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Abstract. Kaboozle is a puzzle consisting of several square cards, each anno-
tated with colored paths and dots drawn on both sides and holes drilled. The goal
is to join two colored dots with paths of the same color (and fill all holes) by
stacking the cards suitably. The freedoms here are to reflect, rotate, and order the
cards arbitrarily, so it is not surprising that the problem is NP-complete (as we
show). More surprising is that any one of these freedoms—reflection,rotation,
and order—is alone enough to make the puzzle NP-complete. Furthermore, we
show NP-completeness of a particularly constrained form of Kaboozle related to
1D paper folding. Specifically, we suppose that the cards are glued together into
a strip, where each glued edge has a specified folding direction (mountainor val-
ley). This variation removes the ability to rotate and reflect cards, and restricts the
order to be a valid folded state of a given 1D mountain-valley pattern.
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1 Introduction

Kaboozle: The Labyrinth Puzzleis a puzzle created and developed in 2007 by Albatross
Games Ltd., London.3 This “multi-layer labyrinth” consists of four square cards; see
Fig. 1. (In fact, each card is octagonal, but the pattern on itis a square.) Each card
has holes drilled in different locations, and various colored paths and dots drawn on
both sides. The goal is to arrange the cards—by rotation, reflection, and stacking in an
arbitrary order—to create a continuous monochromatic path between the corner dots
of the same color that is visible on one side of the stack. The goal of this paper is to
understand what makes this puzzle NP-complete, when generalized ton cards instead
of four.

Kaboozle is an example of a broader class of puzzles in which patterned pieces with
holes must be arranged to achieve some goal, such as monochromatic sides. For exam-
ple, Albatross Games Ltd. places Kaboozle in a series of puzzles calledTransposers,4

which all have this style. See [4] for descriptions, and [10]for the relevant patent. Our
NP-hardness proofs for Kaboozle immediately imply NP-completeness for this general
family of puzzles, though there are likely other special cases of interest.

3 http://www.transposer.co.uk/KABpage1.htm
4 http://www.transposer.co.uk/



Fig. 1. The four Kaboozle cards and one of the ten solutions.

An earlier form of this type of puzzle is asilhouette puzzle, where pieces are regions
with holes (no pattern beyond opaque/transparent) and the goal is to make a target
shape. Perhaps the first silhouette puzzle, and certainly the best known, is the “Question
du Lapin” or “Rabbit Silhouette Puzzle”, first produced in Paris around 1900 [7, p. 35].
Fig. 2 shows the puzzle: given the five cards on the left, stackthem with the right
orientations to obtain one of two different rabbit silhouettes. The puzzle can be played
online.5

Fig. 2. The classic silhouette puzzle “Question du Lapin”.

The freedoms in a silhouette puzzle are reflection and rotation of the cards; the
card stacking order has no effect on the silhouette. (In fact, both rabbits can be ob-
tained without reflecting the cards in Fig. 2, so that puzzle only needs rotation.) Are
these freedoms enough for NP-completeness? We show that indeed silhouette puzzles
are NP-complete, even allowing just rotation or just vertical reflection of the pieces.
Furthermore, we show that Kaboozle is NP-complete under thesame restriction of just
rotation or just vertical reflection.

5 http://www.puzzles.com/PuzzlePlayground/Silhouettes/Silhouettes.htm



But is reflection or rotation necessary for Kaboozle to be NP-complete? We show
that Kaboozle is NP-complete even when the cards can only be stacked in a desired
order, without rotation or reflection. We also show that Kaboozle is NP-complete when
restricted to a restricted class of orderings that arise from paper folding, as described
below.

Our folding variation of Kaboozle is inspired by a 1907 patent [5] commercialized
as the (politically incorrect) “Pick the Pickaninnies” puzzle [8]. This puzzle consists of
a single piece, shown on the left of Fig. 2, with holes, images(stars), and crease lines.
The goal is to fold along the crease lines to make an array of stars, as shown on the
right. This type of puzzle severely limits the valid stacking orders of the parts, while
also effectively forbidding rotation and reflection of the parts.

Fig. 3. Puzzle commercialized as “Pick the Pickaninnies”. Figure from [5].

We consider a simple general puzzle along these lines, by restricting a generalized
Kaboozle puzzle. Namely, we glue all the cards in the Kaboozle puzzle into a strip, and
specify the folding direction (mountain or valley) on each glued edge (crease). Now
the only freedom is folding the 1D strip of paper down to a unitsize, respecting the
folding directions. This freedom is a weak form of the ordering of the cards; rotation
and reflection are effectively forbidden.

