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ABSTRACT
Origami-based design methods enable complex devices to

be fabricated quickly in plane and then folded into their final
3-D shapes. So far, these folded structures have been designed
manually. This paper presents a geometric approach to auto-
matic composition of folded surfaces, which will allow existing
designs to be combined and complex functionality to be produced
with minimal human input. We show that given two surfaces in
3-D and their 2-D unfoldings, a surface consisting of the two
originals joined along an arbitrary edge can always be achieved
by connecting the two original unfoldings with some additional
linking material, and we provide an algorithm to generate this
composite unfolding. The algorithm is verified using various sur-
faces, as well as a walking and gripping robot design.

1 INTRODUCTION
Today’s engineering designs are limited by practical consid-

erations of their fabrication. Although recent advances in ma-
chining practices and 3-D printing technology have produced
significant speedup in manufacturing of mechanical structures,
these methods are still costly and time consuming when com-
pared with planar fabrication alternatives [1]. Origami-based de-
sign methods aim to augment existing 2-D fabrication techniques
with folding algorithms to allow rapid fabrication of 3-D struc-
tures. Fabricating structures in plane and then folding them into
their final shape will allow complex devices to be created more
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quickly and efficiently, providing engineers with greater oppor-
tunities to prototype, test, and refine their designs.

Previous experiments with folded structures have demon-
strated the feasibility of producing useful functionality via fold-
ing [1–4], but the design of these structures is often a long, it-
erative process and very application-specific. We present an al-
gorithm that will introduce some automation into the design pro-
cess. More specifically, we are interested in automatically com-
posing multiple designs together so that the end product has the
combined functionality of the originals. We take a primarily geo-
metric approach and consider only the shape of the folded struc-
ture. Figure 1 illustrates the problem addressed. Given two fold-
ing patterns, in this case a walking robot and a gripper, our algo-
rithm automatically generates a composite folding pattern for a
walking robot with a gripper on one end.

This paper concerns edge-compositions, compositions in-
volving two surfaces connected at one edge via hinge joint. For
ease of assembly of the final product, we require that the fold-
ing pattern be one piece. In addition, for structural reasons, it is
desirable for the composite folding pattern to contain the orig-
inal folding patterns, rather than for it to be a new unfolding.
This is because in a folded state, cut edges, edges corresponding
to edges on the boundary of an unfolding that have been glued
together, are mechanically weaker than folds. Cutting along
an edge that will be subjected to large stresses may drastically
weaken the final product. We assume that the two inputted fold-
ing patterns satisfactorily perform their intended functions, and
therefore require that the composite folding pattern contain the
original unfoldings in their entirety as subsets.
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FIGURE 1. LEFT: WALKING AND GRIPPER ROBOTS FOLDED OUT OF THE PATTERNS SHOWN. RIGHT: THE COMPOSITION, A
WALKING-GRIPPING ROBOT, WHOSE UNFOLDING WAS DESIGNED MANUALLY. OUR GOAL IS TO GENERATE SUCH AN UNFOLDING
AUTOMATICALLY. Credit: Robots were designed by Cagdas Onal and Michael Tolley.

Related Work

The problem of finding edge-compositions of unfoldings is
related to that of edge-unfolding of polyhedra, which has been
studied since the 1500s [5] and has already found practical uses
in such areas as sheet metal design [6]. Edge-unfolding involves
flattening a polyhedron by cutting along some of its edges and
unfolding the rest. The resulting planar figure should be a simple,
non-overlapping polygon. The traditional problem statement for
edge unfolding requires that every face be covered exactly once
and that no extra material be added, leading to such results as [7]
for which an unfolding does not exist. To ensure that an unfold-
ing of an edge-composition can always be found, we allow the
addition of extra material as long as it can be tucked away against
an existing face.

In this sense, our problem is more similar to that of [8],
where an arbitrary polyhedral surface is folded from a 2-D sheet
of paper. Faces of the polyhedral surface are positioned on the
2-D plane, then excess material is tucked away to bring neigh-
boring faces together. However, this process requires that neigh-
boring faces on the polyhedral surface be placed adjacent in the
plane. In contrast, we would like to keep our original fold pat-
terns intact, and the faces touching the hinged edge may not al-
ways be able to be placed close to each other. Furthermore, [8]
forbids cuts, requiring that the unfolding be a convex polygon,
and thus may be less efficient in terms of material usage. Finally,
tucks protrude perpendicularly from the final resulting polyhe-
dral surface, although theoretically they could be crimped to ar-
bitrarily small length. If the surfaces produced are all static, this
is not a major cause of concern. However, since we would like to
accommodate transformable folded surfaces, whose fold angles
can change, we require a tuck that folds flat.

