Kaboozle is NP-complete, evenin a Strip
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Abstract. Kaboozle is a puzzle consisting of several square cards, each anno-
tated with colored paths and dots drawn on both sides and holes drilledo@he g
is to join two colored dots with paths of the same color (and fill all holes) by
stacking the cards suitably. The freedoms here are to reflect, rotdterder the
cards arbitrarily, so it is not surprising that the problem is NP-completev@a
show). More surprising is that any one of these freedoms—refleatibation,
and order—is alone enough to make the puzzle NP-complete. Furthermer
show NP-completeness of a particularly constrained form of Kaboeldéed to

1D paper folding. Specifically, we suppose that the cards are gluethergeto

a strip, where each glued edge has a specified folding direction (mowntedi
ley). This variation removes the ability to rotate and reflect cards, atritteshe
order to be a valid folded state of a given 1D mountain-valley pattern.
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1 Introduction

Kaboozle: The Labyrinth Puzziea puzzle created and developed in 2007 by Albatross
Games Ltd., LondoA.This “multi-layer labyrinth” consists of four square cardee

Fig. 1. (In fact, each card is octagonal, but the pattern as & square.) Each card
has holes drilled in dierent locations, and various colored paths and dots drawn on
both sides. The goal is to arrange the cards—Dby rotationctifie and stacking in an
arbitrary order—to create a continuous monochromatic pattvéen the corner dots

of the same color that is visible on one side of the stack. Tde gf this paper is to
understand what makes this puzzle NP-complete, when demetdo n cards instead

of four.

Kaboozle is an example of a broader class of puzzles in watteqmed pieces with
holes must be arranged to achieve some goal, such as monwitsides. For exam-
ple, Albatross Games Ltd. places Kaboozle in a series oflesizalledTransposerg
which all have this style. See [4] for descriptions, and [ftd]the relevant patent. Our
NP-hardness proofs for Kaboozle immediately imply NP-clatgmess for this general
family of puzzles, though there are likely other speciaksasf interest.

3 httpy//www.transposer.co.yKABpagel.htm
4 httpy//www.transposer.co.yk



Fig. 1. The four Kaboozle cards and one of the ten solutions.

An earlier form of this type of puzzle issilhouette puzzlevhere pieces are regions
with holes (no pattern beyond opaduansparent) and the goal is to make a target
shape. Perhaps the first silhouette puzzle, and certaialyaht known, is the “Question
du Lapin” or “Rabbit Silhouette Puzzle”, first produced irriBaround 1900 [7, p. 35].
Fig. 2 shows the puzzle: given the five cards on the left, sthekn with the right
orientations to obtain one of twoftirent rabbit silhouettes. The puzzle can be played
online’
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Fig. 2. The classic silhouette puzzle “Question du Lapin”.
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The freedoms in a silhouette puzzle are reflection and ootadf the cards; the
card stacking order has ndtect on the silhouette. (In fact, both rabbits can be ob-
tained without reflecting the cards in Fig. 2, so that puzzily meeds rotation.) Are
these freedoms enough for NP-completeness? We show tlestdrsilhouette puzzles
are NP-complete, even allowing just rotation or just veitieflection of the pieces.
Furthermore, we show that Kaboozle is NP-complete undesdh®e restriction of just
rotation or just vertical reflection.

5 httpy/www.puzzles.corfPuzzlePlaygroun@ilhouettegSilhouettes.htm



But is reflection or rotation necessary for Kaboozle to bedgmyplete? We show
that Kaboozle is NP-complete even when the cards can onlyaokesd in a desired
order, without rotation or reflection. We also show that Kade is NP-complete when
restricted to a restricted class of orderings that arism fpaper folding, as described
below.

Our folding variation of Kaboozle is inspired by a 1907 paf@&h commercialized
as the (politically incorrect) “Pick the Pickaninnies” @& [8]. This puzzle consists of
a single piece, shown on the left of Fig. 2, with holes, ima@és's), and crease lines.
The goal is to fold along the crease lines to make an arrayan$,sas shown on the
right. This type of puzzle severely limits the valid staakiorders of the parts, while
also dfectively forbidding rotation and reflection of the parts.
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Fig. 3. Puzzle commercialized as “Pick the Pickaninnies”. Figure from [5].

We consider a simple general puzzle along these lines, hyctesy a generalized
Kaboozle puzzle. Namely, we glue all the cards in the Kal®palzzle into a strip, and
specify the folding direction (mountain or valley) on eadhegl edge (crease). Now
the only freedom is folding the 1D strip of paper down to a wide, respecting the
folding directions. This freedom is a weak form of the ordgrof the cards; rotation
and reflection arefectively forbidden.

