
Interpolation Search for Non-Independent Data

Erik D. Demaine∗ Thouis Jones∗ Mihai Pǎtraşcu∗

Abstract

We define a deterministic metric of “well-behaved data”
that enables searching along the lines of interpolation
search. Specifically, define ∆ to be the ratio of dis-
tances between the farthest and nearest pair of adjacent
elements. We develop a data structure that stores a dy-
namic set of n integers subject to insertions, deletions,
and predecessor/successor queries in O(lg ∆) time per
operation. This result generalizes interpolation search
and interpolation search trees smoothly to nonrandom
(in particular, non-independent) input data. In this
sense, we capture the amount of “pseudorandomness”
required for effective interpolation search.

1 Introduction

Interpolation search is a classic method for searching
through ordered random data and attains a running
time is O(lg lg n), which is exponentially better than
binary search. The original method [5] was analyzed
only for uniformly distributed data [7, 4, 2]. Willard [6]
later generalized the analysis to arbitrary “regular dis-
tributions”, without the algorithm having to know the
distribution. Mehlhorn and Tsakalidis [3] further gener-
alized interpolation search to handle the dynamic case
of insertions and deletions in addition to searches and to
a wider class of “smooth” distributions. Andersson and
Mattsson [1] further extend the technique of Mehlhorn
and Tsakalidis to a larger class of distributions and bet-
ter bounds on searches and updates.

All of these results rely on the data being drawn in-
dependently from some probability distribution. In this
paper, we remove this independence assumption and in-
stead capture the necessary properties purely determin-
istically via a sort of “pseudorandomness” measure. We
start with the static case in Section 2 and generalize to
the dynamic case in Section 3.

2 Searching Static Data

We first present a method for searching static data.
Suppose we are given n distinct values x1 < x2 < · · · <
xn in sorted order. Define the maximum gap ratio ∆ of
the data as max (xi−xi−1)

min (xi−xi−1) . We make no requirements on

∗MIT Computer Science and Artificial Intelligence Laboratory,

{edemaine,thouis,mip}@mit.edu

the data being independently drawn.
Evenly subdivide the interval [x1, xn] into n bins

B1, B2, . . . , Bn each representing a range of size
xn−x1
n . Each bin stores a balanced binary search tree

for the elements lying within its range, plus the nearest
neighbor above and below. Searching for an element y
then proceeds by interpolating on y to find the bin Bi
that it lies in, i = d y−x1

xn−x1
e, and performing a search in

the binary search tree of that bin. The array of bins
can be constructed in O(n) time and space, assuming
the data are already sorted.

Theorem 2.1. The worst-case search time is O(lg ∆).

Proof. The maximum distance between two adjacent
values is at least xn−x1

n . Given ∆, the minimum
distance between two values must be at least xn−x1

n∆ .
Because the bins are of size xn−x1

n , no more than ∆
values can land in a single bin, and the search time of
the binary search tree in a bin occupied by ∆ values is
O(lg ∆).

We note the following interesting traits of this
algorithm:

1. The algorithm is oblivious to the value of ∆.

2. The worst-case search time is also O(lg n) and thus
O(lg min{∆, n}).

3. The algorithm reproduces the O(lg lg n) perfor-
mance of interpolation search on data drawn in-
dependently from the uniform distribution, by the
following lemma:

Lemma 2.1. For data drawn independently from the
uniform distribution, ∆ = O(polylog(n)) with high
probability.

Proof. We use standard Chernoff bounds on n balls
thrown into m bins. Consider the uniform distribution
over [0, u]. If m = O(n/ lg n), then every bin contains
at least one ball with high probability. Thus, maxi(xi−
xi−1) = O(u lgn

n) with high probability. If m =
Ω(n lg n), then every adjacent pair of bins contains at
most one ball with high probability. Thus, mini(xi −
xi−1) = Ω(u

n lgn) with high probability. Taking the
ratio, ∆ = O(lg2 n) with high probability.

3 Searching Dynamic Data

The dynamic version of our structure supports inser-
tions, deletions, and searches in O(lg ∆max) time per
operation, where ∆max is the largest value of ∆ over
the lifetime of the structure, and the insertion and dele-
tion bounds are amortized. At any point in time, the
structure will be valid for sets of data with ∆ less than
some ∆̂ for which the structure was built.

The only modification to the static structure is that
it spans the larger range [x1 − L∆̂, xn + L∆̂], where
L = xn−x1. This superinterval is uniformly subdivided
into n bins each of size (2∆̂ + 1)L/n. Each bin stores a
dynamic balanced binary search tree.