This idea also comes from problems in computational origami. In polynomial time,
we can determine whether a mountain-valley pattern on a 1D strip of paper can be
folded flat, when the distances between creases are not all the same [1]. A recent notion
is folding complexity, the minimum number of simple folds required to construct a unit-
spaced mountain-valley pattern (string) [2]. For example,n pleats alternating mountain
and valley can be folded in a polylogarithmic number of simple folds and unfolds. On
the contrary, the number of different ways to fold a uniform mountain-valley pattern
of lengthn down to unit length is not well-investigated. The number of foldings of a
paper strip of lengthn to unit length has been computed by enumeration, and it seems
to be exponentially large; the curve fits toΘ(3.3n) [6, A000136]. However, as far as the
authors know, the details are not investigated, and it was not known whether this func-
tion is polynomial or exponential. Recently, the last author showed theoretical lower
and upper bounds of this function: it isΩ(3.07n) andO(4n) [9]. These results imply that



a given random mountain-valley pattern of lengthn hasΘ(1.65n) foldings on average,
which is bounded betweenΩ(1.53n) andO(2n).

Intuitively, the folding version of the Kaboozle puzzle seems easy. Perhaps we could
apply the standard dynamic programming technique from one side of the strip? But this
intuition is not correct. Essentially, the problem requires folding a 1D strip of paper, but
the strip has labels which place constraints on the folding.Despite the situation being
quite restrictive, we prove the problem is still NP-complete.

Therefore we conclude that the generalized Kaboozle problem is NP-complete even
if we allow only one of ordering, rotation, or reflection of the cards, and in the ordering
case, even if the ordering comes from a 1D strip folding.

2 Preliminaries

We generalize the number of the Kaboozle cards ton + 1. Eachcard is square, with
some fragments of a path drawn on both sides, and some holes drilled into it. We will
use just one color of path we have to join. The (potential) endpoints of a path are distin-
guishable from the other fragments. To simplify, we assume that the cards are numbered
0,1,2, . . . ,n.

A strip of the cards can be constructed as follows: for each 0≤ i ≤ n− 1, the right
side of the cardi is glued to the left side of the cardi + 1, and that side is called the
(i + 1)st crease. Each crease has alabel “M” or “V” which means that the strip must
be mountain folded or valley folded at the crease. (We define one side of the strip as
the top side, and creases are mountain or valley folded with respect to this side.) We
assume that the label of the first crease is “M” without loss ofgenerality, or otherwise
specified. For a strip of the cards, afolded stateis a flat folding of unit length (where the
unit is the width of a card) such that each crease is consistent with its label. (A folded
state always exists for any string of labels [9].)

The main problem in this paper is the following:

Input: A strip of n+ 1 Kaboozle cards, each with a label of lengthm.
Question: Determine whether the strip has a folded state that is consistent with the

labels, and exactly one connected path is drawn on a surface of the folded state.

We begin with an observation for folding a unit pattern:

Observation 1 A strip of n+ 1 cards with n creases has a unique folded state if and
only if the crease pattern is a pleat, i.e., “MVMV· · ·MV” or “MVMV · · ·MVM”.

Proof. Suppose that a mountain-valley pattern has a unique folded state. Without loss
of generality, we assume that the first crease is a mountain. If the second crease is also a
mountain, we have two folded states of the cards 1, 2, and 3: 2,1,3 and 2,3,1. Hence the
second crease must be valley. We can repeat the argument for each crease, and obtain
the pleat pattern. ⊓⊔

Using the pleats, we introduce a useful folding pattern for NP-completeness,
namely, theshuffle patternof lengthi: “(MV) i−1MM(VM) i−1”.6 By Observation 1, the

6 Here we use the standard notationxk for string repetition. For example,
“(MV) 3MM(VM) 3”=“MVMVMVMMVMVMVM”.



left and right pleats are folded uniquely and independently. However, these pleats can
be combined in any order to fold to unit length. Thus we have

(

2i
i

)

distinct foldings of the
shuffle pattern of lengthi. We note that the center card of the shuffle pattern of lengthi,
the cardi + 1 in our notation, always appears on one side of any folded state. We call
this side thetopof the shuffle pattern, and cardi +1 thetop card(although it may come
to the “bottom” in a natural folding).