This idea also comes from problems in computational origémpolynomial time,
we can determine whether a mountain-valley pattern on a fip st paper can be
folded flat, when the distances between creases are no¢alhthe [1]. A recent notion
is folding complexitythe minimum number of simple folds required to construatiéu
spaced mountain-valley pattern (string) [2]. For examplgleats alternating mountain
and valley can be folded in a polylogarithmic number of sienfollds and unfolds. On
the contrary, the number of fierent ways to fold a uniform mountain-valley pattern
of lengthn down to unit length is not well-investigated. The numberatlings of a
paper strip of lengtim to unit length has been computed by enumeration, and it seems
to be exponentially large; the curve fits@§3.3") [6, AO00136]. However, as far as the
authors know, the details are not investigated, and it wagmmwvn whether this func-
tion is polynomial or exponential. Recently, the last autbloowed theoretical lower
and upper bounds of this function: it@&3.07") andO(4") [9]. These results imply that



a given random mountain-valley pattern of lengthas®(1.65") foldings on average,
which is bounded betweeB(1.53") andO(2").

Intuitively, the folding version of the Kaboozle puzzle sexeasy. Perhaps we could
apply the standard dynamic programming technique from wheeas the strip? But this
intuition is not correct. Essentially, the problem regsifelding a 1D strip of paper, but
the strip has labels which place constraints on the folddegpite the situation being
quite restrictive, we prove the problem is still NP-comelet

Therefore we conclude that the generalized Kaboozle prolséNP-complete even
if we allow only one of ordering, rotation, or reflection okthards, and in the ordering
case, even if the ordering comes from a 1D strip folding.

2 Preliminaries

We generalize the number of the Kaboozle cards #01. Eachcard is square, with
some fragments of a path drawn on both sides, and some hdled @rto it. We will
use just one color of path we have to join. The (potentialpentts of a path are distin-
guishable from the other fragments. To simplify, we assumethe cards are numbered
0,1,2...,n

A strip of the cards can be constructed as follows: for eaghiG n — 1, the right
side of the card is glued to the left side of the caid+ 1, and that side is called the
(i + 1)stcrease Each crease haslabel “M” or “V” which means that the strip must
be mountain folded or valley folded at the crease. (We defireeside of the strip as
the top side and creases are mountain or valley folded with respectisoside.) We
assume that the label of the first crease is “M” without losgeaferality, or otherwise
specified. For a strip of the cardsiadded states a flat folding of unit length (where the
unit is the width of a card) such that each crease is consigtigimits label. (A folded
state always exists for any string of labels [9].)

The main problem in this paper is the following:

Input: A strip of n + 1 Kaboozle cards, each with a label of length
Question: Determine whether the strip has a folded state that is demsisvith the
labels, and exactly one connected path is drawn on a surfahbe tolded state.

We begin with an observation for folding a unit pattern:

Observation 1 A strip of n+ 1 cards with n creases has a unique folded state if and
only if the crease pattern is a pleat, i.e., “MVMVMV” or “MVMV ---MVM".

Proof. Suppose that a mountain-valley pattern has a unique fol@déel. $Vithout loss
of generality, we assume that the first crease is a mounfdire second crease is also a
mountain, we have two folded states of the cards 1, 2, andl332nd 23, 1. Hence the
second crease must be valley. We can repeat the argumergdorcesase, and obtain
the pleat pattern. O

Using the pleats, we introduce a useful folding pattern fd?-dompleteness,
namely, theshyfle patternof lengthi: “(MV) '=*TMM(VM) -1".6 By Observation 1, the

SHere we use the standard notatiom* for string repetition. For example,
“(MV) SMM(VM) ¥’ =“MVMVMVMMVMVMVM”.



left and right pleats are folded uniquely and independehttyvever, these pleats can
be combined in any order to fold to unit length. Thus we i(ﬁ\)e;iistinct foldings of the
shufle pattern of lengthh We note that the center card of the fleipattern of lengtl,
the cardi + 1 in our notation, always appears on one side of any folddd.stée call
this side theop of the shiifle pattern, and caridr 1 thetop card(although it may come
to the “bottom” in a natural folding).