The idea to compose unfoldings of simple surfaces to
achieve more complex ones is similar to [9], which decomposes
a surface into frusta and constructs its unfolding one frustum at a
time. However, this algorithm is limited in the types of surfaces
that it can achieve, and, like [8], the folded surfaces are static.

Edge-compositions offer greater potential in the types and the
degrees of freedom of resulting folded surfaces.

Our Contributions
This paper considers edge-compositions of folded struc-

tures. Our main result is the following:

Any edge-composition of two folded surfaces has a one-piece
non-self-intersecting unfolding consisting of 1) the unfoldings of
the two original folded surfaces connected by 2) a bridge of link-
ing material. (see Theorem 1)

We provide an algorithm for generating the composite unfolding
and experimental evaluation across various input surfaces.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces necessary notation and states the problem being
addressed. Section 3 gives the main insight behind generating
composite fold patterns, and Section 4 provides the algorithm in
greater detail. Section 5 contains the results of the algorithm for
various edge-compositions. Sections 6 and 7 summarize the con-
tributions of this work and provide directions for future study.

2 DEFINITIONS AND PROBLEM STATEMENT
A polygon P is a planar figure topologically equivalent

to a disc and bounded by a closed non-self-intersecting path
composed of a finite number of line segments. This path is
called the boundary ∂P of P , and the area enclosed is its in-
terior P̊ . The line segments on the boundary are edges, denoted
E(P ) = {eP1 , eP2 , . . .}, and the points where two edges meet are
vertices, denoted V (P ) = {vP1 , vP2 , . . .}.

A polyhedral complexQ is a union of a finite set of polygons
such that the intersection of any two polygons, if nonempty, is
an edge or a vertex of each. The polygons making up Q are
called its faces. The vertices and edges of Q are the vertices and
edges of its faces, and are denoted by V (Q) =

⋃
P∈Q V (P ) and

E(Q) =
⋃
P∈QE(P ) respectively.
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unfolding ( P, F )
folded state φ
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FIGURE 2. Q CAN BE UNFOLDED INTO P IFQ IS THE IMAGE
OF A FOLDED STATE φ OF P

A folded state of a polygon P is a mapping φF : P → R3

with the restriction that φF : P̊ → R3 is isometric and non-
crossing. We say that a polyhedral complex Q can be unfolded
into P if Q is the image of a folded state φF (P ) (see Fig. 2).
The folded state φF (P ) can also be represented as the union of
polygonal faces. Every edge eφ of the folded state that is not
on the boundary corresponds to a fold f = (eP , θ), where the
fold line eP is the line segment on P that corresponds to eφ

and the fold angle θ is equal to the dihedral angle between the
faces of φF (P ) sharing eφ (Fig. 3). We denote the set of folds
F = {(eP1 , θ1), (eP2 , θ2), . . .}. The polygon P and these folds
together comprise an unfolding (P, F ) of Q, and they uniquely
define the folded state φF (P ). We call the exterior of P , R2 \P ,
the free space.

We allow the following rigid transformations of an unfold-
ing (P, F ):

• translation: P and all edges in F are translated in the plane
• rotation: P and all edges in F are rotated in the plane
• reflection: P and all edges in F are reflected in the plane.

All fold angles in F are negated.

Then the problem we would like to solve is as follows.

Problem 1. Given two polyhedral complexes Q1 and Q2 with
unfoldings (P1, F1) and (P2, F2), and two edges eQ1 ∈ E(Q1)
and eQ2 ∈ E(Q2), find an unfolding (P3, F3) such that

1. (P3, F3) is the unfolding of the union of Q1 and Q2 trans-
lated and rotated so that eQ1 is coincident to eQ2 , and

2. (P3, F3) contains translated, rotated, and/or reflected in-
stances of (P1, F1) and (P2, F2) as subsets.