3 NP-completeness of generalized Kaboozle

It is easy to see that all the problems in this paper are in NP. Hence we concentrate on
the proofs of NP-hardness. Our reduction is from the1-in-3 3SAT problem:

Input: A conjunctive normal form (CNF) Boolean formulaF(x1, . . . , xn) = c1 ∧ c2 ∧

· · · ∧ cm, where each clauseci = ℓ
i
1 ∨ ℓ

i
2 ∨ ℓ

i
3 has three literalsℓij ∈ {x1, . . . ,

xn, x̄1, . . . , x̄n}.
Question: Determine whetherF has a truth assignment such that each clause contains

exactly one true literal.

This problem is a well-known NP-complete variant of 3-satisfiability [3, LO4].
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Fig. 4. Example of the reduction forF(x1, x2, x3, x4) = (x1∨x2∨x3)∧(x̄1∨x2∨x4)∧(x̄2∨x3∨ x̄4).

For a given CNF formulaF(x1, . . . , xn) with n variable andmclauses, we use 4n+1
Kaboozle cards as follows. Fig. 4 shows an example of the reduction for F(x1, x2, x3) =
(x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x̄4). Each gray area is a hole in the card,
each black line is a fragment of the unique path, and the blackcircles are the endpoints
of the unique path.

Top card: Onetop card is placed at the top of the shuffle pattern, and it representsm
clauses. On the top card, two endpoints of the unique path aredrawn, and each clause



is represented by a hole in the card. Each hole has two dimplescorresponding to the
borders of the path and that will be extended to one of three possible directions by the
variable cards described below.

Variable card: We use 2n variable cards. Here, the indexi with 1 ≤ i ≤ n is used
to represent theith variable, and the indexj with 1 ≤ j ≤ m is used to represent the
jth clause. Each card represents eitherxi or x̄i . We makem gadgets on the card for the
variablexi as follows.

If neither xi nor x̄i appear in clausec j , the cardxi has a hole at that place. Hence
this card has no influence at that place of clausec j .

If xi appears in clausec j , the cardxi has a part of the path at that place. According
to the position (first, second, or third literal) in the clause, the path is depicted at top,
center, or bottom, respectively, as shown in Fig. 4.

If x̄i appears in clausec j , the cardxi has acover areaof the path at that place. This
white area covers the corresponding path drawn on the variable card corresponding to
x̄i , as shown in Fig. 4.

Each variable card ¯xi is symmetric to the variable cardxi , and hence omitted.

Blank card: We use 2n blank cards depicted in Fig. 4. They will be used to join variable
cards and the top card. They have no influence on the appearance of the variable cards.

We first show that generalized Kaboozle is NP-complete, without requiring a strip
folding:

Theorem 2. Generalized Kaboozle isNP-complete, even forbidding reflection and ro-
tation.

Proof. We use the top card and 2n variable cards. Make the cards asymmetric, e.g., by
shifting the gadgets on each card a little, to forbid reflecting or rotating the cards (if that
is allowed). Clearly, the reduction can be done in a polynomial time.

Because of the pictures of the endpoints of the unique path, the top card must be on
top. It is not difficult to see that cardxi has no influence on cardsx j and ¯x j if i , j. Hence
it is sufficient to consider the ordering between each pairxi and x̄i for i = 1,2, . . . ,n.

When F(x1, . . . , xn) has a solution, i.e., each clausec j contains exactly one true
literal ℓ j

i , the card corresponding to the literal activates one of three parts on the card
that joins the two endpoints of the parts of path incident to the hole representingc j in
the top card. For example, consider the (wrong) assignmentx1 = 0, x2 = 1, x3 = 0, and
x4 = 1 for F(x1, x2, x3, x4) from Fig. 4, as shown in Fig. 5. Then we put the card ¯x1 over
the cardx1, the cardx2 over the card ¯x2, and so on. Then, the card ¯x1 covers the parts
of the path on the cardx1, the cardx2 covers the parts of the path on the card ¯x2, and so
on. Any two cards corresponding to different variables can be stacked in any order. For
example, we can arrange “top”, ¯x1, x1, x2, x̄2; “top”, x̄1, x2, x̄2, x1; or “top”, x̄1, x2, x1,
x̄2; and so on. For this assignment, the clausec1 = (x1 ∨ x2 ∨ x3) satisfies the condition
of the 1-in-3 3SAT because onlyx2 is true. Hence the hole corresponding toc1 in the
top card is filled and the path is joined properly. On the otherhand, all literals are true
in the clausec2, and no literal is true in the clausec3. Hence the hole corresponding to
c2 produces loops and the path is disconnected at the hole corresponding toc3.