3 NP-completeness of generalized Kaboozle

It is easy to see that all the problems in this paper are in NfAcE we concentrate on
the proofs of NP-hardness. Our reduction is from1ka-3 3SAT problem

Input: A conjunctive normal form (CNF) Boolean formuk(xs, ..., X,) = C1 A C2 A
-++ A Cm, Where each clausg = ¢ v £, v ¢, has three Iiteralszfij € {Xi,...,
Question: Determine whetheF has a truth assignment such that each clause contains
exactly one true literal.

This problem is a well-known NP-complete variant of 3-datslity [3, LO4].

etfrfriel| [I[I[]
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Fig. 4. Example of the reduction fdF(Xy, Xz, X3, Xa) = (X1 VX2V X3) A (X1 V X2 V Xa) A (X2 V X3 V Xg).

For a given CNF formul& (X, . . ., X5) with n variable andn clauses, we usev- 1
Kaboozle cards as follows. Fig. 4 shows an example of thectamufor F(xy, Xo, X3) =
(X1 V XV X3) A (X1 V X2 V Xg4) A (X2 V X3 V X4). Each gray area is a hole in the card,
each black line is a fragment of the unique path, and the hiacles are the endpoints
of the unique path.

Top card: Onetop card is placed at the top of the gha pattern, and it represents
clauses. On the top card, two endpoints of the unique pattraven, and each clause



is represented by a hole in the card. Each hole has two dineplessponding to the
borders of the path and that will be extended to one of thresiple directions by the
variable cards described below.

Variable card: We use 2 variable cards. Here, the indéwith 1 < i < nis used
to represent théh variable, and the indekwith 1 < j < mis used to represent the
jth clause. Each card represents eithear ;. We makem gadgets on the card for the
variablex; as follows.

If neither x; nor x; appear in clause;, the cardx has a hole at that place. Hence
this card has no influence at that place of clagjse

If x; appears in clausg, the cardx; has a part of the path at that place. According
to the position (first, second, or third literal) in the clauthe path is depicted at top,
center, or bottom, respectively, as shown in Fig. 4.

If X appears in clausg, the cardx; has acover areaof the path at that place. This
white area covers the corresponding path drawn on the Var@aod corresponding to
Xi, as shown in Fig. 4.

Each variable card; is symmetric to the variable carg, and hence omitted.

Blank card: We use 2 blank cards depicted in Fig. 4. They will be used to join Valea
cards and the top card. They have no influence on the appeavétite variable cards.

We first show that generalized Kaboozle is NP-complete,aitliequiring a strip
folding:

Theorem 2. Generalized Kaboozle iNP-complete, even forbidding reflection and ro-
tation.

Proof. We use the top card andh®ariable cards. Make the cards asymmetric, e.g., by
shifting the gadgets on each card a little, to forbid reftegtr rotating the cards (if that
is allowed). Clearly, the reduction can be done in a polyrabtitne.
Because of the pictures of the endpoints of the unique pgagitpp card must be on
top. Itis not dfficult to see that carg has no influence on cardgandx; if i # j. Hence
it is suficient to consider the ordering between each gaandx fori =1,2,...,n.
WhenF(x,..., X)) has a solution, i.e., each clausgcontains exactly one true
literal fij, the card corresponding to the literal activates one ofetipats on the card
that joins the two endpoints of the parts of path incidenti®ltole representing; in
the top card. For example, consider the (wrong) assignmeatO, x, = 1, X3 = 0, and
X4 = 1 for F(Xq, X2, X3, X4) from Fig. 4, as shown in Fig. 5. Then we put the cgrdver
the cardx,, the cardx, over the cardk,, and so on. Then, the caxd covers the parts
of the path on the carxh, the cardx, covers the parts of the path on the cagdand so
on. Any two cards corresponding tofi@irent variables can be stacked in any order. For
example, we can arrange “topXy, X1, Xz, Xz; “top”, X1, X2, X2, Xg; Or “tOp”, Xg, X2, X1,
x2; and so on. For this assignment, the clacise (x; V X, V x3) satisfies the condition
of the 1-in-3 3SAT because onkg is true. Hence the hole correspondingcian the
top card is filled and the path is joined properly. On the otterd, all literals are true
in the clause,, and no literal is true in the clause. Hence the hole corresponding to
c, produces loops and the path is disconnected at the holespomding tacs.



Therefore, the two endpoints of the path on the top card é@negoby one simple
path if and only if eaclt; contains exactly one true literal. O

151 [ o

Fig.5. For F(xg, X2, X3) = (X1 V X2 V X3) A (X¢ V X2 V Xg) A (X2 V X3 V Xg), @ wrong ordering of
the cards that corresponds to a wrong assignment 0,x, = 1,x3 = 0, andx, = 1. For this
assignment, the first clausg contains one true literal, the second claaseontains three true
literals, and the third clausg contains no true literal.