The selected edges eQ1 and eQ2 act as a hinge in the combined
surface. Informally, hinge joints are folds whose fold angles are

unfolding (P,  F ) folded state φ

fold line eP

fold angle θ
P

F(P)

FIGURE 3. A FOLD f HAS A FOLD LINE AND A FOLD ANGLE

not fixed but rather can take a range of values. In order for a so-
lution to Problem 2 to make sense, the range of fold angle of this
hinge must not cause Q1 and Q2 to collide. For the remainder of
the paper, we assume that this range is nonempty.

The edges eQ1 and eQ2 can be mapped to edges on the un-
foldings (P1, F1) and (P2, F2). Because we allow multiple cov-
erage of faces and edges in a folded state, it is possible for mul-
tiple edges in (P1, F1) to correspond to eQ1 . Let EP1 be the set
of these edges, and similarly for EP2 . By definition, if we are
able to guarantee for a (P3, F3) that one edge in EP1 will co-
incide with one edge in EP2 in the folded state, then (P3, F3)
will satisfy condition (1) of Problem 1. We therefore modify the
problem statement slightly to concern folded states rather than
their images.

Problem 2. Given two unfoldings (P1, F1) and (P2, F2), an
edge eP1 in (P1, F1), and an edge eP2 in (P2, F2), find an un-
folding (P3, F3) such that

1. (P3, F3) is an unfolding of the union of translated and ro-
tated instances of Q1 and Q2, the images of folded states of
(P1, F1) and (P2, F2) respectively,

2. in the folded state, eP1 and eP2 coincide, and
3. (P3, F3) contains rotated, translated, and/or reflected in-

stances of (P1, F1) and (P2, F2) as subsets.

Solving this problem for any combination of eP1 ∈ EP1 and
eP2 ∈ EP2 will satisfy Problem 1. The remainder of this paper
is concerned with solving Problem 2.

3 EDGES ON THE CONVEX HULL BOUNDARY
In order to construct (P3, F3), the input unfoldings (P1, F1)

and (P2, F2) must be arranged in the plane without intersection
and extra material added so that the edges to be joined, eP1 and
eP2 , are coincident in the folded state. We use the following
insight.

Lemma 1. If eP1 and eP2 are on the boundaries of the convex
hulls of their respective unfoldings, then they may be placed co-
incident in the plane and will not cause (P1, F1) and (P2, F2) to
intersect.

Proof. Let CH(P1) be the convex hull of P1. By definition,
P1 ⊆ CH(P1). Because CH(P1) is convex and eP1 is an edge
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FIGURE 4. TWO CONVEX POLYGONS PLACED NEXT TO
EACH OTHER ARE GUARANTEED NOT TO INTERSECT

on its boundary, CH(P1) must lie entirely on one side of the line
common to eP1 (see Fig. 4). Similarly, CH(P2) must lie entirely
on one side of the line common to eP2 .

Rotate, translate, and reflect (P2, F2) so that eP2 is coinci-
dent to eP1 and CH(P2) is on the opposite side of eP2 as CH(P1).
Since CH(P1) and CH(P2) are on opposite sides of the line now
collinear to both eP1 and eP2 , they cannot intersect. Likewise,
P1 and P2 cannot intersect. �

In this case, the unfolding (P3, F3) is simply the union of
(P1, F1) and the transformed (P2, F2), with the edge eP1 (also
eP2 ) converted from a boundary edge of P1 (resp., P2) to a fold
in F3.

When eP1 or eP2 is not on the boundary of the convex
hull of its unfolding, then naı̈vely following the above proce-
dure may lead to self-intersection of (P3, F3). However, it is
possible to modify (P1, F1) and (P2, F2) without changing their
corresponding folded structures so that the above procedure may
be used. Taking the case of (P1, F1), this modification would
consist of constructing an additional unfolding (P b, F b) and at-
taching it to (P1, F1) so that in the folded state eP1 becomes co-
incident to an edge on the boundary of the combined unfolding’s
convex hull. We call (P b, F b) a bridge and say that eP1 has been
bridged to the boundary of the convex hull. As we will show in
Section 4,

Lemma 2. Given an unfolding (P, F ) and an edge eP , it is al-
ways possible to bridge eP to the boundary of the convex hull.

Combining Lemmas 1 and 2 yields our main result.

Theorem 1. For any unfoldings (P1, F1) and (P2, F2), and
edges eP1 in (P1, F1) and eP2 in (P2, F2), there exists an un-
folding (P3, F3) that satisfies Problem 2.