Therefore, the two endpoints of the path on the top card are joined by one simple
path if and only if eachc j contains exactly one true literal. ⊓⊔

c1 c2 c3
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Fig. 5. For F(x1, x2, x3) = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x̄4), a wrong ordering of
the cards that corresponds to a wrong assignmentx1 = 0, x2 = 1, x3 = 0, andx4 = 1. For this
assignment, the first clausec1 contains one true literal, the second clausec2 contains three true
literals, and the third clausec3 contains no true literal.

We now turn to the main theorem.

Theorem 3. Generalized Kaboozle isNP-complete even in a strip with fixed mountain-
valley pattern.

Proof. We use the top card, 2n variable cards, and 2n blank cards. We join these cards
into a strip as “xn-b-xn−1-b-· · ·-b-x2-b-x1-b-top-b- ¯x1-b-x̄2-b-· · ·-b-x̄n−1-b-x̄n”, where “b”
means a blank card. Fig. 6 shows the example from Fig. 4). We glue the blank cards
upside down, which will be reflected by folding to unit length. The mountain-valley
pattern is the shuffle pattern of lengthn; that is, the creases on either side of the top
card are mountain, and from there, the other creases are defined to form two pleats of
lengthn.

x2 x1

x3x4

TopBlank
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Fig. 6. The cards joined in a strip.

Now, the left pleat of the top card makes the sequence ofxis, and the right pleat
makes the sequence of ¯xis. For each pair ofxi and x̄i , we can choose the ordering
between the corresponding cards with an appropriate shuffling. This means that we can



assign true or false to this variable. Moreover, thanks to the blank cards between the
variable cards, we can arrange the ordering of the cardsxi and x̄i independently for
eachi. Hence, by Theorem 2 and the property of the shuffle pattern, the constructed
Kaboozle strip with fixed mountain-valley pattern has a solution if and only if the 1-in-
3 3SAT has a solution. ⊓⊔

Carefully checking the proof of the main theorem, we can alsolet the mountain-
valley pattern be free:

Corollary 1. Generalized Kaboozle isNP-complete even in the strip form and allowing
any mountain-valley pattern.

Proof. We use the same strip in the proof of Theorem 3. Even if the mountain-valley
pattern is not specified, the top card should be on top; otherwise, the endpoints of the
path disappear. Hence both creases bordering the top card are mountains. If the 1-in-3
3SAT instance has a solution, the constructed Kaboozle puzzle has a solution by the
folding in the proof of Theorem 3. On the other hand, if the Kaboozle puzzle has a
solution, we can extract the ordering betweenxi and x̄i for eachi with 1 ≤ i ≤ n from
the folded state. From these orderings, we can construct thesolution to the 1-in-3 3SAT
instance. ⊓⊔
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Fig. 7. Gadgets for rotation and reflection.

By combining gadgets, we can show that generalized Kaboozleis also NP-complete
if we allow only either rotation or reflection. Note that we can rotate a card 180◦ by the
combination of a horizontal reflection and a vertical reflection. To forbid this kind of
cheating with cards, we restrict reflection to be vertical.

Theorem 4. Generalized Kaboozle isNP-complete even if the card ordering is fixed (or
free), and (1) only 180◦ rotation of the cards is allowed, or (2) only vertical reflection
of the cards is allowed.

Proof. As in the proof of Theorem 2, we prepare the top card and 2n variable cards.
Now, the top card is enlarged to twice of the original cards ; see Fig. 7(1).

Rotation: For each variablexi , two variable cardsxi and x̄i are glued so that 180◦

rotation exchanges them; see Fig. 7(2).



Vertical reflection: For each variablexi , two variable cardsxi andx̄i are glued so that a
vertical reflection exchanges them; see Fig. 7(3).

Then it is easy to see that the ordering of the cards has no influence, except the top
card which should be the top, and the resultant Kaboozle has asolution if and only if
the 1-in-3 3SAT instance has a satisfying truth assignment. ⊓⊔

Along similar lines, we can show that silhouette puzzles areNP-complete:

Theorem 5. Silhouette puzzles areNP-complete even if (1) only 180◦ rotation of the
cards is allowed, or (2) only vertical reflection of the cardsis allowed.

Proof. We reduce from regular (not 1-in-3) SAT, mimicking the gadgets in Fig. 7. The
top card has one hole per clause, all in the top half of the card. Each variable card
reserves the top and bottom halves for the true and false literals; each side has a solid
patch for each clause the literal satisfies, and a hole for allother clauses. As in Fig. 7,
the top and bottom sides are rotations or vertical reflections of each other according to
the variation. A rectangular silhouette is possible if and only if the formula is satisfiable.

⊓⊔
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