The structure is rebuilt if either n
2 updates (inserts

or deletes) occur without a rebuild, or an update causes
the ∆ of the data to be larger than ∆̂ (i.e., when
the structure is no longer valid). In the latter case,
we rebuild the structure with ∆̂ = max(∆new, 2∆̂old),
where ∆new is computed from the data, and ∆̂old was
the value of ∆ immediately before the rebuild.

We need two main properties: (a) the structure is
always valid, i.e., no xi outside the superinterval can
be inserted into the structure, and (b) the number of
values landing in a single bin is polynomial in ∆̂.

The following two theorems establish the validity
of the structure during a set of n updates that do not
cause ∆̂ to grow.

Theorem 3.1. None of the n
2 operations immediately

after a rebuild can add a value outside the range [x1 −
L∆̂, xn + L∆̂].

Proof. Consider only the initial elements confined to
[x1, xn]. The initial minimum separation between these
elements is no more than L

n−1 . After k deletions, the
minimum separation is no more than L

n−k−1 .
Given k deletions, there are n

2 − k insertions before
a rebuild of the structure1. These insertions can be only

∆̂L
n−k−1 from the previous largest value in the structure.
Therefore, the maximum value that can be inserted in
n
2 editing operations is xn + (n2 − k) L∆̂

n−k−1 , which is
bounded above by xn + L∆̂ for k ≤ n

2 . By symmetry,
we can obtain a similar bound for the minimum value
inserted.

Theorem 3.2. The maximum number of elements in a
bin after n insertions or deletions is O(∆̂2).

Proof. Again, consider the initial elements in [x1, xn].
After k < n − 2 deletions, the maximum separation

1Because the minimum separation cannot grow from inser-

tions, it is sufficient to consider deletions followed by insertions.

between two of these elements is at least L
n−k−1 . There-

fore, the minimum separation between any two elements
is at least L

(n−k−1)∆̂
. The bins are of size L(2∆̂+1)

n , so
the maximum number of elements that can end up in a
single bin is ∆̂(2∆̂+1)(n−k−1)

n = O(∆̂2).

Finally, we establish the desired time bounds:

Theorem 3.3. The worst-case cost of searches and
the amortized costs of insertions and deletions is
O(lg ∆max) time per operation.

Proof. The cost for searches follows from theorem 3.2,
as does the immediate cost of insertions and deletions.
We use a charging scheme against updates to amortize
the cost of rebuilds.

The structure can be rebuilt in linear time. If the
structure is rebuilt because of a sequence of n

2 updates
without a rebuild, then the rebuild can be charged to
these updates to give an amortized cost of O(1).

If a rebuild occurs because of a change in ∆̂, then we
charge the cost of the rebuild to the original insertions
of the elements currently in the structure. The cost of
inserting one such element was O(lg ∆̂old). Increasing ∆̂
raises ∆max and hence the amortized cost of the original
insertion by Θ(lg ∆̂ − lg ∆̂old) = Θ(lg ∆̂

∆̂old
) = Ω(1)

because ∆̂ ≥ 2∆̂old, to which we can charge the rebuild
cost for that element.

If the value of ∆max is known a priori, then we can
always build the data structure with ∆̂ = ∆max and
avoid rebuilding because of changing ∆̂. A standard
de-amortization of the remaining global rebuilds, from
performing n

2 updates, yields worst-case time bounds.

References

[1] A. Andersson and C. Mattsson. Dynamic Interpolation
Search in o(log logn) Time. Proceedings of ICALP,
pages 15–27, 1993.

[2] G. Gonnet, L. Rogers, and G. George. An algorithmic
and complexity analysis of interpolation search. Acta
Inf., 13(1):39–52, 1980.

[3] K. Mehlhorn and A. Tsakalidis. Dynamic Interpolation
Search. Journal of the ACM, 40(3):621–634, July 1993.

[4] Y. Perl, A. Itai, and H. Avni. Interpolation search – A
log logN search. CACM, 21(7):550–554, 1978.

[5] W. W. Peterson. Addressing for Random-Access Stor-
age. IBM J. Res. Development, 1(4):130–146, 1957.

[6] D. Willard. Searching unindexed and nonuniformly
generated files in log log N time. SIAM J. Comput.,
14:1013–1029, 1985.

[7] A. C. Yao and F. F. Yao. The complexity of searching
an ordered random table. Proceedings of FOCS, pages
173–177, 1976.