Proof. According to Lemma 2, edges eP1 and eP2 can always
be bridged to the boundaries of the convex hulls of P1 and P2

respectively. Let eP1
new be the bridge edge on the boundary of

the convex hull that coincides with eP1 in the folded state, and
similarly with eP2

new. Applying Lemma 1 to the modified (P1, F1)
and (P2, F2) using eP1

new and eP2
new as the edges to join yields a

solution to Problem 2. �

4 CONSTRUCTING THE BRIDGE
This section describes the algorithms and analysis that es-

tablish Lemma 2. There are two cases to consider:

1. eP is on the boundary of P
2. eP is a fold line in F

We show that in either case, it is possible to construct a bridge
such that in the folded state, an edge on the boundary of the
convex hull of the modified unfolding collapses onto eP . In the
course of the discussion, we make frequent use of paths, which
we restrict to be simple polygonal chains. In so doing, it be-
comes possible to represent a path p of length n as a finite list of
the vertices p = p1p2 . . . pn in the order they appear in the chain.

CASE 1: Edges on the Boundary
The procedure for this case is based on the following lemma.

Lemma 3. If eP is on the boundary (i.e., eP ⊂ ∂P ), then there
exists a path through the free space beginning at a point on eP

and ending on the boundary of the convex hull of P .

Proof. Because P is a polygon, its convex hull CH(P ) is
also a polygon. The vertices of CH(P ) are a subset of the
vertices of P . If we number the vertices on the boundary
V (P ) = {vP1 , vP2 , . . . , vPn } in clockwise direction, CH(P ) can
be represented as an increasing sequence (i1, i2, . . . , im) such
that {vPi1 , v

P
i2
, . . . , vPim} are the m vertices of CH(P ) in clock-

wise order. If eP = (vPj , v
P
j+1), let PCH

k be a polygon bounded
by the path pk = vPikv

P
ik+1 . . . v

P
ik+1

vPik where ik ≤ j < ik+1.
Since eP is an edge of P , it is a boundary edge of PCH

k . The
convex hull edge (vPik , v

P
ik+1

) is also on the boundary of PCH
k .

Finally, PCH
k is not self-intersecting, else P would be self-

intersecting or the convex hull would not completely contain P .
Given these characteristics, a path from eP to CH(P ) that does
not intersect with P or CH(P ) except at the terminal vertices
must exist inside PCH

k . �

In order to bridge eP to the boundary of the convex hull, we
propose to compute such a path and overlay it with accordion-
style pleats (an unfolding consisting of a sequence of non-
intersecting folds with fold angles alternating between π and−π)
so that the edge at the end of the path (the convex hull edge) col-
lapses exactly onto eP in the folded state. This is always possible
by virtue of the following lemma.

Lemma 4. Given a starting edge eP and any simple path
p = p1p2 . . . pne

such that the first vertex p1 is the midpoint of
eP , there exists a series of pleats such that every pi lies on a fold
fi, and in the folded state, all fi are coincident to eP .

Proof. We prove the existence of such a pleat structure by con-
struction. The pleat structure we produce is based on an isosceles
trapezoid. If an isosceles trapezoid is folded with a fold angle of
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p10p11
p12

(a) Input

e1

e2

e12e1

e2

(b) Lines 2–8

2

1

3

(c) Self-intersections (d) Line 9 (e) Folded State

FIGURE 5. ALGORITHM 1: CONSTRUCTING PLEATS TO FOLLOW A PATH. (a) THE EDGE eP AND THE PATH p TO FOLLOW.
(b) REFLECTED EDGES ei (BLUE) AND PERPENDICULAR BISECTORS e⊥i (GRAY). (c) RESULTING PLEATS. TYPES 1, 2, AND 3 SELF-
INTERSECTIONS ARE SHADED GRAY. (d) SELF-INTERSECTIONS ARE CORRECTED. (e) FOLDED STATE OF PLEATS. ALL ei COINCIDE.

±π down its axis of symmetry, then its two legs will coincide
in the folded state. In a chain of isosceles trapezoids, where ev-
ery trapezoid shares a leg with at most one other, folding every
trapezoid down its axis symmetry will cause the legs of all the
trapezoids to coincide. Therefore, one pleat structure that satis-
fies the conditions of this lemma is a chain of folded isosceles
trapezoids where every path vertex pi lies on the leg of a trape-
zoid and eP is also the leg of a trapezoid. The full algorithm for
constructing this chain can be found in Alg. 1.