We now turn to the main theorem.

Theorem 3. Generalized Kaboozle MP-complete even in a strip with fixed mountain-
valley pattern.

Proof. We use the top card nvariable cards, andriblank cards. We join these cards
into a strip as %,-b-xn_1-b- - --b-%o-b-x;-b-top-bx;-b-X-b-- - --b-X,_1-b-x,", where “b”
means a blank card. Fig. 6 shows the example from Fig. 4). e tijle blank cards
upside down, which will be reflected by folding to unit lengifhe mountain-valley
pattern is the shile pattern of lengthn; that is, the creases on either side of the top
card are mountain, and from there, the other creases aredefiform two pleats of
lengthn.

X, Bl ank X, Bl ank Top Bl ank X, Bl ank A
ﬁumu RSl | OO0 e 000 | 580 DDD%
X4 Bl ank X3 w W Xy Bl ank X,
0gP | 000 | BOS | OO0 000 | A08 | 00O | 09

\% M \ M M \ M \Y

Fig. 6. The cards joined in a strip.

Now, the left pleat of the top card makes the sequencgsfand the right pleat
makes the sequence &fs. For each pair ok, and x;, we can choose the ordering
between the corresponding cards with an appropriatfistgs This means that we can



assign true or false to this variable. Moreover, thanks éohtank cards between the
variable cards, we can arrange the ordering of the cardsd x; independently for
eachi. Hence, by Theorem 2 and the property of thefBawpattern, the constructed
Kaboozle strip with fixed mountain-valley pattern has a sofuif and only if the 1-in-

3 3SAT has a solution. O

Carefully checking the proof of the main theorem, we can &sdhe mountain-
valley pattern be free:

Corollary 1. Generalized Kaboozle MP-complete even in the strip form and allowing
any mountain-valley pattern.

Proof. We use the same strip in the proof of Theorem 3. Even if the nadnnvalley

pattern is not specified, the top card should be on top; otkenthe endpoints of the
path disappear. Hence both creases bordering the top @ardamtains. If the 1-in-3
3SAT instance has a solution, the constructed Kaboozlel@inas a solution by the
folding in the proof of Theorem 3. On the other hand, if the Babe puzzle has a
solution, we can extract the ordering betweeandx; for eachi with 1 < i < nfrom

the folded state. From these orderings, we can construsbligon to the 1-in-3 3SAT

instance. o
(1) Top card (2)For rotation (3)For flipping
Cy C, Cs C, C, Cg C, Cp, C,
Top X,
7777777777777777777 1 g
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Fig. 7. Gadgets for rotation and reflection.

By combining gadgets, we can show that generalized Kabi®also NP-complete
if we allow only either rotation or reflection. Note that wenaatate a card 18y the
combination of a horizontal reflection and a vertical reftatt To forbid this kind of
cheating with cards, we restrict reflection to be vertical.

Theorem 4. Generalized Kaboozle MP-complete even if the card ordering is fixed (or
free), and (1) only 180rotation of the cards is allowed, or (2) only vertical refleet
of the cards is allowed.

Proof. As in the proof of Theorem 2, we prepare the top card ama&tiable cards.
Now, the top card is enlarged to twice of the original cardse; Big. 7(1).

Rotation: For each variableg, two variable cards and x; are glued so that 180
rotation exchanges them; see Fig. 7(2).



Vertical reflection: For each variable;, two variable cards; andx; are glued so that a
vertical reflection exchanges them; see Fig. 7(3).

Then it is easy to see that the ordering of the cards has nentd&y except the top
card which should be the top, and the resultant Kaboozle lsatution if and only if
the 1-in-3 3SAT instance has a satisfying truth assignment. O

Along similar lines, we can show that silhouette puzzles\iPecomplete:

Theorem 5. Silhouette puzzles afdP-complete even if (1) only 180otation of the
cards is allowed, or (2) only vertical reflection of the caidsllowed.

Proof. We reduce from regular (not 1-in-3) SAT, mimicking the gadge Fig. 7. The

top card has one hole per clause, all in the top half of the. &@agdh variable card

reserves the top and bottom halves for the true and falgaltesach side has a solid

patch for each clause the literal satisfies, and a hole fathdr clauses. As in Fig. 7,

the top and bottom sides are rotations or vertical reflest@freach other according to

the variation. A rectangular silhouette is possible if anty @ the formula is satisfiable.
O
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