of Theoretical Computer Science.
Elsevier Science Publishers, 1990.

[6] T. Stanford. Brunnian braids and some of their gen-
eralizations. arXiv:math/9907072v1 [math.GT], 1999.
http://arXiv.org/abs/math/9907072

http://arXiv.org/abs/math/9907072

	Introduction
	Construction
	Concluding remarks