Using the perpendicular bisectors of the segments in p
(line 3) ensures that the median of every trapezoidal pleat is ex-
actly one segment of p, and that each newly created edge has
as its midpoint the next vertex of p. The resulting pleats have
a width of at most ‖eP ‖. Line 9 makes the pleats non-self-
intersecting. During the pleat construction in lines 2-8, three
types of self-intersection may occur (see Fig. 5(c)).

1. When an edge to reflect intersects with the perpendicular
bisector, the resulting pleat must be trimmed into a triangle.
Note that the triangle will still contain the path vertex.

2. When a pleat overlaps with the subsequent segment of p, it
results in an intersection between adjacent pleats. Let ei be
the edge shared between the two intersecting pleats, and pi
be its midpoint. The two pleats are both trimmed into non-
isosceles trapezoids that meet at pi. This operation alone
would cut the bridge into two pieces. Therefore, a second
set of right triangular pleats must be added in the free space
next to ei to maintain connectivity.

3. When nonadjacent segments of p are close together, their
corresponding pleats may overlap. The overlap may be re-
solved by assigning every point in the overlapping region to
the closest segment. Since the path p is simple, the pleats
will remain connected and the fold lines will still contain
the path vertices.

In all cases, modifications to the pleats do not prevent them from
following the path p exactly or from remaining connected, so the
pleats will be a valid unfolding. �

Algorithm 1: CREATEPLEATS(eP , p)

Data: eP = (vP1 , v
P
2 ) = starting edge

p = p1p2 . . . pne = path to follow
Result: unfolding (P b, F b) = pleats satisfying Lemma 4

// Beginning with eP,
1 v1,1 ← vP1 ; v1,2 ← vP2 ;
// Compute fold line locations

2 for i = 1, . . . , ne − 1 do
3 `⊥i ← perpendicular bisector of segment pipi+1;
4 vi+1,1 ← reflection of vi,1 over `⊥i ;
5 vi+1,2 ← reflection of vi,2 over `⊥i ;
6 e⊥i ←

(
1
2 (vi,1 + vi+1,1) , 12 (vi,2 + vi+1,2)

)
;

7 ei+1 ← (vi+1,1, vi+1,2);
8 end
9 Remove intersections;
// Unfolding of pleated structure

10 P b ← polygon bounded by the path
v1,1v2,1 . . . vne,1vne,2 . . . v2,2v1,2;

11 F b ←
{

(e⊥1 ,−π)
}
∪
⋃
i=2,...,ne−1

{
(ei, π), (e⊥i ,−π)

}
;

We now give the full bridge constructing algorithm (Alg. 2),
illustrated in Fig. 6.

Line 1: Find a Path to the Convex Hull Boundary.
According to Lemma 3, a path from eP to the boundary of the
convex hull must exist. Theoretically, any such path will suffice.
Since the goal is to overlay the path with pleats, we choose a path
surrounded on both sides by as much free space as possible. A
path along the medial axis of PCH

k satisfies this criterion.
The medial axis of PCH

k is the set of all points having more
than one closest point on pk. Since pk is the boundary of a poly-
gon, the medial axis is a tree that partitions the polygon into re-
gions, each of which contains one segment of pk. The path that
we use to construct the pleats is the path in that tree from the
region containing eP to the region containing the convex hull
edge (Fig. 6(c)). Let p = p1p2 . . . pne be this path, with the first
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eP

CH(P)

P

(a) Input

PCH
k

(b) PCH
k and medial axis

p

(c) Line 1 (d) Line 2 (e) Output

FIGURE 6. ALGORITHM 2: BRIDGING AN EDGE ON THE BOUNDARY OF THE UNFOLDING TO THE BOUNDARY OF THE CONVEX
HULL. (a) ORIGINAL FOLD PATTERN. THE EDGE TO JOIN eP IS HIGHLIGHTED IN BLUE, THE BOUNDARY IN BLACK, AND THE CON-
VEX HULL IN YELLOW. (b) THE REGION PCH

k (BLACK) AND ITS MEDIAL AXIS (RED). (c) THE PATH p FROM eP TO THE BOUNDARY
OF THE CONVEX HULL. (d) PLEATS TILED ALONG THE PATH. (e) OUTPUT UNFOLDING WITH THE BRIDGE ADDED.

Algorithm 2: BRIDGEFROMBOUNDARY((P, F ), eP )

Data: (P, F ) = input unfolding
eP = boundary edge to bridge

Result: (Pnew, Fnew) = unfolding containing (P, F )
ePnew = edge on CH(Pnew) that folds onto eP

1 p← path from eP to CH(P ) (Lemma 3);
2 (P b, F b)←CREATEPLEATS(eP , p);
3 Pnew ← P ∪ P b; Fnew ← F ∪ F b ∪ {(eP , π)};
4 Remove intersections;
5 ePnew ← ene

created during bridge construction in line 2;

vertex p1 located at the midpoint of eP , intermediate vertices
p2, . . . , pne−1 at vertices in the medial axis, and the final vertex
pne

on the convex hull edge.

Line 2–3: Overlay Pleats. Overlay p with accordion-
style pleats using Alg. 1. For the last pleat, rather than following
the procedure in lines 3–6 of Alg. 1, the point of intersection
between the edge ene−1 and the convex hull edge is found. Then,
ene−1 is rotated about this point of intersection onto the convex
hull edge to create ene

. This guarantees that the last edge added
to the pleated structure lies on the boundary of the unfolding’s
convex hull and that the new pleat is still an isosceles trapezoid.
As in Alg. 1, ene

is then assigned a fold angle of π, and a fold
line is added on the new pleat’s axis of symmetry with a fold
angle of −π. The last edge’s exact location on the convex hull
boundary is not prespecified. Since, however, pne−1 is a vertex
on the medial axis bordering the region containing the convex
hull edge, the median of this pleat will lie entirely inside the free
space. The result of this step is a bridge that collapses flat onto
the face adjacent to eP .

. . .

(a) Before

. . .

(b) After

FIGURE 7. (a) A BRIDGE (RED) THAT INTERSECTS WITH
(P, F ) (GRAY). (b) THE OFFENDING REGION IS REMOVED.

. . .

. . .

(a) Before

. . .

. . .

(b) Crimped

. . .

. . .

(c) Trimmed

FIGURE 8. A LONG PLEAT. TOP: THE UNFOLDING WITH OF-
FENDING PLEAT IN RED. BOTTOM: FOLDED STATE. (a) IN THE
FOLDED STATE, THE PLEAT PROTRUDES OUTSIDE THE ADJA-
CENT FACE. (b) IT CAN BE CRIMPED TO NOT INTERFERE WITH
OTHER FOLDS AND (c) TRIMMED TO AVOID PROTRUSIONS.

Line 4: Remove Intersections with the Input Un-
folding. Although the path p lies entirely in the free space, the
pleats following p have a width and may intersect with the input
unfolding (Fig. 7). In this case, the overlapping regions can be
cut out of the bridge. When this operation causes the bridge to
become disconnected, then pieces that are not connected to eP

should also be removed. The bridge will still extend from eP to
the convex hull boundary since p lies entirely in the free space.

Finally, if a pleat is so long that it interferes with the folding
of P , it can be trimmed or fold lines can be added to crimp the
pleat arbitrarily small (Fig. 8).
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CH(P) eP

P

(a) Input

eb

(b) Line 1

p

(c) Line 2

eP
ref

(d) Line 3 (e) Line 4 (f) Output

FIGURE 9. ALGORITHM 3: BRIDGING AN EDGE ON THE INTERIOR OF THE UNFOLDING TO THE BOUNDARY OF THE CONVEX
HULL. (a) ORIGINAL FOLD PATTERN. THE EDGE TO JOIN eP IS SHOWN IN BLUE, THE BOUNDARY IN BLACK, FOLD LINES IN RED,
AND THE CONVEX HULL IN YELLOW. (b) THE EDGE-ADJACENCY GRAPH WITH THE PATH FROM eP TO eb HIGHLIGHTED IN RED.
(c) PLEATS ATTACHED TO eb USING ALG. 2. (d) THE ACCORDION PATH AND INTERIOR FACES REFLECTED OVER THE BOUNDARY OF
THE CONVEX HULL. THE CONVEX HULL IS ALSO UPDATED. (e) PLEATS ATTACHED TO ePref USING ALG. 2. (f) OUTPUT UNFOLDING
WITH THE BRIDGE ADDED.

Algorithm 3: BRIDGEFROMFOLDLINE((P, F ), eP )

Data: (P, F ) = input unfolding
eP = fold line edge to bridge

Result: (Pnew, Fnew) = unfolding containing (P, F )
ePnew = edge on CH(Pnew) that folds onto eP

1 eb ← a boundary edge on P ;
2 {(P2, F2), eCH} ←

BRIDGEFROMBOUNDARY((P, F ), eb);
3 {(P3, F3), ePref} ←REFLECTFACES((P2, F2), eP , eCH);
4 {(Pnew, Fnew), ePnew} ←

BRIDGEFROMBOUNDARY((P3, F3), ePref );

CASE 2: Edges that are Fold Lines
When eP is not on the boundary of P , then it is not adja-

cent to any free space and Alg. 2 alone cannot be used. Instead,
we must first construct a boundary edge ePref that in the folded
state will coincide with eP . This can be achieved by taking a
path through the interior of P to an edge eb on the boundary and
reflecting the path out of P . Algorithm 3, illustrated in Fig. 9,
gives the procedure for constructing a bridge for this case.

Line 1: Choose A Boundary Edge. Before construct-
ing the bridge, it is necessary to choose where to attach it to the
unfolding. Since eP is not on the boundary of P , it is impossible
to connect the bridge at eP without causing self-intersection of
the final unfolding. Any boundary edge eb can be used here. For
our implementation, we chose eb to minimize the area of the final
constructed bridge.

Line 2: Bridge eb to the Convex Hull Boundary.
Unless eb is on the boundary of P ’s convex hull, the faces be-
tween eP and eb cannot simply be reflected over eb to make eP

a boundary edge, since this operation may result in intersection

(a) Unfolding (b) Edge-Adjacency Graph Ge

FIGURE 10. EXAMPLE EDGE-ADJACENCY GRAPH

with P . Instead, the edge eb must first be bridged to the boundary
of the convex hull using Alg. 2. Let eCH be the resulting edge on
the convex hull boundary.

Line 3: Reflect Faces between eP and eCH. In order
to construct a ePref on the boundary of the unfolding, reflect all
faces between eP and eCH over eCH. These faces can be found
by considering the unfolding’s edge-adjacency graph (Fig. 10).
This is a graph Ge = (V e, Ee) with vertices V e representing the
edges in P and F , and edges Ee = {(vei , vej )|ei and ej lie on the
boundary of the same face in (P, F )}. Every edge in Ee corre-
sponds to a face. A path in Ge from the vertex corresponding to
eP to the vertex corresponding to eCH yields a set of faces that
connect eP and eCH. Since eCH is on the convex hull boundary,
the reflected faces will not intersect with the rest of the unfolding.

Line 4: Bridge ePref to the Convex Hull Boundary.
The result of line 3 is that ePref is now on the boundary of P
but not necessarily of the convex hull, reducing the situation to
Case 1. In the folded state, the reflected path will fold flat along
the surface of the input folded structure Q so that the reflected
edge is coincident eP . Thus any material attached to ePref is as if
it were added at eP .

7 Copyright © 2013 by ASME



(a) Two cubes (b) Cube and (c) Two truncated (d) Walking and
square pyramid cuboctohedra gripping robots

FIGURE 11. FOLD PATTERNS GENERATED BY THIS ALGORITHM. TOP: INPUT FOLD PATTERNS FOR THE POLYHEDRAL COM-
PLEXES TO JOIN. THE BLUE EDGES INDICATE THE EDGES TO JOIN. SECOND ROW: THE GENERATED COMPOSITE UNFOLDING.
BRIDGES CONSTRUCTED BY OUR ALGORITHM ARE SHADED IN GRAY. THIRD ROW: THE FOLDED STATE OF THE COMPOSITE
UNFOLDING. BOTTOM: PHYSICAL MODELS OF THE INPUT SURFACES AND THE COMPOSITION FOLDED FROM POSTER BOARD.

5 EXPERIMENTAL RESULTS
The proposed algorithm was implemented in MATLAB and

tested on various compositions. Figure 11 shows the input un-
foldings and the composition for each test. Cut lines on the
boundary of the unfoldings are shown in black, and folds are
shown in red. The edges to join are highlighted on the input un-
foldings in blue. The constructed bridges are shaded gray. The
expected folded states of each generated unfolding are simulated
and verified via physical models folded from poster board.

All final folded states are, as expected, the two inputted sur-
faces connected along the specified edge. Since the joined edges
act as a hinge joint, the angle of the input surfaces relative to each
other in the folded state are not fixed. This effect can be clearly
seen in the physical models, where the stiffness of the material
used prevented faces from resting coincident as they do in the
simulated folded states.

The constructed bridges are indeed a series of pleats con-
necting the edges to join to the boundaries of the convex hulls of

their respective unfoldings. Figure 11(a) joining two cubes is an
example of Alg. 2. Both edges to join are on the boundaries of
their unfoldings. Pleats are added to the unfolding on the right
since the edge to join is not already on the boundary of the con-
vex hull. In the folded state, these pleats are flattened between
the two cubes.

Figures 11(b)–(d) demonstrate Alg. 3, when an edge to
join is on the interior of the unfolding. The square pyramid in
Fig. 11(b) is the same one considered in Fig. 9. Not only are
pleats added but a face of the unfolding is reflected in the bridge
construction. In the folded state, this face lies flat against the
surface of the square pyramid so that one side is doubly covered.
Similarly, for the insect and gripper in Fig. 11(d), faces between
the edges to join and the boundaries of their unfoldings are re-
flected to create the bridge. Since the boundary edges where the
bridges are attached are already on the convex hulls of the un-
foldings, no extra pleats are added.

8 Copyright © 2013 by ASME



6 DISCUSSION AND FUTURE WORK

This paper demonstrates that a connected composite unfold-
ing satisfying the requirements of Problem 2 exists. Although an
unfolding could be found in every case, however, it was not nec-
essarily the most efficient unfolding in terms of material usage.
For example, Fig. 11(a) shows a composition of two cubes that
could be achieved simply by joining the two input unfoldings
along the chosen edges. The unfolding produced by our algo-
rithm uses extra pleats since it seeks to join unfoldings at their
convex hulls.

In addition, practically, factors other than connectivity be-
tween the two input unfoldings must be taken into account. For
example, when choosing the boundary edge in Alg. 3, we mini-
mized the amount of extra material added. Other times, it may be
more desirable to minimize the number of layers or to maximize
the width of pleats. Each of these optimization problems yields a
different choice when performing Alg. 2 or 3. For example, even
if eP is on the boundary, taking a longer path through the interior
of the unfolding to an area with a greater amount of free space
may yield wider pleats or fewer layers, so we may want to use
Alg. 3 even if Alg. 2 is applicable. This was the approach used
for the test in Fig. 11(c).

This work considers connecting two unfoldings along an
edge, which is the minimum attachment necessary for two sur-
faces to be joined. This leads to a folded state where the two input
surfaces can move relative to each other. Another type of joining
is a face-joining, where the two input surfaces would be attached
along one or multiple faces and would fixed relative to each
other. An extension of the proposed algorithm to face-joinings
is straightforward: repeat the algorithm for every boundary edge
of the two connecting surfaces, choose the result that minimizes
the amount of added material (or optimizes some other metric),
and fix the hinge fold angles so that the two surfaces coincide. Of
course, while theoretically the folded state would in this case be
constrained so that the joined surfaces touch, a physical instantia-
tion would be no stiffer than that produced when seeking a hinge
joint alone. We are currently investigating alternative methods
for composing unfoldings when joining occur along faces.

Finally, the results of this algorithm are restricted in that the
generated unfolding must contain (P1, F1) and (P2, F2) in their
entirety. When humans compose origami designs, they often re-
arrange the unfoldings and change the shape of the free space to
achieve more efficient composite unfoldings (see, for example,
Fig. 1). As discussed in Section 1, depending on the application,
certain folds should not be cut; however, a 3-D surface often
has several equivalent unfoldings that yield the same mechani-
cal strength. In order for this algorithm to be useful practically,
we will analyze the mechanical properties of materials that have
been folded as compared to cut and develop a model that will
allow us to generate equivalent unfoldings.

7 CONCLUSION
This paper addresses automatic composition of unfoldings

of 3-D surfaces. We show that given the unfoldings of two 3-D
surfaces, it is always possible to construct a bridge between them
such that the folded state is the two originals connected along a
hinge joint, and we provide an algorithm to generate the compos-
ite unfolding. The algorithm was tested on a variety of simple
compositions, demonstrating that it can indeed be used to gen-
erate one-piece unfoldings of composed surfaces. The algorithm
shows promise for automated design of folded structures in the
future.
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